Skip to main content

Advertisement

Log in

SIRT1-Mediated HMGB1 Deacetylation Suppresses Neutrophil Extracellular Traps Related to Blood–Brain Barrier Impairment After Cerebral Venous Thrombosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cerebral venous thrombosis (CVT) is a neurovascular disease with recently increasing incidence. Aseptic inflammatory responses play an important role in the pathology of CVT. Recent studies report that neutrophil extracellular traps (NETs) are major triggers of thrombosis and inflammation in stroke, but their effect on brain injury in CVT requires further validation. In this study, two CVT animal models were used to simulate superior sagittal sinus thrombosis and cortical vein thrombosis. The effects of brain tissue infiltration of NETs and the molecular mechanisms associated with NET formation were deeply explored in combination with proteomics, histology, and serology. The results showed that the cortical vein thrombosis model could be combined with more severe blood–brain barrier (BBB) disruption and showed more severe cerebral hemorrhage. Decreased Sirtuin 1 (SIRT1) expression promotes high mobility group box 1 (HMGB1) acetylation, causing increased cytosolic translocation and extracellular release, and HMGB1 can promote NET formation and recruitment. In addition, corticocerebral accumulation of NETs contributes to BBB damage. This establishes a vicious cycle between BBB damage and NET accumulation. SIRT1 mediated-HMGB1 deacetylation may play a critical role in attenuating BBB damage following CVT. This study employed a combined validation using models of venous sinus thrombosis and cortical vein thrombosis to investigate the deacetylation role of SIRT1, aiming to offer new insights into the pathological mechanisms of brain injury following CVT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed for the present study are available from the corresponding authors on reasonable request.

Abbreviations

ADC :

Apparent diffusion coefficient

BBB :

Blood-brain barrier

CV :

Cortical vein

CVT :

Cerebral venous thrombosis

CitH3 :

Citrullinated histone H3

COVID :

Coronavirus disease

DAPI :

4′,6-Diamidino-2-phenylindole

DMSO :

Dimethyl sulfoxide

DNase :

Deoxyribonuclease

DWI :

Diffusion-weighted imaging

ELISA :

Enzyme‑linked immunosorbent assay

EB :

Evans blue

GO :

Gene Ontology

HE :

Hematoxylin and eosin

HMGB1 :

High mobility group box 1

IL :

Interleukin

IP :

Immunoprecipitation

KEGG :

Kyoto Encyclopedia of Genes and Genomes

MPO :

Myeloperoxidase

NAD :

Nicotinamide adenosine dinucleotide

NET :

Neutrophil extracellular trap

OD :

Optical density

PBS :

Phosphate-buffered saline

SD :

Standard deviation

SDS :

Sodium dodecyl sulfate

SIRT1 :

Sirtuin 1

SMA :

Smooth muscle actin

SSS :

Superior sagittal sinus

TUNEL :

Terminal deoxynucleotidyl transferase dUTP nick-end labeling

WB :

Western blotting

ZO :

Zonula occludens

References

  1. Saposnik G, Barinagarrementeria F, Brown RD Jr, Bushnell CD, Cucchiara B, Cushman M, deVeber G, Ferro JM et al (2011) Diagnosis and management of cerebral venous thrombosis: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42(4):1158–1192. https://doi.org/10.1161/STR.0b013e31820a8364

    Article  PubMed  Google Scholar 

  2. Kowoll CM, Kaminski J, Weiß V, Bösel J, Dietrich W, Jüttler E, Flechsenhar J, Guenther A et al (2016) Severe cerebral venous and sinus thrombosis: clinical course, imaging correlates, and prognosis. Neurocrit Care 25(3):392–399. https://doi.org/10.1007/s12028-016-0256-8

    Article  PubMed  Google Scholar 

  3. Yang X, Wu F, Liu Y, Duan J, Meng R, Chen J, Li D, Fan Z et al (2019) Predictors of successful endovascular treatment in severe cerebral venous sinus thrombosis. Ann Clin Transl Neurol 6(4):755–761. https://doi.org/10.1002/acn3.749

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, Chang J, Hong C et al (2020) Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan. China JAMA Neurol 77(6):683–690. https://doi.org/10.1001/jamaneurol.2020.1127

