Skip to main content
Log in

Circadian Regulation of the Lactate Metabolic Kinetics in Mice Using the [1H-13C]-NMR Technique

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Lactate is not only the energy substrate of neural cells, but also an important signal molecule in brain. In modern societies, disturbed circadian rhythms pose a global challenge. Therefore, exploring the influence of circadian period on lactate and its metabolic kinetics is essential for the advancement of neuroscientific research. In the present study, the different groups of mice (L: 8:00 a.m.; D: 20:00 p.m.; SD: 20:00 p.m. with 12 h acute sleep deprivation) were infused with [3-13C] lactate through the lateral tail vein for a duration of 2 min. After 30-min lactate metabolism, the animals were euthanized and the tissues of brain and liver were obtained and extracted, and then, the [1H-13C] NMR technology was employed to investigate the kinetic information of lactate metabolism in different brain regions and liver to detect the enrichment of various metabolic kinetic information. Results revealed the fluctuating lactate concentrations in the brain throughout the day, with lower levels during light periods and higher levels during dark periods. Most metabolites displayed strong sensitivity to circadian rhythm, exhibiting significant day-night variations. Conversely, only a few metabolites showed changes after acute sleep deprivation, primarily in the temporal brain region. Interestingly, in contrast to brain lactate metabolism, liver lactate metabolism exhibited a significant increase following acute sleep deprivation. This study explored the kinetics of lactate metabolism, hinted at potential clinical implications for disorders involving circadian rhythm disturbances, and providing a new research basis for clinical exploration of brain and liver lactate metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All raw data and materials during the current study are available from the corresponding author upon reasonable request.

References

  1. Seaquist ER, Öz G (2013) Diabetes: does lactate sustain brain metabolism during hypoglycaemia? Nat Rev Endocrinol 9:386–387. https://doi.org/10.1038/nrendo.2013.104

    Article  CAS  PubMed  Google Scholar 

  2. Itoh Y, Esaki T, Shimoji K, Cook M, Law MJ, Kaufman E, Sokoloff L (2003) Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci U S A 100:4879–4884. https://doi.org/10.1073/pnas.0831078100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629. https://doi.org/10.1073/pnas.91.22.10625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Poggiogalle E, Jamshed H, Peterson CM (2018) Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism 84:11–27. https://doi.org/10.1016/j.metabol.2017.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vasey C, McBride J, Penta K (2021) Circadian rhythm dysregulation and restoration: the role of melatonin. Nutrients 13:3480. https://doi.org/10.3390/nu13103480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bajaj P, Kaur G (2022) Acute sleep deprivation-induced anxiety and disruption of hypothalamic cell survival and plasticity: a mechanistic study of protection by butanol extract of Tinospora cordifolia. Neurochem Res 47:1692–1706. https://doi.org/10.1007/s11064-022-03562-8

    Article  CAS  PubMed  Google Scholar 

  7. Li Z, Chai W (2019) Mucin O-glycan microarrays. Curr Opin Struct Biol 56:187–197. https://doi.org/10.1016/j.sbi.2019.03.032

    Article  CAS  PubMed  Google Scholar 

  8. Guo M, Wu Y, Zheng D, Chen L, Xiong B, Wu J, Li K, Wang L et al (2022) Preoperative acute sleep deprivation causes postoperative pain hypersensitivity and abnormal cerebral function. Neurosci Bull 38:1491–1507. https://doi.org/10.1007/s12264-022-00955-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ma Y, Liang L, Zheng F, Shi L, Zhong B, Xie W (2020) Association between sleep duration and cognitive decline. JAMA Netw Open 3:e2013573. https://doi.org/10.1001/jamanetworkopen.2020.13573

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wu H, Dunnett S, Ho YS, Chang RC (2019) The role of sleep deprivation and circadian rhythm disruption as risk factors of Alzheimer’s disease. Front Neuroendocrinol 54:100764. https://doi.org/10.1016/j.yfrne.2019.100764

    Article  PubMed  Google Scholar 

  11. Buysse DJ, Nofzinger EA, Germain A, Meltzer CC, Wood A, Ombao H, Kupfer DJ, Moore RY (2004) Regional brain glucose metabolism during morning and evening wakefulness in humans: preliminary findings. Sleep 27:1245–1254. https://doi.org/10.1093/sleep/27.7.1245

