Skip to main content

Advertisement

Log in

Activating MC4R Promotes Functional Recovery by Repressing Oxidative Stress-Mediated AIM2 Activation Post-spinal Cord Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is a destructive neurological trauma that induces permanent sensory and motor impairment as well as a deficit in autonomic physiological function. Melanocortin receptor 4 (MC4R) is a G protein-linked receptor that is extensively expressed in the neural system and contributes to inhibiting inflammation, regulating mitochondrial function, and inducing programmed cell death. However, the effect of MC4R in the modulation of oxidative stress and whether this mechanism is related to the role of absent in melanoma 2 (AIM2) in SCI are not confirmed yet. In the current study, we demonstrated that MC4R is significantly increased in the neurons of spinal cords after trauma and oxidative stimulation of cells. Further, activation of MC4R by RO27‐3225 effectively improved functional recovery, inhibited AIM2 activation, maintained mitochondrial homeostasis, repressed oxidative stress, and prevented Drp1 translocation to the mitochondria. Meanwhile, treating Drp1 inhibitors would be beneficial in reducing AIM2 activation, and activating AIM2 could abolish the protective effect of MC4R on neuron homeostasis. In conclusion, we demonstrated that MC4R protects against neural injury through a novel process by inhibiting mitochondrial dysfunction, oxidative stress, as well as AIM2 activation, which may serve as an available candidate for SCI therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data and materials that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Jazayeri S, Beygi S, Shokraneh F, Hagen E, Rahimi-Movaghar V (2015) Incidence of traumatic spinal cord injury worldwide: a systematic review. Eur Spine J 24(5):905–918. https://doi.org/10.1007/s00586-014-3424-6

    Article  PubMed  Google Scholar 

  2. Fouad K, Popovich P, Kopp M, Schwab J (2021) The neuroanatomical-functional paradox in spinal cord injury. Nat Rev Neurol 17(1):53–62. https://doi.org/10.1038/s41582-020-00436-x

    Article  PubMed  Google Scholar 

  3. James N, McMahon S, Field-Fote E, Bradbury E (2018) Neuromodulation in the restoration of function after spinal cord injury. Lancet Neurol 17(10):905–917. https://doi.org/10.1016/s1474-4422(18)30287-4

    Article  PubMed  Google Scholar 

  4. Tran A, Warren P, Silver J (2018) The biology of regeneration failure and success after spinal cord injury. Physiol Rev 98(2):881–917. https://doi.org/10.1152/physrev.00017.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Giuliani D, Ottani A, Neri L, Zaffe D, Grieco P, Jochem J, Cavallini G, Catania A, Guarini S (2017) Multiple beneficial effects of melanocortin MC receptor agonists in experimental neurodegenerative disorders: therapeutic perspectives. Prog Neurobiol 148:40–56. https://doi.org/10.1016/j.pneurobio.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  6. Chen S, Zhao L, Sherchan P, Ding Y, Yu J, Nowrangi D, Tang J, Xia Y, Zhang J (2018) Activation of melanocortin receptor 4 with RO27-3225 attenuates neuroinflammation through AMPK/JNK/p38 MAPK pathway after intracerebral hemorrhage in mice. J Neuroinflammation 15(1):106. https://doi.org/10.1186/s12974-018-1140-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen S, Zuo Y, Huang L, Sherchan P, Zhang J, Yu Z, Peng J, Zhang J, Zhao L, Doycheva D, Liu F, Zhang J, Xia Y, Tang J (2019) The MC receptor agonist RO27-3225 inhibits NLRP1-dependent neuronal pyroptosis via the ASK1/JNK/p38 MAPK pathway in a mouse model of intracerebral haemorrhage. Br J Pharmacol 176(9):1341–1356. https://doi.org/10.1111/bph.14639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang H, Liu J, Qin G, Li X, Du P, Hao X, Zhao D, Tian T, Wu J, Yun M, Bai Y (2017) Melanocortin 4 receptor activation attenuates mitochondrial dysfunction in skeletal muscle of diabetic rats. J Cell Biochem 118(11):4072–4079. https://doi.org/10.1002/jcb.26062

