Skip to main content
Log in

Janus Kinase Inhibitor Brepocitinib Rescues Myelin Phagocytosis Under Inflammatory Conditions: In Vitro Evidence from Microglia and Macrophage Cell Lines

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Central nervous system (CNS) injuries induce cell death and consequently the release of myelin and other cellular debris. Microglia as well as hematogenous macrophages actively collaborate to phagocyte them and undergo their degradation. However, myelin accumulation persists in the lesion site long after the injury with detrimental effects on axonal regeneration. This might be due to the presence of inhibitors of phagocytosis in the injury site. As we recently published that some proinflammatory stimuli, like interferon-γ (IFNγ) and lipopolysaccharide (LPS), inhibit myelin phagocytosis in macrophages, we have now studied the signaling pathways involved. A phagocytosis assay in Raw264.7 macrophages and N13 microglia cell lines with labeled myelin was developed with the pHrodo reagent that emits fluorescence in acidic cellular compartments (e.g.lysosomes). Pharmacological inhibition of Janus kinases (Jak) with Brepocitinib restored myelin phagocytosis and rescued the expression of genes related to phagocytosis, like triggering receptor expressed on myeloid cells 2 (TREM2), induced by IFNγ or LPS. In addition, while pharmacological inhibition of the signal transducer and activator of transcription 3 (STAT3) rescued myelin phagocytosis and the expression of phagocytosis related genes in the presence of LPS, it did not have any effect on IFNγ-treated cells. Our results show that Jak pathways participate in the inhibition of myelin phagocytosis by IFNγ and LPS. They also indicate that the resolution of inflammation is important for the clearance of cellular debris by macrophages and subsequent regenerative processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Supporting data are included in the Supplementary Information. All other data are available from the corresponding author upon reasonable request.

References

  1. Boada-Romero E, Martinez J, Heckmann BL, Green DR (2020) The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol 21:398–414. https://doi.org/10.1038/s41580-020-0232-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4:703–713. https://doi.org/10.1038/nrn1195

    Article  CAS  PubMed  Google Scholar 

  3. Kotter MR, Li WW, Zhao C, Franklin RJ (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 26:328–32. https://doi.org/10.1523/JNEUROSCI.2615-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhu Y, Lyapichev K, Lee DH, Motti D, Ferraro NM, Zhang Y, Yahn S, Soderblom C et al (2017) Macrophage transcriptional profile identifies lipid catabolic pathways that can be therapeutically targeted after spinal cord injury. J Neurosci 37:2362–2376. https://doi.org/10.1523/JNEUROSCI.2751-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang X, Cao K, Sun X, Chen Y, Duan Z, Sun L, Guo L, Bai P et al (2015) Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris. Glia 63:635–51. https://doi.org/10.1002/glia.22774

    Article  PubMed  Google Scholar 

  6. Martin CJ, Peters KN, Behar SM (2014) Macrophages clean up: efferocytosis and microbial control. Curr Opin Microbiol 17:17–23. https://doi.org/10.1016/j.mib.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  7. Michlewska S, Dransfield I, Megson IL, Rossi AG (2009) Macrophage phagocytosis of apoptotic neutrophils is critically regulated by the opposing actions of pro-inflammatory and anti-inflammatory agents: key role for TNF-alpha. FASEB J 23:844–854. https://doi.org/10.1096/fj.08-121228

    Article  CAS  PubMed  Google Scholar 

  8. Feng X, Deng T, Zhang Y, Su S, Wei C, Han D (2011) Lipopolysaccharide inhibits macrophage phagocytosis of apoptotic neutrophils by regulating the production of tumour necrosis factor α and growth arrest-specific gene 6. Immunology 132:287–295. https://doi.org/10.1111/j.1365-2567.2010.03364.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Owens R, Grabert K, Davies CL, Alfieri A, Antel JP, Healy LM, McColl BW (2017) Divergent neuroinflammatory regulation of microglial TREM expression and involvement of NF-κB. Front Cell Neurosci 11:56. https://doi.org/10.3389/fncel.2017.00056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu S, Romero-Ramírez L, Mey J (2022) Taurolithocholic acid but not tauroursodeoxycholic acid rescues phagocytosis activity of bone marrow-derived macrophages under inflammatory stress. J Cell Physiol 237:1455–1470. https://doi.org/10.1002/jcp.30619

    Article  CAS  PubMed  Google Scholar 

  11. Shuai K, Ziemiecki A, Wilks AF, Harpur AG, Sadowski HB, Gilman MZ, Darnell JE et al (1993) Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins. Nature 366(580):3. https://doi.org/10.1038/366580a0

