Skip to main content

Advertisement

Log in

Repeated Ketamine Anesthesia during the Neonatal Period Impairs Hippocampal Neurogenesis and Long-Term Neurocognitive Function by Inhibiting Mfn2-Mediated Mitochondrial Fusion in Neural Stem Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The mechanism of ketamine-induced neurotoxicity development remains elusive. Mitochondrial fusion/fission dynamics play a critical role in regulating neurogenesis. Therefore, this study was aimed to evaluate whether mitochondrial dynamics were involved in ketamine-induced impairment of neurogenesis in neonatal rats and long-term synaptic plasticity dysfunction. In the in vivo study, postnatal day 7 (PND-7) rats received intraperitoneal (i.p.) injection of 40 mg/kg ketamine for four consecutive times at 1 h intervals. The present findings revealed that ketamine induced mitochondrial fusion dysfunction in hippocampal neural stem cells (NSCs) by downregulating Mitofusin 2 (Mfn2) expression. In the in vitro study, ketamine treatment at 100 μM for 6 h significantly decreased the Mfn2 expression, and increased ROS generation, decreased mitochondrial membrane potential and ATP levels in cultured hippocampal NSCs. For the interventional study, lentivirus (LV) overexpressing Mfn2 (LV-Mfn2) or control LV vehicle was microinjected into the hippocampal dentate gyrus (DG) 4 days before ketamine administration. Targeted Mfn2 overexpression in the DG region could restore mitochondrial fusion in NSCs and reverse the inhibitory effect of ketamine on NSC proliferation and its faciliatory effect on neuronal differentiation. In addition, synaptic plasticity was evaluated by transmission electron microscopy, Golgi-Cox staining and long-term potentiation (LTP) recordings at 24 h after the end of the behavioral test. Preconditioning with LV-Mfn2 improved long-term cognitive dysfunction after repeated neonatal ketamine exposure by reversing the inhibitory effect of ketamine on synaptic plasticity in the hippocampal DG. The present findings demonstrated that Mfn2-mediated mitochondrial fusion dysfunction plays a critical role in the impairment of long-term neurocognitive function and synaptic plasticity caused by repeated neonatal ketamine exposure by interfering with hippocampal neurogenesis. Thus, Mfn2 might be a novel therapeutic target for the prevention of the developmental neurotoxicity of ketamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

For further inquiries on the original data of this study, the corresponding authors can be contacted directly.

Abbreviations

BGS:

Brain growth spurt

BrdU:

Bromodeoxyuridine

CA:

Cornu ammonis

DCX:

Doublecortin

DG:

Dentate gyrus

Drp1:

Fission-related protein 1

fEPSP:

Field excitatory postsynaptic potential

GCL:

Granular cell layer

LTP:

Long-term potentiation

Mfn:

Mitofusins

MWM:

Morris water maze

NMDA:

N-methyl-D-aspartate

NSCs:

Neural stem cells

OPA1:

Optic atrophy 1

PND:

Postnatal day

PSD:

Postsynaptic density

ROS:

Reactive oxygen species

SD:

Sprague‒Dawley

TBS:

Theta burst stimulation

TEM:

Transmission Electron Microscopy

References

  1. Jevtovic-Todorovic V et al (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 23(3):876–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Davidson AJ et al (2016) Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet 387(10015):239–250

    Article  PubMed  Google Scholar 

  3. McCann ME et al (2019) Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): an international, multicentre, randomised, controlled equivalence trial. Lancet 393(10172):664–677

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lee JJ, Sun LS, Levy RJ (2019) Report on the Sixth Pediatric Anesthesia Neurodevelopmental Assessment (PANDA) Symposium, “Anesthesia and Neurodevelopment in Children.” J Neurosurg Anesthesiol 31(1):103–107

    Article  PubMed  PubMed Central  Google Scholar 

  5. Warner DO et al (2018) Neuropsychological and Behavioral Outcomes after Exposure of Young Children to Procedures Requiring General Anesthesia: The Mayo Anesthesia Safety in Kids (MASK) Study. Anesthesiology 129(1):89–105

    Article  PubMed  Google Scholar 

  6. Zhang Z, Bai H, Ma X, Shen M, Li R, Qiu D, Li S, Gao L (2021) Blockade of the NLRP3/caspase-1 axis attenuates ketamine-induced hippocampus pyroptosis and cognitive impairment in neonatal rats. J Neuroinflammation 18(1):239