    Article  PubMed  Google Scholar 

  12. Lebon V, Petersen KF, Cline GW, Shen J, Mason GF, Dufour S, Behar KL, Shulman GI et al (2002) Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J Neurosci 22:1523–1531. https://doi.org/10.1523/jneurosci.22-05-01523.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feneberg R, Sparber M, Veldhuis JD, Mehls O, Ritz E, Schaefer F (1999) Synchronous fluctuations of blood insulin and lactate concentrations in humans. J Clin Endocrinol Metab 84:220–227. https://doi.org/10.1210/jcem.84.1.5377

    Article  CAS  PubMed  Google Scholar 

  14. Wallace NK, Pollard F, Savenkova M, Karatsoreos IN (2020) Effect of aging on daily rhythms of lactate metabolism in the medial prefrontal cortex of male mice. Neuroscience 448:300–310. https://doi.org/10.1016/j.neuroscience.2020.07.032

    Article  CAS  PubMed  Google Scholar 

  15. Koopmans SJ, van der Meulen J, Dekker R, Corbijn H, Mroz Z (2005) Diurnal rhythms in plasma cortisol, insulin, glucose, lactate and urea in pigs fed identical meals at 12-hourly intervals. Physiol Behav 84:497–503. https://doi.org/10.1016/j.physbeh.2005.01.017

    Article  CAS  PubMed  Google Scholar 

  16. Robinson JL, Foustock S, Chanez M, Bois-Joyeux B, Peret J (1981) Circadian variation of liver metabolites and amino acids in rats adapted to a high protein, carbohydrate-free diet. J Nutr 111:1711–1720. https://doi.org/10.1093/jn/111.10.1711

    Article  CAS  PubMed  Google Scholar 

  17. Ahlersová E, Ahlers I, Toropila M, Smajda B, Datelinka I (1981) Circadian rhythm of the lactate and pyruvate concentration in rat liver and blood. Physiol Bohemoslov 30:213–220

    PubMed  Google Scholar 

  18. Pulido RS, Munji RN, Chan TC, Quirk CR, Weiner GA, Weger BD, Rossi MJ, Elmsaouri S et al (2020) Neuronal activity regulates blood-brain barrier efflux transport through endothelial circadian genes. Neuron 108:937-952.e7. https://doi.org/10.1016/j.neuron.2020.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lundgaard I, Lu ML, Yang E, Peng W, Mestre H, Hitomi E, Deane R, Nedergaard M (2017) Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab 37:2112–2124. https://doi.org/10.1177/0271678x16661202

    Article  CAS  PubMed  Google Scholar 

  20. Killgore WD (2010) Effects of sleep deprivation on cognition. Prog Brain Res 185:105–129. https://doi.org/10.1016/b978-0-444-53702-7.00007-5

    Article  PubMed  Google Scholar 

  21. Zimmet P, Alberti K, Stern N, Bilu C, El-Osta A, Einat H, Kronfeld-Schor N (2019) The circadian syndrome: is the metabolic syndrome and much more! J Intern Med 286:181–191. https://doi.org/10.1111/joim.12924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matsubara Y, Kiyohara H, Teratani T, Mikami Y, Kanai T (2022) Organ and brain crosstalk: the liver-brain axis in gastrointestinal, liver, and pancreatic diseases. Neuropharmacology 205:108915. https://doi.org/10.1016/j.neuropharm.2021.108915

    Article  CAS  PubMed  Google Scholar 

  23. Shram N, Netchiporouk L, Cespuglio R (2002) Lactate in the brain of the freely moving rat: voltammetric monitoring of the changes related to the sleep-wake states. Eur J Neurosci 16:461–466. https://doi.org/10.1046/j.1460-9568.2002.02081.x

    Article  PubMed  Google Scholar 

  24. Naylor E, Aillon DV, Barrett BS, Wilson GS, Johnson DA, Johnson DA, Harmon HP, Gabbert S et al (2012) Lactate as a biomarker for sleep. Sleep 35:1209–1222. https://doi.org/10.5665/sleep.2072

    Article  PubMed  PubMed Central  Google Scholar 

  25. de Graaf RA, Mason GF, Patel AB, Behar KL, Rothman DL (2003) In vivo 1H-[13C]-NMR spectroscopy of cerebral metabolism. NMR Biomed 16:339–357. https://doi.org/10.1002/nbm.847

    Article  CAS  PubMed  Google Scholar 

  26. Guo M, Fang Y, Zhu J, Chen C, Zhang Z, Tian X, Xiang H, Manyande A et al (2021) Investigation of metabolic kinetics in different brain regions of awake rats using the [(1)H-(13)C]-NMR technique. J Pharm Biomed Anal 204:114240. https://doi.org/10.1016/j.jpba.2021.114240