    Article  PubMed  Google Scholar 

  5. Baldini T, Asioli GM, Romoli M, Carvalho Dias M, Schulte EC, Hauer L, Aguiar De Sousa D, Sellner J et al (2021) Cerebral venous thrombosis and severe acute respiratory syndrome coronavirus-2 infection: a systematic review and meta-analysis. Eur J Neurol 28(10):3478–3490. https://doi.org/10.1111/ene.14727

    Article  PubMed  PubMed Central  Google Scholar 

  6. Thakur KT, Tamborska A, Wood GK, McNeill E, Roh D, Akpan IJ, Miller EC, Bautista A et al (2021) Clinical review of cerebral venous thrombosis in the context of COVID-19 vaccinations: evaluation, management, and scientific questions. J Neurol Sci 427:117532. https://doi.org/10.1016/j.jns.2021.117532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pavord S, Scully M, Hunt BJ, Lester W, Bagot C, Craven B, Rampotas A, Ambler G et al (2021) Clinical features of vaccine-induced immune thrombocytopenia and thrombosis. N Engl J Med 385(18):1680–1689. https://doi.org/10.1056/NEJMoa2109908

    Article  CAS  PubMed  Google Scholar 

  8. Perry Richard J, Arina T, Bhagteshwar S, Brian C, Richard M, Peter A, Ming YJ, Liqun Z et al (2021) Cerebral venous thrombosis after vaccination against COVID-19 in the UK: a multicentre cohort study. Lancet (London, England) 398(10306):1147–1156. https://doi.org/10.1016/S0140-6736(21)01608-1

    Article  CAS  PubMed  Google Scholar 

  9. Ding J, Song B, Xie X, Li X, Chen Z, Wang Z, Pan L, Lan D et al (2022) Inflammation in cerebral venous thrombosis. Front Immunol 13:833490. https://doi.org/10.3389/fimmu.2022.833490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo Y, Zeng H, Gao C (2021) The role of neutrophil extracellular traps in central nervous system diseases and prospects for clinical application. Oxid Med Cell Longev 2021:9931742. https://doi.org/10.1155/2021/9931742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Manda-Handzlik A, Demkow U (2019) The brain entangled: the contribution of neutrophil extracellular traps to the diseases of the central nervous system. Cells 8(12):1477. https://doi.org/10.3390/cells8121477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, Cao Y, Xu H et al (2020) Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun 11(1):2488. https://doi.org/10.1038/s41467-020-16191-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zeng H, Fu X, Cai J, Sun C, Yu M, Peng Y, Zhuang J, Chen J et al (2022) Neutrophil extracellular traps may be a potential target for treating early brain injury in subarachnoid hemorrhage. Transl Stroke Res 13(1):112–131. https://doi.org/10.1007/s12975-021-00909-1

    Article  CAS  PubMed  Google Scholar 

  14. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535. https://doi.org/10.1126/science.1092385

    Article  CAS  PubMed  Google Scholar 

  15. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW et al (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 107(36):15880–15885. https://doi.org/10.1073/pnas.1005743107

    Article  PubMed  PubMed Central  Google Scholar 

  16. Daniel C, Leppkes M, Muñoz LE, Schley G, Schett G, Herrmann M (2019) Extracellular DNA traps in inflammation, injury and healing. Nat Rev Nephrol 15(9):559–575. https://doi.org/10.1038/s41581-019-0163-2

    Article  CAS  PubMed  Google Scholar 

  17. Mu SW, Dang Y, Wang SS, Gu JJ (2018) The role of high mobility group box 1 protein in acute cerebrovascular diseases. Biomed Rep 9(3):191–197. https://doi.org/10.3892/br.2018.1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mu SW, Dang Y, Fan YC, Zhang H, Zhang JH, Wang W, Wang SS, Gu JJ (2019) Effect of HMGB1 and RAGE on brain injury and the protective mechanism of glycyrrhizin in intracranial-sinus occlusion followed by mechanical thrombectomy recanalization. Int J Mol Med 44(3):813–822. https://doi.org/10.3892/ijmm.2019.4248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A, Rubartelli A, Agresti A et al (2003) Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 22(20):5551–5560. https://doi.org/10.1093/emboj/cdg516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stefania G, Cristina A, Denise F, Lotti Lavinia V, Torrisi Maria R, Bianchi Marco E, Anna R (2002) The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep 3(10):995–1001. https://doi.org/10.1093/embo-reports/kvf198

