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Abstract
Diabetic and chemotherapy-induced peripheral neuropathies are known for long-term complications that are associated with 
uncontrolled hyperglycemia and cancer treatment, respectively. Peripheral neuropathy often requires long-term therapy and 
could persist after treatment provoking detrimental effects on the patient’s quality of life. Despite continuous drug discoveries, 
development of efficient therapies is still needed for the significant management of diabetic and chemotherapy-induced 
peripheral neuropathy. Exosomes are nanosized extracellular vesicles that show great promise recently in tissue regeneration 
and injury repair compared to their parent stem cells. Herein, we provided a summary for the use of mesenchymal stem 
cell–derived exosomes in diabetic and chemotherapy-induced peripheral neuropathy in addition to recent advancements and 
ways proposed for the enhancement of their efficacy in these diseases.
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Abbreviations
AMPK  AMP-activated protein kinase
BM-MSCs  Bone marrow mesenchymal stem cells
CEC-exos  Exosomes derived from cerebral endothelial 

cells
CIPN  Chemotherapy-induced peripheral 

neuropathy
CNPase  2′,3′-cyclic nucleotide 3′-phosphodiesterase
CREB  cAMP response element-binding protein
DPN  Diabetic peripheral neuropathy
DSPN  Diabetic sensorimotor polyneuropathy
ERK1/2  Extracellular signal regulating kinase 1/2
GelMA  Gelatin-methacryloyl
HDAC  Histone deacetylase

HUCMSC  Human umbilical cord mesenchymal stem 
cell

Iba1  Ionized calcium binding adaptor molecule 1
IL  Interleukin
miRNAs  MicroRNAs
MSC-exos  MSC-derived exosomes
MSCs  Mesenchymal stem cells
mTOR  Mammalian target of rapamycin
NGCs  Nerve guidance channels
NF-κB  Nuclear factor kappa B
PN  Peripheral neuropathy
PCL  Polycaprolactone
PI3K  Phosphatidylinositol 3-kinase
PKB  Protein kinase B
rGO  Reduced graphene oxide
RhoA  Ras homolog gene family member A
SCI  Spinal cord injury
TLRs  Toll-like receptors

Introduction

Understanding the painful neuropathic disorders and 
mechanisms of current therapies is crucial for the 
recommendation of effective management strategies [1]. 
Peripheral neuropathy (PN) is associated with several 
diseases including diabetes, infections, autoimmunity, 
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malignancy, and several metabolic diseases [2]. The 
most common causes of PN are diabetes and treatment 
with chemotherapy [3] with prevalence exceeding 50% 
in people with diabetes [4] and approximately 20 to 85% 
in patients treated with chemotherapy [5]. The exact 
mechanisms and pathogenesis of diabetic peripheral 
neuropathy (DPN) and chemotherapy-induced peripheral 
neuropathy (CIPN) remain unclear, although it has been 
suggested that both share mitochondrial dysfunction as a 
common pathogenic mechanism [6].

Diabetic sensorimotor polyneuropathy (DSPN) is 
one of the known type of diabetic neuropathy which 
demonstrates significant morbidity, affecting the quality 
of the patient’s life and increasing healthcare costs [7]. 
The progress of DSPN could be related mainly to defect 
in the antioxidant defense mechanisms. Other underlying 
mechanisms include changes in blood flow supplying the 
peripheral nerves, autoimmune and metabolic disorders 
leading to glial cell activation, changes in ion channel 
expression including sodium and calcium channels, and 
increased thalamic vascularity in addition to imbalance 
of stimulatory/inhibitory descending pathways with the 
involvement of central pain mechanisms [7, 8]. Other 
risk factors that contribute to DPN include old age, 
prolonged duration of uncontrolled diabetes, smoking, 
and drinking alcohol [9].