    Article  CAS  PubMed  Google Scholar 

  27. Hassel B, Bråthe A (2000) Cerebral metabolism of lactate in vivo: evidence for neuronal pyruvate carboxylation. J Cereb Blood Flow Metab 20:327–336. https://doi.org/10.1097/00004647-200002000-00014

    Article  CAS  PubMed  Google Scholar 

  28. Liu T, Li Z, He J, Yang N, Han D, Li Y, Tian X, Liu H et al (2020) Regional metabolic patterns of abnormal postoperative behavioral performance in aged mice assessed by (1)H-NMR dynamic mapping method. Neurosci Bull 36:25–38. https://doi.org/10.1007/s12264-019-00414-4

    Article  CAS  PubMed  Google Scholar 

  29. Zhu J, Chen C, Li Z, Liu X, He J, Zhao Z, He M, Nie B et al (2023) Overexpression of Sirt6 ameliorates sleep deprivation induced-cognitive impairment by modulating glutamatergic neuron function. Neural Regen Res 18:2449–2458. https://doi.org/10.4103/1673-5374.371370

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu L, Niu Z, Hu X, Liu H, Li S, Chen L, Zheng D, Liu Z et al (2020) Regional cerebral metabolic levels and turnover in awake rats after acute or chronic spinal cord injury. Faseb j 34:10547–10559. https://doi.org/10.1096/fj.202000447R

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, Cheng J, Liu H, Deng Y, Wang J, Xu F (2017) NMRSpec: an integrated software package for processing and analyzing one dimensional nuclear magnetic resonance spectra. Chemom Intell Lab Syst 162:142–148. https://doi.org/10.1016/j.chemolab.2017.01.005

    Article  CAS  Google Scholar 

  32. Takado Y, Cheng T, Bastiaansen JAM, Yoshihara HAI, Lanz B, Mishkovsky M, Lengacher S, Comment A (2018) Hyperpolarized (13)C magnetic resonance spectroscopy reveals the rate-limiting role of the blood-brain barrier in the cerebral uptake and metabolism of l-lactate in vivo. ACS Chem Neurosci 9:2554–2562. https://doi.org/10.1021/acschemneuro.8b00066

    Article  CAS  PubMed  Google Scholar 

  33. Pan JW, de Graaf RA, Petersen KF, Shulman GI, Hetherington HP, Rothman DL (2002) [2,4–13 C2 ]-beta-Hydroxybutyrate metabolism in human brain. J Cereb Blood Flow Metab 22:890–898. https://doi.org/10.1097/00004647-200207000-00014

    Article  CAS  PubMed  Google Scholar 

  34. Boumezbeur F, Petersen KF, Cline GW, Mason GF, Behar KL, Shulman GI, Rothman DL (2010) The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci 30:13983–13991. https://doi.org/10.1523/jneurosci.2040-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kamel KS, Oh MS, Halperin ML (2020) L-lactic acidosis: pathophysiology, classification, and causes; emphasis on biochemical and metabolic basis. Kidney Int 97:75–88. https://doi.org/10.1016/j.kint.2019.08.023

    Article  CAS  PubMed  Google Scholar 

  36. Isobe Y, Hida H, Nishino H (2011) Circadian rhythm of metabolic oscillation in suprachiasmatic nucleus depends on the mitochondrial oxidation state, reflected by cytochrome C oxidase and lactate dehydrogenase. J Neurosci Res 89:929–935. https://doi.org/10.1002/jnr.22609

    Article  CAS  PubMed  Google Scholar 

  37. Newman GC, Hospod FE, Patlak CS, Moore RY (1992) Analysis of in vitro glucose utilization in a circadian pacemaker model. J Neurosci 12:2015–2021. https://doi.org/10.1523/jneurosci.12-06-02015.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Davies SK, Ang JE, Revell VL, Holmes B, Mann A, Robertson FP, Cui N, Middleton B et al (2014) Effect of sleep deprivation on the human metabolome. Proc Natl Acad Sci U S A 111:10761–10766. https://doi.org/10.1073/pnas.1402663111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hinard V, Mikhail C, Pradervand S, Curie T, Houtkooper RH, Auwerx J, Franken P, Tafti M (2012) Key electrophysiological, molecular, and metabolic signatures of sleep and wakefulness revealed in primary cortical cultures. J Neurosci 32:12506–12517. https://doi.org/10.1523/jneurosci.2306-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yudkoff M, Daikhin Y, Nissim I, Horyn O, Luhovyy B, Lazarow A, Nissim I (2006) Short-term fasting, seizure control and brain amino acid metabolism. Neurochem Int 48:650–656. https://doi.org/10.1016/j.neuint.2006.01.008