    Article  Google Scholar 

  21. Kim SW, Lee JK (2020) Role of HMGB1 in the interplay between NETosis and thrombosis in ischemic stroke: a review. Cells 9(8):1794. https://doi.org/10.3390/cells9081794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim SW, Lee H, Lee HK, Kim ID, Lee JK (2019) Neutrophil extracellular trap induced by HMGB1 exacerbates damages in the ischemic brain. Acta Neuropathol Commun 7(1):94. https://doi.org/10.1186/s40478-019-0747-x

    Article  CAS  PubMed  Google Scholar 

  23. Rabadi MM, Xavier S, Vasko R, Kaur K, Goligorksy MS, Ratliff BB (2015) High-mobility group box 1 is a novel deacetylation target of Sirtuin1. Kidney Int 87(1):95–108. https://doi.org/10.1038/ki.2014.217

    Article  CAS  PubMed  Google Scholar 

  24. Einhäupl K, Stam J, Bousser MG, De Bruijn SF, Ferro JM, Martinelli I, Masuhr F, European Federation of Neurological Societies (2010) EFNS guideline on the treatment of cerebral venous and sinus thrombosis in adult patients. Eur J Neurol 17(10):1229–1235. https://doi.org/10.1111/j.1468-1331.2010.03011.x

    Article  PubMed  Google Scholar 

  25. Mu S, Lin Y, Xu Y, Wei X, Zeng Z, Lin K, Zhu L, Liu Q et al (2022) A novel rat model for cerebral venous sinus thrombosis: verification of similarity to human disease via clinical analysis and experimental validation. J Transl Med 20(1):174. https://doi.org/10.1186/s12967-022-03374-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cai Q, Luo J, Ge S, Li Y, Cui W, Wu X, Li C, Wu Y et al (2020) The characteristics of brain injury following cerebral venous infarction induced by surgical interruption of the cortical bridging vein in mice. Brain Res 1739:146823. https://doi.org/10.1016/j.brainres.2020.146823

    Article  CAS  PubMed  Google Scholar 

  27. Bousser MG, Ferro JM (2007) Cerebral venous thrombosis: an update. Lancet Neurol 6(2):162–170. https://doi.org/10.1016/S1474-4422(07)70029-7

    Article  CAS  PubMed  Google Scholar 

  28. Schaller C, Nakase H, Kotani A, Nishioka T, Meyer B, Sakaki T (2002) Impairment of autoregulation following cortical venous occlusion in the rat. Neurol Res 24(2):210–214. https://doi.org/10.1179/016164102101199620

    Article  PubMed  Google Scholar 

  29. Wei S, Gao Y, Dai X, Fu W, Cai S, Fang H, Zeng Z, Chen Z (2019) SIRT1-mediated HMGB1 deacetylation suppresses sepsis-associated acute kidney injury. Am J Physiol Renal Physiol 316(1):F20–F31. https://doi.org/10.1152/ajprenal.00119.2018

    Article  CAS  PubMed  Google Scholar 

  30. Gao X, Hao S, Yan H, Ding W, Li K, Li J (2015) Neutrophil extracellular traps contribute to the intestine damage in endotoxemic rats. J Surg Res 195(1):211–218. https://doi.org/10.1016/j.jss.2014.12.019

    Article  CAS  PubMed  Google Scholar 

  31. Hopp S, Nolte MW, Stetter C, Kleinschnitz C, Sirén AL, Albert-Weissenberger C (2017) Alleviation of secondary brain injury, posttraumatic inflammation, and brain edema formation by inhibition of factor XIIa. J Neuroinflammation 14(1):39. https://doi.org/10.1186/s12974-017-0815-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiqin Z, Fei S, Xiaojing Z, Hua J, Xiuqi W, Biao W, Min Z, Mi T et al (2017) EGFR modulates monounsaturated fatty acid synthesis through phosphorylation of SCD1 in lung cancer. Mol Cancer 16(1):127. https://doi.org/10.1186/s12943-017-0704-x