The clinical manifestations of DPN are comparable 
to those of CIPN. CIPN is a prominent complication 
associated with the long-term toxicity of chemotherapies 
including platinum-based drugs (cisplatin, carboplatin, 
and oxaliplatin), taxanes (paclitaxel and docetaxel), 
vincristine, and eribulin [10]. CIPN may persist for 
several years even after the cessation of chemotherapy 
causing disability in cancer survivors and seriously 
affecting their quality of life [11–13]. CIPN demonstrates 
sensory symptoms including pain, numbness, and tingling. 
However, some patients may have difficulties in fine motor 
coordination and sensory ataxia in addition to autonomic 
dysfunction [14]. The pathophysiological processes of 
CIPN are multi-factorial and have not been fully explained 
but differ among various classes of chemotherapeutic 
agents [15]. These processes involve oxidative stress, 
mitochondrial damage, apoptosis, altered ion channel 
activity, microtubular damage, axon degeneration and 
demyelination, and neuroinflammation [15, 16].

Several treatments have been proposed by international 
guidelines for controlling only symptoms of PN irrespective 
of the underlying cause. First-line therapies mostly include 
serotonin–noradrenaline reuptake inhibitors, tricyclic 
antidepressants, and anticonvulsants which act on sodium 
and calcium channels. Other treatments include the use 
of opioids in addition to topical agents such as lidocaine 
and capsaicin [9]. All traditional therapies reveal partial 

symptomatic relief of DPN and CIPN which reverses 
upon discontinuation in addition to having dose-limiting 
potential side effects [16]. These side effects often hinder the 
therapeutic options in clinical practice making the current 
treatments for DPN and CIPN suboptimal with urgent need 
for efficacious therapeutic strategies.

Mesenchymal stem cells (MSCs) are multipotent non-
hematopoietic cells which show multiple advantages over 
other types of stem cells. MSCs can be readily isolated from 
different sources like adipose tissue, peripheral blood, and 
cord blood with minimally invasive approaches [17] and is 
known to be self-replicated to many passages [18]. MSCs 
have been widely considered a promising cell therapy for 
management of various neurological disorders [19, 20] with 
evidence of their efficacy in DPN [21–23] and CIPN [24, 
25]. MSCs promote PN repair primarily via their paracrine 
effects with the secretion of angiogenic, anti-inflammatory, 
and neurotrophic factors [26–28]. However, MSC transplan-
tation is compromised by prolonged induction period as well 
as possible risks of immunogenicity, tumor formation, and 
microcirculatory obstruction [29–31].

Exosomes are endosomal-or igin membranous 
nanovesicles with a diameter ranging from approximately 
50 nm to 100 nm [32]. Exosomes are released mostly by all 
cell types and play a pivotal role in communication between 
cells by acting as biological transporters. Exosomes contain 
functional mRNAs, microRNAs (miRNAs), proteins, 
and lipids [33]. Current studies have shown that MSC-
derived exosomes (MSC-exos) are with similar functions 
to their parent cells. However, unlike MSCs, exosomes 
possess lower immunogenicity because they possess fewer 
membrane-bound proteins [34] and have a reduced risk 
of microvasculature occlusion [35]. Exosomes can also 
cross biological barriers including the blood-brain barrier 
because of their nanoscale structures and their membrane 
composition [36, 37]. Moreover, compared to their parent 
cells, exosomes can be stored easier and without the use of 
potentially toxic cryopreservatives for long term, reducing 
their toxic side effects upon application [38].

The therapeutic effect of MSC-exos has been demon-
strated in a variety of diseases, including tumors [39], neu-
rodegenerative diseases [40], and cardiovascular [41] and 
cerebrovascular [42] disorders. Importantly, several studies 
demonstrated the therapeutic effect of MSC-exos in DPN. 
However, the impact of MSC-exos in CIPN is still limited, 
and it is important to highlight on this crucial type of PN 
to encourage more research to be done in this field. Future 
researches are also required to fully elucidate in detail the 
mechanism of actions of MSC-exos in different models of 
PN. Of note, a series of challenges and difficulties need 
to be overcome to verify and enhance the therapeutic effi-
cacy of the derived exosomes and to promote their clinical 
application.
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Role of MSCs in PN

