Skip to main content

Advertisement

Log in

Role of Oxidative Stress in the Occurrence and Development of Cognitive Dysfunction in Patients with Obstructive Sleep Apnea Syndrome

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Obstructive sleep apnea syndrome (OSAS) causes recurrent apnea and intermittent hypoxia at night, leading to several complications such as cognitive dysfunction. However, the molecular mechanisms underlying cognitive dysfunction in OSAS are unclear, and oxidative stress mediated by intermittent hypoxia is an important mechanism. In addition, the improvement of cognitive dysfunction in patients with OSAS varies by different treatment regimens; among them, continuous positive airway pressure therapy (CPAP) is mostly recognized for improving cognitive dysfunction. In this review, we discuss the potential mechanisms of oxidative stress in OSAS, the common factors of affecting oxidative stress and the Links between oxidative stress and inflammation in OSAS, focusing on the potential links between oxidative stress and cognitive dysfunction in OSAS and the potential therapies for neurocognitive dysfunction in patients with OSAS mediated by oxidative stress. Therefore, further analysis on the relationship between oxidative stress and cognitive dysfunction in patients with OSAS will help to clarify the etiology and discover new treatment options, which will be of great significance for early clinical intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article.

Abbreviations

OSAS:

Obstructive Sleep Apnea Syndrome

CPAP:

Continuous Positive Airway Pressure

nCPAP:

Nasal Continuous Positive Airway Pressure

AHI:

Apnea-Hypopnea Index

CIH:

Chronic Intermittent Hypoxia

ROS:

Reactive Oxygen Species

RNS:

Reactive Nitrogen Species

H2O2 :

Hydrogen Peroxide

NO:

Nitric Oxide

MDA:

Malonaldehyde

8-iso-PGF2α:

8-Isoprostaglandin F2α

oxLDL:

Oxidized Low-density Lipoprotein

TBARS:

Thiobarbituric Acid Reactive Substances

TBA:

Thiobarbituric Acid

PGHS:

Prostaglandin-Endoperoxide Synthase

8-OHdG:

8-Hydroxydeoxyguanosine

AOPP:

Advanced Oxidation Protein Products

GSH:

Reduced Glutathione

GSSG:

Oxidized Glutathione

IMA:

Ischemia-Modified Albumin

Trx:

Thioredoxin

SH:

Sulfhydryl

GR:

Glutathione Reductase

NADPH:

Nicotinamide Adenine Dinucleotide Phosphate

GP1:

Glutathione Peroxidase-1

SOD:

Superoxide Dismutase

CAT:

Catalase

PON1:

Paraoxonase1

HO-1:

Heme Oxygenase-1

NQO1:

NADPH: Quinine Oxidoreductase

Prx2:

Peroxiredoxin2

GAPDH:

Glyceraldehyde 3-phosphate Dehydrogenase

NOX:

NADPH Oxidase

HI 95:

Hypoxia-Inducible Gene

eCO:

Exhaled Carbon Monoxide

MPO:

Myeloperoxidase

OSI:

Oxidative Stress Index

TAC:

Total Antioxidant Capacity

TAS:

Total Antioxidant Status

TOC:

Total Oxidative Capacity

TOS:

Total Oxidative Status

IH:

Intermittent Hypoxia

ROX:

Re-Oxygenation

XO:

Xanthine Oxidase

HIF-1α:

Hypoxia-Inducible Factor-1α

ER:

Endoplasmic Reticulum

PKC:

Protein Kinase C

mTOR:

Mammalian Target of Rapamycin

CAMK:

Ca2+/calmodulin Kinase

Nrf2:

Nuclear Factor E2-Related Factor 2

Keap1:

Kelch-Like ECH-Associated Protein-1

ARE:

Antioxidant Response Element

Ngb:

Neuroglobin

PtO2:

Partial Oxygen Pressure

NLRP3:

Nucleotide-Binding Oligomerization Domain, Leucine-Rich Repeat and Pyrin Domain-Containing 3

mtROS:

Mitochondrial ROS

IL-1β:

Interleukin-1β

TNF-α:

Tumor Necrosis Factor-α

IFN-γ:

Interferon-γ

ATP:

Adenosine Triphosphate

HSP:

Heat Shock Protein

PO2:

Partial Pressure of Oxygen

IP3:

Inositol-3-Phosphate

PARP:

Poly (ADP-ribose) Polymerase

OPCs:

Oligodendrocytes Precursor Cells

nDNA:

Nuclear DNA

AD:

Alzheimer's Disease

BDNF:

Brain-Derived Neurotrophic Factor

cAMP:

Cyclic Adenosine Monophosphate

PKA:

Protein Kinase A

CREB:

CAMP-Response Element Binding Protein

JNK:

C-Jun N-Terminal Kinase

P38MAPK:

P38 Mitogen-Activated Protein Kinase

Bax:

Proteins of the BCL2 Associated x

Bcl-2:

B-Cell Lymphoma-2

NMDAR:

NMDA Eeceptor

EPO:

Erythropoietin

GHRH:

Growth Hormone-Releasing Hormone

J1-34:

GHRH Agonists

SFN:

Sulforaphane

PCA:

Protocatechuic Acid

LBP:

Lycium Barbarum Polysaccharide

P2X7R:

P2X7 Receptor

NF-κB:

Nuclear Factor Kappa B

H2 :

Hydrogen

BBG:

Brilliant Blue G

References

  1. Prabhakar NR, Peng YJ, Nanduri J (2020) Hypoxia-inducible factors and obstructive sleep apnea. J Clin Investig 130:5042–5051. https://doi.org/10.1172/jci137560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arisoy A, Ekin S, Sertogullarindan B, Gunbatar H, Sunnetcioglu A, Aksoy N, Sezen H, Asker S et al (2016) The Relationship Among Oxidative and Anti-Oxidative Parameters and Myeloperoxidase in Subjects With Obstructive Sleep Apnea Syndrome. Respir Care 61:200–204. https://doi.org/10.4187/respcare.04277

    Article  PubMed  Google Scholar 

  3. Choudhury N, Deshmukh P (2023) Obstructive Sleep Apnea in Adults and Ear, Nose, and Throat (ENT) Health: A Narrative Review. Cureus 15:e47637. https://doi.org/10.7759/cureus.47637

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu X, Ma Y, Ouyang R, Zeng Z, Zhan Z, Lu H, Cui Y, Dai Z et al (2020) The relationship between inflammation and neurocognitive dysfunction in obstructive sleep apnea syndrome. J Neuroinflammation 17:229. https://doi.org/10.1186/s12974-020-01905-2

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cekerevac I, Jakovljevic V, Zivkovic V, Petrovic M, Cupurdija V, Novkovic L (2018) Impact of severity of obstructive sleep apnea (OSA) and body composition on redox status in OSA patients. Vojnosanit Pregl 75:1089–1093. https://doi.org/10.2298/Vsp161030041c

    Article  Google Scholar 

  6. Pevernagie DA, Gnidovec-Strazisar B, Grote L, Heinzer R, McNicholas WT, Penzel T, Randerath W, Schiza S et al (2020) On the rise and fall of the apnea-hypopnea index: A historical review and critical appraisal. J Sleep Res 29:e13066. https://doi.org/10.1111/jsr.13066

    Article  PubMed  Google Scholar 

  7. Modena DAO, Cazzo E, Candido EC, Baltieri L, da Silveira LJB, de Almeida AMN, Gobato RC, Chaim EA (2017) Obstructive sleep apnea syndrome among obese individuals: A cross-sectional study. Rev Assoc Med Bras 63:862–868. https://doi.org/10.1590/1806-9282.63.10.862

    Article  PubMed  Google Scholar 

  8. Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, Nunez CM, Patel SR et al (2019) Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med 7:687–698. https://doi.org/10.1016/S2213-2600(19)30198-5

    Article  PubMed  PubMed Central  Google Scholar 

  9. He YY, Chen R, Wang J, Pan WY, Sun YQ, Han F, Wang QJ, Liu CF (2016) Neurocognitive impairment is correlated with oxidative stress in patients with moderate-to-severe obstructive sleep apnea hypopnea syndrome. Respir Med 120:25–30. https://doi.org/10.1016/j.rmed.2016.09.009