    Article  CAS  Google Scholar 

  33. Iachettini S, Ciccarone F, Maresca C, D’Angelo C, Petti E, Di Vito S, Ciriolo MR, Zizza P et al (2022) The telomeric protein TERF2/TRF2 impairs HMGB1-driven autophagy. Autophagy 19(5):1479–1490. https://doi.org/10.1080/15548627.2022.2138687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shen Q, Shi Y, Liu J, Su H, Huang J, Zhang Y, Peng C, Zhou T et al (2021) Acetylation of STX17 (syntaxin 17) controls autophagosome maturation. Autophagy 17(5):1157–1169. https://doi.org/10.1080/15548627.2020.1752471

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L et al (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184(2):205–213. https://doi.org/10.1083/jcb.200806072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brinkmann V (2018) Neutrophil extracellular traps in the second decade. J Innate Immun 10(5–6):414–421. https://doi.org/10.1159/000489829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. An Z, Li J, Yu J, Wang X, Gao H, Zhang W, Wei Z, Zhang J et al (2019) Neutrophil extracellular traps induced by IL-8 aggravate atherosclerosis via activation NF-κB signaling in macrophages. Cell Cycle 18(21):2928–2938. https://doi.org/10.1080/15384101.2019.1662678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kazmierski R, Michalak S, Wencel-Warot A, Nowinski WL (2012) Serum tight-junction proteins predict hemorrhagic transformation in ischemic stroke patients. Neurology 79(16):1677–1685. https://doi.org/10.1212/WNL.0b013e31826e9a83

    Article  CAS  PubMed  Google Scholar 

  39. Zheng S, Wang C, Lin L, Mu S, Liu H, Hu X, Chen X, Wang S (2022) TNF-α impairs pericyte-mediated cerebral microcirculation via the NF-κB/iNOS axis after experimental traumatic brain injury. J Neurotrauma 40(3–4):349–364. https://doi.org/10.1089/neu.2022.0016

    Article  PubMed  Google Scholar 

  40. Xie F, Tan Q, Yu A, Guo P, Wang L, Zeng Z, Liang L, Xian J et al (2021) The role of cell-free DNA in fibrinolysis for intraventricular hemorrhage. J Neurosurg 135(4):1105–1112. https://doi.org/10.3171/2020.7.JNS201429

    Article  CAS  PubMed  Google Scholar 

  41. Peña-Martínez C, Durán-Laforet V, García-Culebras A, Cuartero MI, Moro MÁ, Lizasoain I (2022) Neutrophil extracellular trap targeting protects against ischemic damage after fibrin-rich thrombotic stroke despite non-reperfusion. Front Immunol 13:790002. https://doi.org/10.3389/fimmu.2022.790002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang R, Zhu Y, Liu Z, Chang L, Bai X, Kang L, Cao Y, Yang X et al (2021) Neutrophil extracellular traps promote tPA-induced brain hemorrhage via cGAS in mice with stroke. Blood 138(1):91–103. https://doi.org/10.1182/blood.2020008913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Juana V, Aída L, Teresa SM, María LA, Tembl José I, Salom Juan B, Candela N, Antonio M (2017) Neutrophil extracellular traps are increased in patients with acute ischemic stroke: prognostic significance. Thromb Haemost 117(10):1919–1929. https://doi.org/10.1160/TH17-02-0130

    Article  Google Scholar 

  44. Frederik D, Irina P, Rustad John L, Cody Mark J, de Araujo CV, Chieko H, Alexander Matthew D, Ramesh G et al (2022) Neutrophil extracellular traps regulate ischemic stroke brain injury. J Clin Invest 132(10):e154225. https://doi.org/10.1172/JCI154225

    Article  Google Scholar 

  45. Puy L, Corseaux D, Perbet R, Deramecourt V, Cordonnier C, Bérézowski V (2021) Neutrophil extracellular traps (NETs) infiltrate haematoma and surrounding brain tissue after intracerebral haemorrhage: a post-mortem study. Neuropathol Appl Neurobiol 47(6):867–877. https://doi.org/10.1111/nan.12733

    Article  CAS  PubMed  Google Scholar 

  46. Enzmann G, Mysiorek C, Gorina R, Cheng YJ, Ghavampour S, Hannocks MJ, Prinz V, Dirnagl U et al (2013) The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury. Acta Neuropathol 125(3):395–412. https://doi.org/10.1007/s00401-012-1076-3