To develop more effective therapies to neuropathic 
pain, the potential of stem cells has been assessed in 
various stages of sensory neuropathy [25, 43] where 
stem cell therapy demonstrates beneficial outcomes 
experimentally in sensory neuropathy associated with 
diabetes [23], spinal cord injury (SCI) [44, 45], and 
ligation of sciatic nerve [46]. These outcomes depend 
mainly on the neuroregenerative and neuroprotective 
potentials of stem cells as demonstrated previously 
[47–50]. More importantly, the analgesic actions of 
MSCs have been revealed both experimentally [22, 51] 
and in clinical trials [52, 53], highlighting the efficacy 
of this therapy in the management of neuropathic pain. 
In this context, MSCs have been the most investigated 
type due to their wide therapeutic potential, minor risk 
of tumorigenesis, and ease of isolation and expansion 
in vitro [54]. However, the mechanisms involved in the 
therapeutic effects of MSCs have not yet been fully 
verified, but most probably, multiple mechanisms are 
included, clarifying the broad biological properties of 
these cells [22, 23, 46, 51].

MSCs promote the repair and modulate the injured 
neuronal environment through secretion of trophic, anti-
inflammatory, and antiapoptotic factors which support 
angiogenesis, immunomodulation, remyelination, and 
axonal growth in addition to providing protection from 
high apoptotic cell death [28]. Through the support 
of angiogenesis, MSCs augment the microcirculation 
supplying the peripheral nerves where the impairment 
of vascular supply has been significantly revealed in DN. 
MSCs also could be differentiated into endothelial cells and 
neurons in addition to the secretion of important factors, 
like angiogenin, basic fibroblast growth factor, vascular 
endothelial growth factor-A , and nerve growth factor 
[55, 56], which are crucial to both vascular and neuronal 
tissue health. Obviously, adipose-derived MSCs secrete 
increased levels of various angiogenic growth factors 
both directly and indirectly accelerating the healing of 
diabetic wounds in rats [57]. MSCs also provide a potential 
therapy for CIPN through suppressing the cascades of 
neuronal oxidative stress, inflammation, and apoptosis and 
promoting axonal repair and regeneration [16].

Role of Exosomes in PN

A number of in vivo and in vitro studies have shown the 
ability of exosomes to regulate immune responses, promote 
angiogenesis, and regenerate damaged tissue [58]. Exosomes 

are endosomal membranous nanovesicles which represent 
the main and vital components of small extracellular 
vesicles (< 100 nm) [59–61]. Exosomes could promote the 
communication between cells by transferring cargo genomic 
materials including miRNAs as well as proteins and lipids 
[62, 63]. Exosomes could be used for the management of DPN 
where the administration of exosomes intravenously from 
healthy Schwann cells remarkably improved PN in a model of 
diabetes in mice [64]. However, there is a limitation of studies 
using exosomes in CIPN. Obviously, exosome cargo shows the 
same properties as their parent cells [65, 66] where exosomes 
acquired from mesenchymal stromal cells contain peptides 
and miRNAs that promote neuronal repair and function [63]. 
MSC-exos have been found to be internalized by distal axons 
of cortical neurons with the mediation of axonal growth 
even under inhibitory conditions [67]. Moreover, exosomes 
derived from cerebral endothelial cells (CEC-exos) when used 
in combination with a platinum drug significantly decreased 
CIPN and increased the anti-tumor effect of oxaliplatin 
in mice with ovarian cancer. After being internalized into 
neuronal fibers, the intravenously administered CEC-exos 
modified miRNA and protein networks of sciatic nerve and 
thus reduced the toxicity of peripheral nerves [68]. A previous 
study also revealed that the application of bone marrow 
mesenchymal stem cell-derived exosomes (BM-MSC-exos) 
reduced the expression of tumor necrosis factor α (TNF-α) 
and transforming growth factor β and increased the levels of 
interleukin (IL)-10 and arginase 1 in a mouse model of DPN, 
indicating a decrease in macrophages M1/M2 ratio. These 
outcomes could be mediated through the polarization of 
macrophages M2 with subsequent inhibition of the expression 
of pro-inflammatory genes and improvement of neurovascular 
function [69]. Additionally, exosomes carrying miR-181c-5p 
alleviated chronic constriction injury–induced neuropathic 
pain through inhibition of neuropathic inflammation [70].