    Article  Google Scholar 

  12. Okugawa S, Ota Y, Kitazawa T, Nakayama K, Yanagimoto S, Tsukada K, Kawada M, Kimura S et al (2003) Janus kinase 2 is involved in lipopolysaccharide-induced activation of macrophages. Am J Physiol Cell Physiol 285:C399-408. https://doi.org/10.1152/ajpcell.00026.2003

    Article  CAS  PubMed  Google Scholar 

  13. Hu X, Li J, Fu M, Zhao X, Wang W (2021) The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 6(1):402. https://doi.org/10.1038/s41392-021-00791-1

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fensome A, Ambler CM, Arnold E, Banker ME, Brown MF, Chrencik J, Clark JD, Dowty ME et al (2018) Dual inhibition of TYK2 and JAK1 for the treatment of autoimmune diseases: discovery of ((S)-2,2-difluorocyclopropyl)((1 R,5 S)-3-(2-((1-methyl-1 H-pyrazol-4-yl)amino)pyrimidin-4-yl)-3,8-diazabicyclo[3.2.1]octan-8-yl)methanone (PF-06700841). J Med Chem 61:8597–8612. https://doi.org/10.1021/acs.jmedchem.8b00917

    Article  CAS  PubMed  Google Scholar 

  15. Mease P, Helliwell P, Silwinska-Stanczyk P, Miakisz M, Ostor A, Peeva E, Vincent MS, Sun Q et al (2023) Efficacy and Safety of the TYK2/JAK1 inhibitor Brepocitinib for active psoriatic arthritis: A phase IIb randomized controlled trial. Arthritis Rheumatol. https://doi.org/10.1002/art.42519

  16. Landis MN, Smith SR, Berstein G, Fetterly G, Ghosh P, Feng G, Pradhan V, Aggarwal S et al (2023) Efficacy and safety of topical brepocitinib cream for mild-to-moderate chronic plaque psoriasis: a phase IIb randomized double-blind vehicle-controlled parallel-group study. Br J Dermatol 189:33–41. https://doi.org/10.1093/bjd/ljad098

    Article  PubMed  Google Scholar 

  17. Sandborn WJ, Danese S, Leszczyszyn J, Romatowski J, Altintas E, Peeva E, Hassan-Zahraee M, Vincent MS et al (2023) Oral Ritlecitinib and Brepocitinib for moderate-to-severe ulcerative colitis: Results from a randomized, phase 2b study. Clin Gastroenterol Hepatol S1542–3565(23):00007–00011. https://doi.org/10.1016/j.cgh.2022.12.029

    Article  CAS  Google Scholar 

  18. Li C-h, Lin-lin X, Jian L-l, Ruo-han Y, Zhao J-x, Sun L, Guo-hong D, Liu X-y et al (2018) Stattic inhibits RANKL-mediated osteoclastogenesis by suppressing activation of STAT3 and NF-κB pathways. Int Immunopharmacol 58(136):144. https://doi.org/10.1016/j.intimp.2018.03.021

    Article  CAS  Google Scholar 

  19. Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR, Richard Yip ML, Jove R et al (2007) Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci U S A. 104(7391):7396. https://doi.org/10.1073/pnas.0609757104

    Article  ADS  Google Scholar 

  20. Romero-Ramírez L, García-Rama C, Wu C, Mey J (2022) Bile acids attenuate PKM2 pathway activation in proinflammatory microglia. Sci Rep 12(1):1459. https://doi.org/10.1038/s41598-022-05408-3

  21. Wu S, Romero-Ramírez L, Mey J (2021) Retinoic acid increases phagocytosis of myelin by macrophages. J Cell Physiol 36:3929–3945. https://doi.org/10.1002/jcp.30137

    Article  CAS  Google Scholar 

  22. Kamezaki K, Shimoda K, Numata A, Matsuda T, Nakayama K, Harada M (2004) The role of Tyk2, Stat1 and Stat4 in LPS-induced endotoxin signals. Int Immunol 16:1173–1179. https://doi.org/10.1093/intimm/dxh118

    Article  CAS  PubMed  Google Scholar 

  23. Qi Z, Yin F, Lina L, Shen L, Qi S, Lan L, Luo L, Yin Z et al (2013) Baicalein reduces lipopolysaccharide-induced inflammation via suppressing JAK/STATs activation and ROS production. Inflamm Res 62(845):55. https://doi.org/10.1007/s00011-013-0639-7