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cabrera OH, Useinovic N, Maksimovic S, Near M, Quillinan N, Todorovic SM, Jevtovic-Todorovic V (2022) Neonatal ketamine exposure impairs infrapyramidal bundle pruning and causes lasting increase in excitatory synaptic transmission in hippocampal CA3 neurons. Neurobiol Dis 175:105923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dong C, Rovnaghi CR, Anand KJ (2016) Ketamine exposure during embryogenesis inhibits cellular proliferation in rat fetal cortical neurogenic regions. Acta Anaesthesiol Scand 60(5):579–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ito H, Uchida T, Makita K (2015) Ketamine causes mitochondrial dysfunction in human induced pluripotent stem cell-derived neurons. PLoS ONE 10(5):e0128445

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fuentealba LC et al (2015) Embryonic origin of postnatal neural stem cells. Cell 161(7):1644–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bandeira F, Lent R, Herculano-Houzel S (2009) Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc Natl Acad Sci U S A 106(33):14108–14113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bartley J et al (2005) BrdU-positive cells in the neonatal mouse hippocampus following hypoxic-ischemic brain injury. BMC Neurosci 6:15

    Article  PubMed  PubMed Central  Google Scholar 

  13. Belnoue L et al (2013) Prenatal stress inhibits hippocampal neurogenesis but spares olfactory bulb neurogenesis. PLoS ONE 8(8):e72972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Porzionato A et al (2015) Effects of postnatal hyperoxia exposure on the rat dentate gyrus and subventricular zone. Brain Struct Funct 220(1):229–247

    Article  PubMed  Google Scholar 

  15. Huang H et al (2016) Ketamine affects the neurogenesis of the hippocampal dentate gyrus in 7-day-old rats. Neurotox Res 30(2):185–198

    Article  CAS  PubMed  Google Scholar 

  16. Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11(12):872–884

    Article  CAS  PubMed  Google Scholar 

  17. Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99

    Article  CAS  PubMed  Google Scholar 

  18. Khacho M et al (2016) Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell 19(2):232–247

    Article  CAS  PubMed  Google Scholar 

  19. Iwata R, Casimir P, Vanderhaeghen P (2020) Mitochondrial dynamics in postmitotic cells regulate neurogenesis. Science 369(6505):858–862

    Article  CAS  PubMed  Google Scholar 

  20. Domino EF, Zsigmond EK, Domino LE, Domino KE, Kothary SP, Domino SE (1982) Plasma levels of ketamine and two of its metabolites in surgical patients using a gas chromatographic mass fragmentographic assay. Anesth Analg 61(2):87–92

    Article  CAS  PubMed  Google Scholar 

  21. Bai X, Yan Y, Canfield S, Muravyeva MY, Kikuchi C, Zaja I, Corbett JA, Bosnjak ZJ (2013) Ketamine enhances human neural stem cell proliferation and induces neuronal apoptosis via reactive oxygen species-mediated mitochondrial pathway. Anesth Analg 116(4):869–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang H et al (2021) Neonatal anesthesia by ketamine in neonatal rats inhibits the proliferation and differentiation of hippocampal neural stem cells and decreases neurocognitive function in adulthood via inhibition of the Notch1 signaling pathway. Mol Neurobiol 58(12):6272–6289

    Article  CAS  PubMed  Google Scholar 

  23. Khazipov R et al (2015) Atlas of the postnatal rat brain in stereotaxic coordinates. Front Neuroanat 9:161

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wan J et al (2021) Repeated exposure to propofol in the neonatal period impairs hippocampal synaptic plasticity and the recognition function of rats in adulthood. Brain Res Bull 169:63–72

    Article  CAS  PubMed  Google Scholar 

  25. Schmitz A et al (2018) Sedation for magnetic resonance imaging using propofol with or without ketamine at induction in pediatrics-A prospective randomized double-blinded study. Paediatr Anaesth 28(3):264–274

    Article  PubMed  Google Scholar 

  26. Andropoulos DB, Greene MF (2017) Anesthesia and developing brains - implications of the FDA warning. N Engl J Med 376(10):905–907

    Article  PubMed  Google Scholar 

  27. Bayer SA et al (1993) Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology 14(1):83–144

    CAS  PubMed  Google Scholar 

  28. Huang J et al (2016) Propofol administration during early postnatal life suppresses hippocampal neurogenesis. Mol Neurobiol 53(2):1031–1044

    Article  CAS  PubMed  Google Scholar 

  29. Stratmann G et al (2009) Isoflurane differentially affects neurogenesis and long-term neurocognitive function in 60-day-old and 7-day-old rats. Anesthesiology 110(4):834–848