Application of MSC‑exos in DPN

Exosomes play a pivotal role in the communication 
between cells by transporting biological molecules where 
they reveal low immunogenicity and the ability to cross the 
blood-brain barrier. The therapeutic effect of MSC-exos 
has been demonstrated in preclinical studies of different 
nervous system diseases [33, 71, 72] with significant 
impact in DPN (Fig. 1).

For example, the delivery of MSC-exos was shown to 
inhibit the inflammatory response and promote the neurovas-
cular remodeling and functional recovery of DPN in diabetic 
mice [69]. MSC-exos also ameliorated DN by autophagy 
induction through the mammalian target of rapamycin 
(mTOR) signaling pathway in a rat model of streptozotocin-
induced diabetes mellitus [73]. Moreover, exosomes derived 
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from Schwann cells ameliorated PN in type 2 diabetic mice 
[64]. Furthermore, exosomes when used as biologic vehi-
cles of miR-146a effectively enhanced the therapeutic action 
of MSCs in diabetic mice, providing a new therapeutic 
approach for the management of DPN [74]. Table 1 shows 
some studies on MSC-exos in the treatment of DPN.

Application of MSC‑exos in CIPN

Therapeutic approaches for the management of CIPN are 
limited and have been based on evidences provided from 
other types of neuropathies including diabetes and post-
herpetic infections [77, 78]. No currently available drugs 
are considered fully effective in the clinical management of 
painful neuropathy associated with chemotherapy. However, 
the choice depends mostly on the use of drugs that reduce 
neural excitability, such as gabapentin, which still has low 
efficacy in reducing pain [79, 80].

Several mechanisms have been proposed to mediate the 
beneficial actions of MSC-exos including the secretion 
of angiogenic and neurotrophic factors, enhanced 
production of immunosuppressive factors including 
IL-10, and healthy mitochondrial transfer from MSCs to 
the damaged neurons [81–83]. Notably, several reports 
have demonstrated that exosomes derived from BM-MSCs 
contain a reparative cargo with various cytokines, 
neurotrophic factors, and miRNA, which mediate 
significant anti-inflammatory and anti-apoptotic actions 
with well-recognized immunomodulatory properties 
(Fig. 2). BM-MSCs and BM-MSC-exos can modulate 
microglia and astrocyte reactivity, thereby promoting 

neuro-regeneration [84, 85]. However, assessment of 
the detailed molecular and cellular mechanisms that 
affect neural microenvironment after these therapies still 
requires more studies.

Experimentally, intrathecal administration of MSC-
exos reduced mechanical and thermal hypersensitivity 
in L5/6 spinal nerve ligation neuropathic pain rat model. 
The anti-inflammatory actions of these exosomes have 
been demonstrated through diminishing c-fos, 2′,3′-cyclic 
nucleotide 3′-phosphodiesterase (CNPase), glial fibrillary 
acidic protein, ionized calcium–binding adaptor molecule 
1 (Iba1), TNF-α, and IL-1β levels in addition to enhancing 
IL10, brain-derived neurotrophic factor (BDNF), and glial 
cell line–derived neurotrophic factor levels [86]. CEC-
exos also reduced CIPN and enhanced the anti-tumor 
efficacy of platinum drugs [87]. Importantly, a recent 
study demonstrated that cannabidiol incorporated in 
extracellular vesicles derived from human umbilical cord 
MSCs had the ability to alleviate mechanical and thermal 
pain sensitivities in paclitaxel-induced PN. These outcomes 
were associated with mitochondrial protection in neuronal 
cells via activating 5HT1A receptors and AMP-activated 
protein kinase (AMPK) pathway [88]. In another study, 
BM-MSC-exos loaded with reduced graphene oxide (rGO), 
gelatin-methacryloyl (GelMA), and polycaprolactone 
(PCL) to create an rGO-GelMA-PCL nerve conduit 
revealed a superior ability to alleviate sciatic nerve injury 
via increasing the number of newly formed vessels as well 
as promoting peripheral nerve regeneration and function 
recovery [89]. Thus, despite being limited, the results of 
published studies give the hope for the possible significant 
impact of MSC-exos application in CIPN.