    Article  PubMed  Google Scholar 

  10. Passali D, Corallo G, Petti A, Longini M, Passali FM, Buonocore G, Bellussi LM (2016) A comparative study on oxidative stress role in nasal breathing impairment and obstructive sleep apnoea syndrome. Acta Otorhinolaryngologica Italica 36:490–495. https://doi.org/10.14639/0392-100x-1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu X, Gong LJ, Xie L, Gu WY, Wang XY, Liu ZL, Li SQ (2021) NLRP3 Deficiency Protects Against Intermittent Hypoxia-Induced Neuroinflammation and Mitochondrial ROS by Promoting the PINK1-Parkin Pathway of Mitophagy in a Murine Model of Sleep Apnea. Front Immunol 12:628168. https://doi.org/10.3389/fimmu.2021.628168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Duan X, Wen Z, Shen H, Shen M, Chen G (2016) Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy. Oxid Med Cell Longev 2016:1203285. https://doi.org/10.1155/2016/1203285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaur T, Huang AC and Shyu BC (2023) Modulation of Melatonin in Pain Behaviors Associated with Oxidative Stress and Neuroinflammation Responses in an Animal Model of Central Post-Stroke Pain. Int J Mol Sci 24. https://doi.org/10.3390/ijms24065413

  14. Popa-Wagner A, Mitran S, Sivanesan S, Chang E, Buga AM (2013) ROS and brain diseases: the good, the bad, and the ugly. Oxid Med Cell Longev 2013:963520. https://doi.org/10.1155/2013/963520

    Article  PubMed  PubMed Central  Google Scholar 

  15. Passali D, Corallo G, Yaremchuk S, Longini M, Proietti F, Passali GC, Bellussi L (2015) Oxidative stress in patients with obstructive sleep apnoea syndrome. Acta Otorhinolaryngol Ital 35:420–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Javaheri S, Barbe F, Campos-Rodriguez F, Dempsey JA, Khayat R, Javaheri S, Malhotra A, Martinez-Garcia MA et al (2017) Sleep Apnea Types, Mechanisms, and Clinical Cardiovascular Consequences. J Am Coll Cardiol 69:841–858. https://doi.org/10.1016/j.jacc.2016.11.069

    Article  PubMed  PubMed Central  Google Scholar 

  17. Olszewska E, Rogalska J, Brzoska MM (2021) The Association of Oxidative Stress in the Uvular Mucosa with Obstructive Sleep Apnea Syndrome: A Clinical Study. J Clin Med 10:1132. https://doi.org/10.3390/jcm10051132

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li XM, Liu XJ, Meng Q, Wu XH, Bing X, Guo N, Zhao XN et al (2022) Circadian clock disruptions link oxidative stress and systemic inflammation to metabolic syndrome in obstructive sleep apnea patients. Front Physiol 13:932596. https://doi.org/10.3389/fphys.2022.932596

    Article  PubMed  PubMed Central  Google Scholar 

  19. Low T, Lin TY, Lin JY, Lai CJ (2022) Airway hyperresponsiveness induced by intermittent hypoxia in rats. Respir Physiol Neurobiol 295:103787. https://doi.org/10.1016/j.resp.2021.103787

    Article  CAS  PubMed  Google Scholar 

  20. Lavie L (2015) Oxidative stress in obstructive sleep apnea and intermittent hypoxia–revisited–the bad ugly and good: implications to the heart and brain. Sleep Med Rev 20:27–45. https://doi.org/10.1016/j.smrv.2014.07.003

    Article  PubMed  Google Scholar 

  21. Kim J, An S, Kim Y, Yoon DW, Son SA, Park JW, Jhe W, Park CS et al (2023) Surface Active Salivary Metabolites Indicate Oxidative Stress and Inflammation in Obstructive Sleep Apnea. Allergy Asthma Immunol Res 15:316–335. https://doi.org/10.4168/aair.2023.15.3.316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kadiiska MB, Basu S, Brot N, Cooper C, Saari Csallany A, Davies MJ, George MM, Murray DM et al (2013) Biomarkers of oxidative stress study V: ozone exposure of rats and its effect on lipids, proteins, and DNA in plasma and urine. Free Radic Biol Med 61:408–15. https://doi.org/10.1016/j.freeradbiomed.2013.04.023

    Article  CAS  PubMed  Google Scholar 

  23. Nair D, Ramesh V, Gozal D (2018) Cognitive Deficits Are Attenuated in Neuroglobin Overexpressing Mice Exposed to a Model of Obstructive Sleep Apnea. Front Neurol 9:426. https://doi.org/10.3389/fneur.2018.00426