    Article  CAS  PubMed  Google Scholar 

  9. Bharne A, Upadhya M, Kokare D, Subhedar N (2011) Effect of alpha-melanocyte stimulating hormone on locomotor recovery following spinal cord injury in mice: role of serotonergic system. Neuropeptides 45(1):25–31. https://doi.org/10.1016/j.npep.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  10. Kumari P, Russo A, Shivcharan S, Rathinam V (2020) AIM2 in health and disease: Inflammasome and beyond. Immunol Rev 297(1):83–95. https://doi.org/10.1111/imr.12903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McKee C, Lukens J (2016) Emerging roles for the immune system in traumatic brain injury. Front Immunol 7:556. https://doi.org/10.3389/fimmu.2016.00556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lammert C, Frost E, Bellinger C, Bolte A, McKee C, Hurt M, Paysour M, Ennerfelt H, Lukens J (2020) AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment. Nature 580(7805):647–652. https://doi.org/10.1038/s41586-020-2174-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim H, Seo J, Lee S, Ha K, Choi B, Shin Y, Ju Yun Y, Shin H (2020) AIM2 inflammasome contributes to brain injury and chronic post-stroke cognitive impairment in mice. Brain Behav Immun 87:765–776. https://doi.org/10.1016/j.bbi.2020.03.011

    Article  CAS  PubMed  Google Scholar 

  14. Poh L, Fann D, Wong P, Lim H, Foo S, Kang S, Rajeev V, Selvaraji S, Iyer V, Parathy N, Khan M, Hess D, Jo D, Drummond G, Sobey C, Lai M, Chen C, Lim L, Arumugam T (2021) AIM2 inflammasome mediates hallmark neuropathological alterations and cognitive impairment in a mouse model of vascular dementia. Mol Psychiatry 26(8):4544–4560. https://doi.org/10.1038/s41380-020-00971-5

    Article  CAS  PubMed  Google Scholar 

  15. Li X, Yu Q, Fang B, Zhang Z, Ma H (2019) Knockdown of the AIM2 molecule attenuates ischemia-reperfusion-induced spinal neuronal pyroptosis by inhibiting AIM2 inflammasome activation and subsequent release of cleaved caspase-1 and IL-1β. Neuropharmacology 160:107661. https://doi.org/10.1016/j.neuropharm.2019.05.038

    Article  CAS  PubMed  Google Scholar 

  16. Bernard N (2021) Mitochondria control pyroptosis. Nat Immunol 22(9):1071. https://doi.org/10.1038/s41590-021-01017-w

    Article  CAS  PubMed  Google Scholar 

  17. Cui B, Guo X, Zhou W, Zhang X, He K, Bai T, Lin D, Wei-Zhang S, Zhao Y, Liu S, Zhou H, Wang Q, Yao X, Shi Y, Xie R, Dong X, Lei Y, Du M, Chang Y, Xu H, Zhou D, Yu Y, Wang X, Yan H (2023) Exercise alleviates neovascular age-related macular degeneration by inhibiting AIM2 inflammasome in myeloid cells. Metab: Clin Exp 144:155584. https://doi.org/10.1016/j.metabol.2023.155584

    Article  CAS  PubMed  Google Scholar 

  18. Li F, Cai T, Yu L, Yu G, Zhang H, Geng Y, Kuang J, Wang Y, Cai Y, Xiao J, Wang X, Ding J, Xu H, Ni W (2024) Zhou K (2023) FGF-18 protects the injured spinal cord in mice by suppressing pyroptosis and promoting autophagy via the AKT-mTOR-TRPML1 axis. Molecular neurobiology. 61(1):55–73. https://doi.org/10.1007/s12035-023-03503-8

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Zhang J, Zhou K, Xie L, Xiang G, Fang M, Han W, Wang X, Xiao J (2021) Elevating sestrin2 attenuates endoplasmic reticulum stress and improves functional recovery through autophagy activation after spinal cord injury. Cell Biol Toxicol 37(3):401–419. https://doi.org/10.1007/s10565-020-09550-4

    Article  CAS  PubMed  Google Scholar 

  20. Ning L, Wei W, Wenyang J, Rui X, Qing G (2020) Cytosolic DNA-STING-NLRP3 axis is involved in murine acute lung injury induced by lipopolysaccharide. Clin Transl Med 10(7):e228. https://doi.org/10.1002/ctm2.228

    Article  PubMed  PubMed Central  Google Scholar 

  21. Quintanilla R, Pérez M, Aranguiz A, Tapia-Monsalves C, Mendez G (2020) Activation of the melanocortin-4 receptor prevents oxidative damage and mitochondrial dysfunction in cultured hippocampal neurons exposed to ethanol. Neurotox Res 38(2):421–433. https://doi.org/10.1007/s12640-020-00204-1

    Article  CAS  PubMed  Google Scholar 

  22. Hu X, Chen H, Xu H, Wu Y, Wu C, Jia C, Li Y, Sheng S, Xu C, Xu H, Ni W, Zhou K (2020) Role of pyroptosis in traumatic brain and spinal cord injuries. Int J Biol Sci 16(12):2042–2050. https://doi.org/10.7150/ijbs.45467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li Y, Chen J, Wang F (2021) The emerging roles of absent in melanoma 2 (AIM2) inflammasome in central nervous system disorders. Neurochem Int 149:105122. https://doi.org/10.1016/j.neuint.2021.105122