Fig. 1  Role of mesenchymal 
stem cell–derived exosomes 
in diabetic and chemotherapy-
induced peripheral neuropathy
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Enhancement of the Therapeutic 
Effects of MSC‑exos in Different Models 
of Neuropathy

MSC-exos exert clear therapeutic effects in various 
diseases. Obviously, exosome properties vary depending 
on the status of MSCs from which they are derived where 
MSC status is modified in response to external stimuli. 
Therefore, several studies have investigated whether 
preconditioning MSCs could enhance the therapeutic 
activities of their derived exosomes. Preconditioning of 
MSCs with cytokines, hypoxia, and chemicals improve 
their immunosuppressive, immunomodulatory, and 
regenerative effects [90]. Moreover, genetic and cell 
surface modification can enhance the therapeutic efficacy 
of exosomes [91].

Different Preconditioning Strategies

Preconditioning of MSCs with Hypoxia

The administration of MSC-exos subjected to hypoxia 
preconditioning could enhance the neurologic functions 
by specific biomolecule transport to the recipient damaged 
cells [41]. For example, exosomes derived from the exposure 
of MSCs to hypoxia preconditioning restored the synaptic 
dysfunction and reduced the inflammatory responses through 
the regulation of miR-21 secretion and thus improvement of 
the learning and memory capabilities of APP/PS1 mice [41]. 
Hypoxia preconditioning represents one of the most effective 
approaches to enhance the therapeutic effects of MSC-exos. 
A possible underlying mechanism could be through enhanced 
exosomal miR-216a-5p secretion which directs the shifting 
of microglia from the pro-inflammatory M1 phenotype to 
the anti-inflammatory M2 phenotype and thus suppressing 
toll-like receptors (TLRs)/nuclear factor kappa B (NF-κB) 
and activating phosphatidylinositol 3-kinase (PI3K)/protein 
kinase B (PKB) signaling pathways [92]. Another study 
indicated that human umbilical cord mesenchymal stem cell 
(HUCMSC)-derived exosomes could improve the viability 
and migration of olfactory ensheathing cells in hypoxic 
conditions by activating BDNF signaling and thus promoting 
sciatic nerve regeneration and functional recovery [93]. 
Additionally, exosomes derived from hypoxia-preconditioned 
MSCs improved cognitive decline through amelioration 
of synaptic dysfunction and regulation of inflammatory 
responses in APP/PS1 mice [41]. Hypoxia-treated MSCs 
were also found to overexpress antiapoptotic proteins like 
IL-8, IL-10, and Fas Ligand (FasL) and thus enhancing 
immunoregulation which in turn would inhibit inflammation 
and encourage tissue repair and regeneration [94].
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Preconditioning of MSCs with Pharmacological 
Agents

Preconditioning of MSCs with pharmacological agents is 
considered another effective way to enhance their actions 
[95, 96]. The preconditioning of MSCs has been examined 
through the use of pharmacological agents known for their 
neuroprotective and neurotrophic actions such as mood 
stabilizers like lithium and valproic acid [97]. Importantly, 
lithium and valproic acid control the signaling pathway 
mediating neurotrophic and neuroprotective functions through 
the inhibition of histone deacetylase (HDAC). In turn, the 
inhibition of HDAC prevents apoptosis and suppresses 
cellular glycogen synthase kinase-3 which mediates glycogen 
metabolism, cell proliferation and migration, and cellular 
transport [98]. Experimentally, deferoxamine preconditioning 
significantly increased total antioxidant, pro-angiogenic, 
neuroprotective, and anti-inflammatory factors secreted by 
MSCs and thus improving the therapeutic potential of adipose 
tissue-MSCs in DN [99]. The enhancement of exosome 
efficacy using different culture conditions in different nervous 
system diseases gives the hope of their possible efficacy in PN.