    Article  PubMed  Google Scholar 

  47. Isabel P, Francesc M, Maura F, Ellen G, Jordi P, Carles J, Xabier U, Angel C et al (2015) Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol 129(2):239–257. https://doi.org/10.1007/s00401-014-1381-0

    Article  CAS  Google Scholar 

  48. Urbonaviciute V, Voll RE (2011) High-mobility group box 1 represents a potential marker of disease activity and novel therapeutic target in systemic lupus erythematosus. J Intern Med 270(4):309–318. https://doi.org/10.1111/j.1365-2796.2011.02432.x

    Article  CAS  PubMed  Google Scholar 

  49. Huang H, Tohme S, Al-Khafaji AB, Tai S, Loughran P, Chen L, Wang S, Kim J et al (2015) Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology 62(2):600–614. https://doi.org/10.1002/hep.27841

    Article  CAS  PubMed  Google Scholar 

  50. Wu H, Li R, Pei LG, Wei ZH, Kang LN, Wang L, Xie J, Xu B (2018) Emerging role of high mobility group box-1 in thrombosis-related diseases. Cell Physiol Biochem 47(4):1319–1337. https://doi.org/10.1159/000490818

    Article  CAS  PubMed  Google Scholar 

  51. Zhou Y, Zhang F, Ding J (2022) As a modulator, multitasking roles of SIRT1 in respiratory diseases. Immune Netw 22(3):e21. https://doi.org/10.4110/in.2022.22.e21

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zainal N, Chang CP, Cheng YL, Wu YW, Anderson R, Wan SW, Chen CL, Ho TS et al (2017) Resveratrol treatment reveals a novel role for HMGB1 in regulation of the type 1 interferon response in dengue virus infection. Sci Rep 7:42998. https://doi.org/10.1038/srep42998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu CL, Liao MT, Hou YC, Fang YW, Zheng CM, Liu WC, Chao CT, Lu KC et al (2020) Sirtuin-1 and its relevance in vascular calcification. Int J Mol Sci 21(5):1593. https://doi.org/10.3390/ijms21051593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li C, Xing Y, Zhang Y, Hua Y, Hu J, Bai Y (2022) Neutrophil extracellular traps exacerbate ischemic brain damage. Mol Neurobiol 59(1):643–656. https://doi.org/10.1007/s12035-021-02635-z

    Article  CAS  PubMed  Google Scholar 

  55. Rashad S, Niizuma K, Sato-Maeda M, Fujimura M, Mansour A, Endo H, Ikawa S, Tominaga T (2018) Early BBB breakdown and subacute inflammasome activation and pyroptosis as a result of cerebral venous thrombosis. Brain Res 1699:54–68. https://doi.org/10.1016/j.brainres.2018.06.029

    Article  CAS  PubMed  Google Scholar 

  56. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA (2019) Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 16(1):142. https://doi.org/10.1186/s12974-019-1516-2

    Article  PubMed  PubMed Central  Google Scholar 

  57. Allen C, Thornton P, Denes A, McColl BW, Pierozynski A, Monestier M, Pinteaux E, Rothwell NJ et al (2012) Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA. J Immunol 189(1):381–392. https://doi.org/10.4049/jimmunol.1200409

    Article  CAS  PubMed  Google Scholar 

  58. Villanueva E, Yalavarthi S, Berthier CC, Hodgin JB, Khandpur R, Lin AM, Rubin CJ, Zhao W et al (2011) Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol 187(1):538–552. https://doi.org/10.4049/jimmunol.1100450