    Article  CAS  PubMed  Google Scholar 

  24. Li Q, Shi N, Cai C, Zhang M, He J, Tan Y, Fu W (2020) The role of mitochondria in pyroptosis. Front Cell Dev Biol 8:630771. https://doi.org/10.3389/fcell.2020.630771

    Article  PubMed  Google Scholar 

  25. Wang L, Liu T, Yang S, Sun L, Zhao Z, Li L, She Y, Zheng Y, Ye X, Bao Q, Dong G, Li C, Cui J (2021) Perfluoroalkyl substance pollutants activate the innate immune system through the AIM2 inflammasome. Nat Commun 12(1):2915. https://doi.org/10.1038/s41467-021-23201-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim M, Kim H, Jang B, Kim H, Mostafa M, Park S, Kim Y, Choi E (2022) Impairment of neuronal mitochondrial quality control in prion-induced neurodegeneration. Cells 11(17):2744. https://doi.org/10.3390/cells11172744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vande Walle L, Lamkanfi M (2016) Pyroptosis. Curr Biol: CB 26(13):R568–R572. https://doi.org/10.1016/j.cub.2016.02.019

    Article  CAS  PubMed  Google Scholar 

  28. McKenzie B, Dixit V, Power C (2020) Fiery cell death: pyroptosis in the central nervous system. Trends Neurosci 43(1):55–73. https://doi.org/10.1016/j.tins.2019.11.005

    Article  CAS  PubMed  Google Scholar 

  29. Zhang D, Qian J, Zhang P, Li H, Shen H, Li X, Chen G (2019) Gasdermin D serves as a key executioner of pyroptosis in experimental cerebral ischemia and reperfusion model both in vivo and in vitro. J Neurosci Res 97(6):645–660. https://doi.org/10.1002/jnr.24385

    Article  CAS  PubMed  Google Scholar 

  30. Yuan B, Zhou X, You Z, Xu W, Fan J, Chen S, Han Y, Wu Q, Zhang X (2020) Inhibition of AIM2 inflammasome activation alleviates GSDMD-induced pyroptosis in early brain injury after subarachnoid haemorrhage. Cell Death Dis 11(1):76. https://doi.org/10.1038/s41419-020-2248-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barclay W, Aggarwal N, Deerhake M, Inoue M, Nonaka T, Nozaki K, Luzum N, Miao E (2022) Shinohara M (2022) The AIM2 inflammasome is activated in astrocytes during the late phase of EAE. JCI Insight. 7(8):e155563. https://doi.org/10.1172/jci.insight.155563

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhou Z, Li C, Bao T, Zhao X, Xiong W, Luo C, Yin G, Fan J (2022) Exosome-shuttled miR-672-5p from anti-inflammatory microglia repair traumatic spinal cord injury by inhibiting AIM2/ASC/Caspase-1 signaling pathway mediated neuronal pyroptosis. J Neurotrauma 39(15–16):1057–1074. https://doi.org/10.1089/neu.2021.0464

    Article  PubMed  Google Scholar 

  33. Ding B, Xie C, Xie J, Gao Z, Fei X, Hong E, Chen W, Chen Y (2023) Knockdown of NADPH oxidase 4 reduces mitochondrial oxidative stress and neuronal pyroptosis following intracerebral hemorrhage. Neural Regen Res 18(8):1734–1742. https://doi.org/10.4103/1673-5374.360249

    Article  PubMed  Google Scholar 

  34. Chavarría-Smith J, Vance R (2015) The NLRP1 inflammasomes. Immunol Rev 265(1):22–34. https://doi.org/10.1111/imr.12283

    Article  CAS  PubMed  Google Scholar 

  35. Milner M, Maddugoda M, Götz J, Burgener S, Schroder K (2021) The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer’s disease. Curr Opin Immunol 68:116–124. https://doi.org/10.1016/j.coi.2020.10.011

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Chen C, Chen J, Sang T, Peng H, Lin X, Zhao Q, Chen S, Eling T, Wang X (2022) Overexpression of NAG-1/GDF15 prevents hepatic steatosis through inhibiting oxidative stress-mediated dsDNA release and AIM2 inflammasome activation. Redox Biol 52:102322. https://doi.org/10.1016/j.redox.2022.102322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sridevi Gurubaran I, Hytti M, Kaarniranta K, Kauppinen A (2022) Epoxomicin, a selective proteasome inhibitor, activates AIM2 inflammasome in human retinal pigment epithelium cells. Antioxidants (Basel, Switzerland) 11(7):1288. https://doi.org/10.3390/antiox11071288