Modified MSC‑exos

Previous studies revealed different ways of MSC-exos modi-
fication to improve their therapeutic potential [100] through 
loading exosomal lumen with endogenous or exogenous 

biomolecules such as nucleic acids, peptides, or drugs or 
through modifying MSC-exos’ surface for targeting of a par-
ticular type of cells or tissues [101].

Therapeutic Exosome Loading

MSC-exos have recently been introduced as promising bio-
logical carriers owing to their remarkable small size, bio-
compatibility, and ability to carry specific and various thera-
peutic molecules to their targeted cells [102]. The functional 
biomolecules in MSC-exos such as proteins and nucleotides 
are included in tissue regeneration, immunoregulation, and 
angiogenesis in various experimental models [103]. Exo-
some loading includes the addition of the therapeutic mol-
ecule to the exosome from its parent cell (endogenous load-
ing) or direct depositing of the therapeutic molecule into 
purified exosomes (exogenous loading) [104].

As an example of endogenous loading, MSCs can 
be genetically modified to enhance the expression of 
endogenous biomolecules inside MSC-exos by using 
plasmids or viral vectors. Therefore, loading the targeted 
therapeutic biomolecules inside exosomes depends mainly 
on the genetic modifications of the parent cells for the 
improvement of the therapeutic actions of MSC-exos and 
prevention of heterogeneity between different exosome 
batches [103]. Exosomal miRNAs are also key regulators 
to their function. For example, treatment of DPN with 
MSC-exos enriched with miRNA-146a provided enhanced 
therapeutic efficacy in PN [74]. The administration of 

Fig. 2  Several beneficial mecha-
nisms of mesenchymal stem 
cell–derived exosomes in dia-
betic and chemotherapy-induced 
peripheral neuropathy
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exosomes containing miR-133b also contributed to the 
inhibition of ras homolog gene family member A (RhoA) 
and activation of extracellular signal-regulating kinase 1/2 
(ERK1/2) and cAMP response element-binding protein 
(CREB) pathway and thus amelioration of neuronal 
apoptosis and neurodegeneration in rats after intracerebral 
hemorrhage [105]. Besides, miR-133b-modified MSC-exos 
allowed miR-133b transfer to astrocytes and thus regulated 
their expression and promoted neuronal functional recovery 
after stroke in rats [106]. In addition, MSC-exos enriched 
with miR-126 and miR-26a enhanced the recovery of 
limb motor function and improved axon regeneration after 
SCI [107, 108]. Transplantation of engineered exosomes 
derived from BM-MSCs after being fused with polypyrrole 
nanoparticles containing liposomes improved DPN along 
with electrical stimulation. This approach normalized the 
velocity of nerve conduction and muscle action potential 
compared to the healthy control [75]. Notably, several 
research studies have revealed that MSC-exos could be used 
as drug carriers in addition to their traditional cargoes like 
miRNAs and peptides. The membrane structure of MSC-
exos can preserve the biological activity and integrity of 
drugs in addition to possible achievement of targeted drug 
delivery through the modification of the membrane structure 
of MSC-exos [109]. For example, chemotherapeutic drugs 
(adriamycin and paclitaxel) were loaded into MSC-exos for 
the management of tumors with reduced drug side effects 
[110, 111]. In the future, MSC-exos can be used as carriers 
for potential drugs for the management of diabetes, cancer, 
and their related neuropathic complications.

Surface Modification of Exosomes

Three common strategies are present for surface membrane 
modification of MSC-exos such as genetic engineering, 
chemical modification, and membrane fusion. Genetic 
engineering consolidates gene sequences of guided proteins 
or peptides with those of selected exosomal membrane 
proteins to effectively present specific peptides and proteins 
on exosomal surface and thus enhancing its targeting or 
function. On the other hand, chemical modifications reveal 
a variety of synthetic and natural receptors or ligands on 
the membrane surface of exosomes through noncovalent 
or covalent modifications. Finally, membrane fusion uses 
extrusion to combine exosomes with other membrane 
structures, an approach that confers new functional and 
therapeutic benefits to them [112]. For example, Yang 
et al. innovated a membrane-editing technique to confer 
the required functional membrane proteins into cellular 
membranes directly using a virus-mimetic fusogenic 
exosomes, enabling the exosomes to target specific tissues 
[113]. Another study used the fusion extrusion technique to 
modify MSC-exos with monocyte mimics to enhance their 

delivery to myocardial tissues with ischemic damage [114]. 
Collectively, the membrane fusion technique to modify 
MSC-exos opens new approaches for improvement of their 
cell-targeting therapeutic efficacy.