    Article  CAS  PubMed  Google Scholar 

  59. Meegan JE, Yang X, Beard RS Jr, Jannaway M, Chatterjee V, Taylor-Clark TE, Yuan SY (2018) Citrullinated histone 3 causes endothelial barrier dysfunction. Biochem Biophys Res Commun 503(3):1498–1502. https://doi.org/10.1016/j.bbrc.2018.07.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Smyth L, Rustenhoven J, Park TI, Schweder P, Jansson D, Heppner PA, O’Carroll SJ, Mee EW et al (2018) Unique and shared inflammatory profiles of human brain endothelia and pericytes. J Neuroinflammation 15(1):138. https://doi.org/10.1186/s12974-018-1167-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Proebstl D, Voisin MB, Woodfin A, Whiteford J, D’Acquisto F, Jones GE, Rowe D, Nourshargh S (2012) Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med 209(6):1219–1234. https://doi.org/10.1084/jem.20111622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu YW, Zhang J, Bi W, Zhou M, Li J, Xiong T, Yang N, Zhao L et al (2022) Histones of neutrophil extracellular traps induce CD11b expression in brain pericytes via dectin-1 after traumatic brain injury. Neurosci Bull 38(10):1199–1214. https://doi.org/10.1007/s12264-022-00902-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen CC, Chen X, Li TC, Lin HL, Chu YT, Lee HC, Cheng YK, Chen DC et al (2017) PG2 for patients with acute spontaneous intracerebral hemorrhage: a double-blind, randomized, placebo-controlled study. Sci Rep 7:45628. https://doi.org/10.1038/srep45628

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jin J, Zhao X, Li W, Wang F, Tian J, Wang N, Gao X, Zhang J et al (2022) Neutrophil extracellular traps: a novel therapeutic target for intracranial hemorrhage. Thromb Res 219:1–13. https://doi.org/10.1016/j.thromres.2022.08.024

    Article  CAS  PubMed  Google Scholar 

  65. Ducroux C, Di Meglio L, Loyau S, Delbosc S, Boisseau W, Deschildre C, Ben Maacha M, Blanc R et al (2018) Thrombus neutrophil extracellular traps content impair tPA-induced thrombolysis in acute ischemic stroke. Stroke 49(3):754–757. https://doi.org/10.1161/STROKEAHA.117.019896

    Article  PubMed  Google Scholar 

  66. Katrin WA, Luise E, Jan R (2022) Platelets in the NETworks interweaving inflammation and thrombosis. Front Immunol 13:953129. https://doi.org/10.3389/fimmu.2022.953129

    Article  CAS  Google Scholar 

  67. Dejun X, Lingbin L, Yongju Z, Li Y, Jianyong C, Rongmao H, Zelin Z, Qingwang L (2020) Melatonin protects mouse testes from palmitic acid-induced lipotoxicity by attenuating oxidative stress and DNA damage in a SIRT1-dependent manner. J Pineal Res 69(4):e12690. https://doi.org/10.1111/jpi.12690

    Article  CAS  Google Scholar 

  68. Wang H, Guan Y, Karamercan MA, Ye L, Bhatti T, Becker LB, Baur JA, Sims CA (2015) Resveratrol rescues kidney mitochondrial function following hemorrhagic shock. Shock 44(2):173–180. https://doi.org/10.1097/SHK.0000000000000390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zeng Z, Chen Z, Xu S, Song R, Yang H, Zhao KS (2015) Polydatin alleviates small intestine injury during hemorrhagic shock as a SIRT1 activator. Oxid Med Cell Longev 2015:965961. https://doi.org/10.1155/2015/965961

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Sincere appreciation is given to the teachers and our colleagues from Fuzong Clinical Medical College, who participated in this study with great cooperation.

Funding

This study was supported by Joint Funds for the Innovation of Science and Technology, Fujian province (no. 2019Y9045); Joint Funds for the Innovation of Science and Technology, Fujian province (no. 2019Y9042); China Postdoctoral Science Foundation (no. 2021M693955); and Startup Fund for Scientific Research at Fujian Medical University (no. 2020QH2040).

Author information

Authors and Affiliations

Authors

Contributions

S.W., Y.X., and S.M. were responsible for the study concept and design. S.M., L.L., and L.X. performed animal model operation. S.M., Z.L., L.L., L.C., Y.L., D.Y., K.L., and Y.Y. performed the proteomic, histological, and serological experiments. S.M., D.W., F.Y., and L.W. were responsible for the data analyses. S.W. and Z.L. drafted the manuscript. S.W. and Y.X. critically reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yongjun Xu or Shousen Wang.

Ethics declarations

Ethics Approval

This experiment was approved by the Animal Care and Use Committee of Fujian Medical University (2020–051) and was conducted in accordance with the Guide for the Care and Use of Laboratory Animals.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, S., Li, Z., Lin, L. et al. SIRT1-Mediated HMGB1 Deacetylation Suppresses Neutrophil Extracellular Traps Related to Blood–Brain Barrier Impairment After Cerebral Venous Thrombosis. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03959-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03959-2

Keywords

Navigation