    Article  CAS  PubMed  Google Scholar 

  30. Fang F, Xue Z, Cang J (2012) Sevoflurane exposure in 7-day-old rats affects neurogenesis, neurodegeneration and neurocognitive function. Neurosci Bull 28(5):499–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tresse E et al (2021) IFN-β rescues neurodegeneration by regulating mitochondrial fission via STAT5, PGAM5, and Drp1. Embo J 40(11):e106868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dong L et al (2020) Promotion of mitochondrial fusion protects against developmental PBDE-47 neurotoxicity by restoring mitochondrial homeostasis and suppressing excessive apoptosis. Theranostics 10(3):1245–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boscolo A et al (2013) Early exposure to general anesthesia disturbs mitochondrial fission and fusion in the developing rat brain. Anesthesiology 118(5):1086–1097

    Article  CAS  PubMed  Google Scholar 

  34. Amrock LG et al (2015) Long-term effects of single or multiple neonatal sevoflurane exposures on rat hippocampal ultrastructure. Anesthesiology 122(1):87–95

    Article  CAS  PubMed  Google Scholar 

  35. Liu J et al (2022) Sevoflurane induced neurotoxicity in neonatal mice links to a GSK3beta/Drp1-dependent mitochondrial fission and apoptosis. Free Radic Biol Med 181:72–81

    Article  CAS  PubMed  Google Scholar 

  36. Ozsoy S et al (2021) Cannibalized erythroblasts accelerate developmental neurogenesis by regulating mitochondrial dynamics. Cell Rep 35(1):108942

    Article  CAS  PubMed  Google Scholar 

  37. Channakkar AS et al (2020) MiRNA-137-mediated modulation of mitochondrial dynamics regulates human neural stem cell fate. Stem Cells 38(5):683–697

    Article  CAS  PubMed  Google Scholar 

  38. Iwata R, Vanderhaeghen P (2021) Regulatory roles of mitochondria and metabolism in neurogenesis. Curr Opin Neurobiol 69:231–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319–335

    Article  CAS  PubMed  Google Scholar 

  40. Kozareva DA, Cryan JF, Nolan YM (2019) Born this way: Hippocampal neurogenesis across the lifespan. Aging Cell 18(5):e13007

    Article  PubMed  PubMed Central  Google Scholar 

  41. van Praag H et al (2002) Functional neurogenesis in the adult hippocampus. Nature 415(6875):1030–1034

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ciric T, Cahill SP, Snyder JS (2019) Dentate gyrus neurons that are born at the peak of development, but not before or after, die in adulthood. Brain Behav 9(10):e01435

    Article  PubMed  PubMed Central  Google Scholar 

  43. Olariu A et al (2005) A natural form of learning can increase and decrease the survival of new neurons in the dentate gyrus. Hippocampus 15(6):750–762

    Article  PubMed  Google Scholar 

  44. Dupret D et al (2007) Spatial learning depends on both the addition and removal of new hippocampal neurons. PLoS Biol 5(8):e214

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gao Q et al (2022) PINK1-mediated Drp 1(S616) phosphorylation modulates synaptic development and plasticity via promoting mitochondrial fission. Signal Transduct Target Ther 7(1):103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (grant number: 82171191, 81971051 to YW, 81901100 to HH) and Jiangsu Province Special Program for Young Medical Talent (QNRC2016587 to HH).

Author information

Authors and Affiliations

Authors

Contributions

Project conception: HH, YW, CZ, HZ

Study design: HH, YW, CZ, HZ

Performance of experiments: HH, NW, JL, YQ, WW, QL, CC,

Initial data collection and analysis: HW, YL, WD, JW

Final data analysis: HW, YL, WD, JW

Writing of paper: HH, YW, CZ, HZ

Corresponding authors

Correspondence to Hui Zheng, Cheng-Hua Zhou or Yu-Qing Wu.

Ethics declarations

Ethics Approval

The experimental protocol was approved by the Institutional Animal Care and Ethics Committee of Xuzhou Medical University and in accordance with the Guide for the Care and Use of Laboratory Animals of the National Research Council.

Consent to Participate

Not applicable.

Consent for Publication

Yes.

Conflict of Interest

The authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Wang, N., Lin, JT. et al. Repeated Ketamine Anesthesia during the Neonatal Period Impairs Hippocampal Neurogenesis and Long-Term Neurocognitive Function by Inhibiting Mfn2-Mediated Mitochondrial Fusion in Neural Stem Cells. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03921-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03921-2

Keywords

Navigation