Limitations of Current Studies and Future 
Directions

MSC-exos have been clearly recognized as the main regula-
tors of the paracrine mechanism that promotes regeneration 
mediated by stem cells [115]. These nanoparticles reveal 
similar therapeutic effects to those exerted by MSCs and can 
be considered a powerful tool for cell-free–based therapy 
with several advantages compared to MSCs. Of note, the 
outcomes of use of MSC-exos in peripheral nerve injury are 
encouraging [114]. Although being safe and effective experi-
mentally, this field needs further research and much work 
to fully determine the potential of MSC-exos clinically and 
to overcome the limitations of their application [116, 117].

MSC-exos are commonly isolated via differential or 
density-gradient ultracentrifugation [118]. Despite being 
the most cost-effective available method, ultracentrifuga-
tion is time-consuming, needs intensive work, and may yield 
impurities [119]. Other isolation methods include ultrafil-
tration, size exclusion chromatography, precipitation, and 
immune affinity capture [119] in addition to size-dependent 
and immunoaffinity-based microfluidic technologies [120]. 
Though being limited compared to the traditional methods, 
these new methods require relatively small amount of sam-
ples and can achieve high purity and rapid separation [119]. 
Limitations of MSC-exos isolation include also low yield 
under conventional culture conditions [121] in addition to 
low efficacy upon application after multiple passages in vitro 
due to MSC senescence [122]. Thus, improving the yield of 
MSC-exos and enhancing their efficacy or targeting abil-
ity are crucial through altering MSC cell culture conditions 
[123, 124] or modifying exosomes with different approaches 
[125]. Furthermore, concerns regarding changes in morphol-
ogy and bioactivity of exosomes have been reported follow-
ing long-term storage [126]. Cryopreservation using liquid 
nitrogen and other cryoprotective agents may overcome 
these issues [127]. Notably, the components of MSC-exos 
as well as their exact actions that mediate tissue repair and 
regeneration need to be fully investigated. There is also 
no guidance for the safety and the exact dose or amount 
of MSC-exos needed for treatment. More research is still 
required to select the best route of systemic administration 
of MSC-exos (intravenous, subcutaneous, or intramuscular 
routes) [128]. Collectively, the risks, safety, and challenges 
included in the use of MSC-exos need to be fully investi-
gated before their clinical use in tissue repair and regenera-
tive medicine.
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Conclusion

MSC-exos have received great attention recently as an 
emerging therapeutic agent for the management of PN 
because of their ability to suppress inflammation, regulate 
the immune system and angiogenesis, and promote tissue 
regeneration in a similar way to MSCs. Exosomes reveal 
several advantages, fewer side effects, and lower risks 
compared to their parent MSCs. Exosomes are relatively 
non-immunogenic and with very low tumorigenic potential. 
However, a series of challenges and difficulties need to be 
overcome to verify their purity, reproducibility, safety, 
biodistribution, clearance, and their molecular characteristics 
or contents. Furthermore, their long-term therapeutic effect 
is still unknown.

Importantly, future research is required to enhance 
the therapeutic efficacy of exosomes and to promote 
their clinical application where preconditioning of 
MSCs with hypoxia or pharmacological agents has been 
considered an effective approach to optimize the actions 
of their derived exosomes. The surface of exosomes can 
also be modulated for targeting of particular cell types. 
Moreover, exosomes can be loaded with targeted drugs, 
peptides, or genes with facilitated delivery due to their 
ability to cross biological barriers. Meanwhile, the 
signals and pathways involved in the actions of MSC-
exos in the target cells and organs should be identified 
in detailed studies before being considered as a potential 
cell-free based therapy in PN.
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