    Article  CAS  PubMed  Google Scholar 

  38. Yong Y, Cakir I, Lining Pan P, Biddinger J, Bluett R, Mackie K, Bingham N, Patel S, Ghamari-Langroudi M (2021) Endogenous cannabinoids are required for MC4R-mediated control of energy homeostasis. Proc Natl Acad Sci USA 118(42):e2015990118. https://doi.org/10.1073/pnas.2015990118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shen Y, Tian M, Zheng Y, Gong F, Fu A, Ip N (2016) Stimulation of the hippocampal POMC/MC4R circuit alleviates synaptic plasticity impairment in an Alzheimer’s disease Model. Cell Rep 17(7):1819–1831. https://doi.org/10.1016/j.celrep.2016.10.043

    Article  CAS  PubMed  Google Scholar 

  40. Ma K, McLaurin J (2014) α-Melanocyte stimulating hormone prevents GABAergic neuronal loss and improves cognitive function in Alzheimer’s disease. J Neurosci 34(20):6736–6745. https://doi.org/10.1523/jneurosci.5075-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schaible E, Steinsträßer A, Jahn-Eimermacher A, Luh C, Sebastiani A, Kornes F, Pieter D, Schäfer M, Engelhard K, Thal S (2013) Single administration of tripeptide α-MSH(11–13) attenuates brain damage by reduced inflammation and apoptosis after experimental traumatic brain injury in mice. PLoS ONE 8(8):e71056. https://doi.org/10.1371/journal.pone.0071056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Balog J, Mehta S, Vemuganti R (2016) Mitochondrial fission and fusion in secondary brain damage after CNS insults. J Cereb Blood Flow Metab 36(12):2022–2033. https://doi.org/10.1177/0271678x16671528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu X, Luo J, Liu H, Cui W, Guo K, Zhao L, Bai H, Guo W, Guo H, Feng D, Qu Y (2020) Recombinant adiponectin peptide ameliorates brain injury following intracerebral hemorrhage by suppressing astrocyte-derived inflammation via the inhibition of Drp1-mediated mitochondrial fission. Transl Stroke Res 11(5):924–939. https://doi.org/10.1007/s12975-019-00768-x

    Article  CAS  PubMed  Google Scholar 

  44. Zuo W, Yang P, Chen J, Zhang Z, Chen N (2016) Drp-1, a potential therapeutic target for brain ischaemic stroke. Br J Pharmacol 173(10):1665–1677. https://doi.org/10.1111/bph.13468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu W, Yan J, Ocak U, Lenahan C, Shao A, Tang J, Zhang J, Zhang J (2021) viaMelanocortin 1 receptor attenuates early brain injury following subarachnoid hemorrhage by controlling mitochondrial metabolism AMPK/SIRT1/PGC-1α pathway in rats. Theranostics 11(2):522–539. https://doi.org/10.7150/thno.49426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Wenzhou Basic Public Welfare Scientific Project (Y20220936) and the National Natural Science Foundation of China (No. 82102674).

Author information

Authors and Affiliations

Authors

Contributions

YL contributed to the conception of the study. YoW analyzed the data and wrote the manuscript. NF and YiW performed Western blotting and staining experiments. YG performed animal modeling and contributed new reagents and modified the manuscript. All the authors contributed to the article and approve of the submitted version.

Corresponding author

Correspondence to Yao Li.

Ethics declarations

Ethics Approval

All procedures were approved by the Animal Care and Use Committee of Wenzhou Medical University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12035_2024_3936_MOESM1_ESM.tif

Supplementary file1 Supplementary figure 1. HS024 treatment inhibits MC4R activation mediated neural growth. (A-B) Representative neuron morphology stained with Tuj1 and quantitative analysis of axonal length of neuron in each group, neurons were treated with TBHP (50nM), RO27-3225 (250nM), co-treated TBHP and RO27-3225, or co-treated TBHP, RO27-3225 and HS024 (100nM) for 6 hours, n = 6, scale bar = 100 μm. Significance: *P<0.05, **P<0.01, ***P<0.001, and NS (not significant). Data were expressed as means ± SD. (TIF 5280 KB)

12035_2024_3936_MOESM2_ESM.tif

Supplementary file2 Supplementary figure 2. AIM2 has no effect on MC4R expression. Western blotting and quantification of the MC4R level in WT and AIM2 KO mice at 3 days after SCI, n = 5. β-Tubulin was the loading control. Significance: *P<0.05, **P<0.01, ***P<0.001, and NS (not significant). Data were expressed as means ± SD. (TIF 2387 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Fang, N., Wang, Y. et al. Activating MC4R Promotes Functional Recovery by Repressing Oxidative Stress-Mediated AIM2 Activation Post-spinal Cord Injury. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03936-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03936-9

Keywords

Navigation