    Article  CAS  PubMed  Google Scholar 

  41. Tanay VA, Parent MB, Wong JT, Paslawski T, Martin IL, Baker GB (2001) Effects of the antidepressant/antipanic drug phenelzine on alanine and alanine transaminase in rat brain. Cell Mol Neurobiol 21:325–339. https://doi.org/10.1023/a:1012697904299

    Article  CAS  PubMed  Google Scholar 

  42. Das A, Gauthier-Coles G, Bröer S, Rae CD (2022) Impact of inhibition of glutamine and alanine transport on cerebellar glial and neuronal metabolism. Biomolecules 12:1189. https://doi.org/10.3390/biom12091189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morikawa A, Hamase K, Miyoshi Y, Koyanagi S, Ohdo S, Zaitsu K (2008) Circadian changes of D-alanine and related compounds in rats and the effect of restricted feeding on their amounts. J Chromatogr B Analyt Technol Biomed Life Sci 875:168–173. https://doi.org/10.1016/j.jchromb.2008.04.004

    Article  CAS  PubMed  Google Scholar 

  44. Sivaperumal R, Subash S, Subramanian P (2007) Influences of aspartate on circadian patterns of lipid peroxidation products and antioxidants in Wistar rats. Singapore Med J 48:1033–1038

    CAS  PubMed  Google Scholar 

  45. Honma S, Katsuno Y, Shinohara K, Abe H, Honma K (1996) Circadian rhythm and response to light of extracellular glutamate and aspartate in rat suprachiasmatic nucleus. Am J Physiol 271:R579–R585. https://doi.org/10.1152/ajpregu.1996.271.3.R579

    Article  CAS  PubMed  Google Scholar 

  46. Morzorati SL, McBride WJ, Frederickson RC (1981) Excitatory effect of L-aspartate and L-glutamate on Purkinje cells in rat cerebellum. Brain Res Bull 7:445–447. https://doi.org/10.1016/0361-9230(81)90045-9

    Article  CAS  PubMed  Google Scholar 

  47. Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A 95:316–321. https://doi.org/10.1073/pnas.95.1.316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Andersen JV, Schousboe A, Verkhratsky A (2022) Astrocyte energy and neurotransmitter metabolism in Alzheimer’s disease: integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol 217:102331. https://doi.org/10.1016/j.pneurobio.2022.102331

    Article  CAS  PubMed  Google Scholar 

  49. Özakman S, Gören MZ, Nurten A, Tekin N, Kalaycı R, Enginar N (2021) Effects of tamoxifen and glutamate and glutamine levels in brain regions in repeated sleep deprivation-induced mania model in mice. Naunyn Schmiedebergs Arch Pharmacol 394:619–629. https://doi.org/10.1007/s00210-020-02001-1

    Article  CAS  PubMed  Google Scholar 

  50. Bettendorff L, Sallanon-Moulin M, Touret M, Wins P, Margineanu I, Schoffeniels E (1996) Paradoxical sleep deprivation increases the content of glutamate and glutamine in rat cerebral cortex. Sleep 19:65–71. https://doi.org/10.1093/sleep/19.1.65

    Article  CAS  PubMed  Google Scholar 

  51. Mohammed HS, Aboul Ezz HS, Khadrawy YA, Noor NA (2011) Neurochemical and electrophysiological changes induced by paradoxical sleep deprivation in rats. Behav Brain Res 225:39–46. https://doi.org/10.1016/j.bbr.2011.06.018

    Article  CAS  PubMed  Google Scholar 

  52. Xie F, Li X, Bao M, Shi R, Yue Y, Guan Y, Wang Y (2015) Anesthetic propofol normalized the increased release of glutamate and γ-amino butyric acid in hippocampus after paradoxical sleep deprivation in rats. Neurol Res 37:1102–1107. https://doi.org/10.1080/01616412.2015.1114231

    Article  CAS  PubMed  Google Scholar 

  53. Mohammed HS, Khadrawy YA (2021) Electrophysiological and neurochemical evaluation of the adverse effects of REM sleep deprivation and epileptic seizures on rat’s brain. Life Sci 273:119303. https://doi.org/10.1016/j.lfs.2021.119303