    Article  CAS  Google Scholar 

  24. Li H, Wang Y, Zhang H, Jia B, Wang D, Li H, Lu D, Qi R et al (2012) Yohimbine enhances protection of berberine against LPS-induced mouse lethality through multiple mechanisms. PLoS ONE 7:e52863. https://doi.org/10.1371/journal.pone.0052863

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shuai K, Schindler C, Prezioso VR, Darnell JE Jr (1992) Activation of transcription by IFN-gamma: tyrosine phosphorylation of a 91-kD DNA binding protein. Science 258:1808–12. https://doi.org/10.1126/science.1281555

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Przanowski P, Dabrowski M, Ellert-Miklaszewska A, Kloss M, Mieczkowski J, Kaza B, Ronowicz A, Feng H et al (2014) The signal transducers Stat1 and Stat3 and their novel target Jmjd3 drive the expression of inflammatory genes in microglia. J Mol Med (Berl) 92(239):254. https://doi.org/10.1007/s00109-013-1090-5

    Article  CAS  Google Scholar 

  27. Frank DA, Mahajan S, Ritz J (1999) Fludarabine-induced immunosuppression is associated with inhibition of STAT1 signaling. Nat Med 5:444–447. https://doi.org/10.1038/7445

    Article  CAS  PubMed  Google Scholar 

  28. Zhao Y, Ma C, Chen C, Li S, Wang Y, Yang T, Stetler RA, Michael VL et al (2022) STAT1 contributes to microglial/macrophage inflammation and neurological dysfunction in a mouse model of traumatic brain injury. J Neurosci 42(7466):7481. https://doi.org/10.1523/JNEUROSCI.0682-22.2022

    Article  Google Scholar 

  29. Shirotani K, Hori Y, Yoshizaki R, Higuchi E, Colonna M, Saito T, Hashimoto S, Saito T et al (2019) Aminophospholipids are signal-transducing TREM2 ligands on apoptotic cells. Sci Rep 9(1):7508. https://doi.org/10.1038/s41598-019-43535-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nugent AlA, Lin K, van Lengerich B, Lianoglou S, Przybyla L, Davis SS, Llapashtica C, Wang J (2020) TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron 105(837):854.e9. https://doi.org/10.1016/j.neuron.2019.12.007

    Article  CAS  Google Scholar 

  31. Hsieh CL, Koike M, Spusta SC, Niemi EC, Yenari M, Nakamura MC, Seaman WE (2009) A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J Neurochem 109:1144–1156. https://doi.org/10.1111/j.1471-4159.2009.06042.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hwang M, Savarin C, Kim J, Powers J, Towne N, Hyunsuk O, Bergmann CC (2022) Trem2 deficiency impairs recovery and phagocytosis and dysregulates myeloid gene expression during virus-induced demyelination. J Neuroinflammation 19:267. https://doi.org/10.1186/s12974-022-02629-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Deng T, Zhang Y, Chen Q, Yan K, Han D (2012) Toll-like receptor-mediated inhibition of Gas6 and ProS expression facilitates inflammatory cytokine production in mouse macrophages. Immunology 135:40–50. https://doi.org/10.1111/j.1365-2567.2011.03511.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yanguas-Casás N, Barreda-Manso MA, Nieto-Sampedro M, Romero-Ramírez L (2014) Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation. J Neuroinflammation 11:50. https://doi.org/10.1186/1742-2094-11-50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the expert assistance provided by the HNP core facility of Microscopy.

Funding

This work was funded by Grants SAF2017-89366-R (MINECO/AEI/FEDER/EU) and PID2021-128446NB-I00 (MCIN/AEI/https://doi.org/10.13039/501100011033 and by “ERDF A way of making Europe”, by the “European Union”). We appreciate the expert assistance provided by the HNP core facility of Microscopy.

Author information

Authors and Affiliations

Authors

Contributions

Lorenzo Romero-Ramírez: designed and supervised the study; performed the experiments, analyzed the data and wrote the manuscript. Concepción García-Rama: performed the experiments. Jörg Mey: supervised the study, drew Fig. 8 and reviewed the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Lorenzo Romero-Ramírez.

Ethics declarations

Animal Ethics Approval

Not applicable.

Ethics Approval for Human Participants

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 239 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-Ramírez, L., García-Rama, C. & Mey, J. Janus Kinase Inhibitor Brepocitinib Rescues Myelin Phagocytosis Under Inflammatory Conditions: In Vitro Evidence from Microglia and Macrophage Cell Lines. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03963-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03963-6

Keywords

Navigation