    Article  CAS  PubMed  Google Scholar 

  54. Foppen E, Tan AA, Ackermans MT, Fliers E and Kalsbeek A (2016) Suprachiasmatic nucleus neuropeptides and their control of endogenous glucose production. J Neuroendocrinol 28(4). https://doi.org/10.1111/jne.12365

  55. Archer SN, Oster H (2015) How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome. J Sleep Res 24:476–493. https://doi.org/10.1111/jsr.12307

    Article  PubMed  Google Scholar 

  56. Geisler CE, Ghimire S, Hepler C, Miller KE, Bruggink SM, Kentch KP, Higgins MR, Banek CT et al (2021) Hepatocyte membrane potential regulates serum insulin and insulin sensitivity by altering hepatic GABA release. Cell Rep 35:109298. https://doi.org/10.1016/j.celrep.2021.109298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Periasamy S, Hsu DZ, Fu YH, Liu MY (2015) Sleep deprivation-induced multi-organ injury: role of oxidative stress and inflammation. Excli J 14:672–83. https://doi.org/10.17179/excli2015-245

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shigiyama F, Kumashiro N, Tsuneoka Y, Igarashi H, Yoshikawa F, Kakehi S, Funato H, Hirose T (2018) Mechanisms of sleep deprivation-induced hepatic steatosis and insulin resistance in mice. Am J Physiol Endocrinol Metab 315:E848-e858. https://doi.org/10.1152/ajpendo.00072.2018

    Article  CAS  PubMed  Google Scholar 

  59. Wang C, Li L, Yang C, Zhang Z, Li X, Wang Y, Lv X, Qi X, Song G (2022) One night of sleep deprivation induces release of small extracellular vesicles into circulation and promotes platelet activation by small EVs. J Cell Mol Med 26:5033–5043. https://doi.org/10.1111/jcmm.17528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Butterworth RF (2013) The liver-brain axis in liver failure: neuroinflammation and encephalopathy. Nat Rev Gastroenterol Hepatol 10:522–528. https://doi.org/10.1038/nrgastro.2013.99

    Article  CAS  PubMed  Google Scholar 

  61. Lezi E, Lu J, Selfridge JE, Burns JM, Swerdlow RH (2013) Lactate administration reproduces specific brain and liver exercise-related changes. J Neurochem 127:91–100. https://doi.org/10.1111/jnc.12394

    Article  CAS  PubMed Central  Google Scholar 

  62. Yan L, Wei JA, Yang F, Wang M, Wang S, Cheng T, Liu X, Jia Y et al (2022) Physical exercise prevented stress-induced anxiety via improving brain RNA methylation. Adv Sci (Weinh) 9:e2105731. https://doi.org/10.1002/advs.202105731

    Article  CAS  PubMed  Google Scholar 

  63. Hadjihambi A, Konstantinou C, Klohs J, Monsorno K, Le Guennec A, Donnelly C, Cox IJ, Kusumbe A et al (2023) Partial MCT1 invalidation protects against diet-induced non-alcoholic fatty liver disease and the associated brain dysfunction. J Hepatol 78:180–190. https://doi.org/10.1016/j.jhep.2022.08.008

    Article  CAS  PubMed  Google Scholar 

  64. Alvord VM, Kantra EJ, Pendergast JS (2022) Estrogens and the circadian system. Semin Cell Dev Biol 126:56–65. https://doi.org/10.1016/j.semcdb.2021.04.010

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (82172160, 81970722, 82001119, 31970973, 82270861, 82271430, and 32271148).

Author information

Authors and Affiliations

Authors

Contributions

Lili Chen, Kefan Wu, Jie Wang, and Zhongyuan Xia designed the study. Lili Chen, Kefan Wu, Jiabao Hou, Lian Liu, and Yuan Zhang performed the experiments. Lili Chen, Kefan Wu, and Jingang He contributed to the data. Lili Chen and Kefan Wu wrote the manuscript. Jie Wang and Zhongyuan Xia edited the article. The content of this manuscript has been reviewed, read, and agreed upon by all the designated authors.

Corresponding authors

Correspondence to Jie Wang or Zhongyuan Xia.

Ethics declarations

Ethics Approval

The animal study was reviewed and approved by the Animal Research Committee of the Renmin Hospital of Wuhan University. (Ethics approval number: WDRM20220802A).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wu, K., He, J. et al. Circadian Regulation of the Lactate Metabolic Kinetics in Mice Using the [1H-13C]-NMR Technique. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03927-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03927-w

Keywords

Navigation