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zong D, Liu X, Shen C, Liu T, Ouyang R (2023) Involvement of Galectin-3 in neurocognitive impairment in obstructive sleep apnea via regulating inflammation and oxidative stress through NLRP3. Sleep Med 101:1–10. https://doi.org/10.1016/j.sleep.2022.09.018

    Article  PubMed  Google Scholar 

  25. Peres BU, Allen AJH, Shah A, Fox N, Laher I, Almeida F, Jen R, Ayas N (2020) Obstructive Sleep Apnea and Circulating Biomarkers of Oxidative Stress: A Cross-Sectional Study. Antioxidants 9:476. https://doi.org/10.3390/antiox9060476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tauman R, Lavie L, Greenfeld M, Sivan Y (2014) Oxidative Stress in Children with Obstructive Sleep Apnea Syndrome. J Clin Sleep Med 10:677–681. https://doi.org/10.5664/jcsm.3800

    Article  PubMed  PubMed Central  Google Scholar 

  27. Papanikolaou J, Ntalapascha M, Makris D, Koukoubani T, Tsolaki V, Zakynthinos G, Gourgoulianis K, Zakynthinos E (2019) Diastolic dysfunction in men with severe obstructive sleep apnea syndrome but without cardiovascular or oxidative stress-related comorbidities. Ther Adv Respir Dis 13:1753466619880076. https://doi.org/10.1177/1753466619880076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stanek A, Brożyna-Tkaczyk K, Myśliński W (2021) Oxidative Stress Markers among Obstructive Sleep Apnea Patients. Oxid Med Cell Longev 2021:9681595. https://doi.org/10.1155/2021/9681595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pau MC, Zinellu E, Fois SS, Piras B, Pintus G, Carru C, Mangoni AA, Fois AG, Zinellu A and Pirina P (2021) Circulating Malondialdehyde Concentrations in Obstructive Sleep Apnea (OSA): A Systematic Review and Meta-Analysis with Meta-Regression. Antioxidants (Basel) 10. https://doi.org/10.3390/antiox10071053

  30. Sunnetcioglu A, Alp HH, Sertogullarindan B, Balaharoglu R, Gunbatar H (2016) Evaluation of Oxidative Damage and Antioxidant Mechanisms in COPD, Lung Cancer, and Obstructive Sleep Apnea Syndrome. Respir Care 61:205–211. https://doi.org/10.4187/respcare.04209

    Article  PubMed  Google Scholar 

  31. DeMartino T, El Ghoul R, Wang L, Bena J, Hazen SL, Tracy R, Patel SR, Auckley D et al (2016) Oxidative Stress and Inflammation Differentially Elevated in Objective Versus Habitual Subjective Reduced Sleep Duration in Obstructive Sleep Apnea. Sleep 39:1361–1369. https://doi.org/10.5665/sleep.5964

    Article  PubMed  PubMed Central  Google Scholar 

  32. Van’t Erve TJ, Lih FB, Jelsema C, Deterding LJ, Eling TE, Mason RP, Kadiiska MB (2016) Reinterpreting the best biomarker of oxidative stress: The 8-iso-prostaglandin F2α/prostaglandin F2α ratio shows complex origins of lipid peroxidation biomarkers in animal models. Free Radic Biol Med 95:65–73. https://doi.org/10.1016/j.freeradbiomed.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  33. Soffler C, Campbell VL, Hassel DM (2010) Measurement of urinary F2-isoprostanes as markers of in vivo lipid peroxidation: a comparison of enzyme immunoassays with gas chromatography-mass spectrometry in domestic animal species. J Vet Diagn Invest 22:200–209. https://doi.org/10.1177/104063871002200205

    Article  PubMed  Google Scholar 

  34. Turnbull CD, Akoumianakis I, Antoniades C and Stradling JR (2017) Overnight urinary isoprostanes as a marker of oxidative stress in obstructive sleep apnoea. Eur Respir J 49. https://doi.org/10.1183/13993003.01787-2016

  35. Van’t Erve TJ, Kadiiska MB, London SJ, Mason RP (2017) Classifying oxidative stress by F(2)-isoprostane levels across human diseases: A meta-analysis. Redox Biol 12:582–599. https://doi.org/10.1016/j.redox.2017.03.024

    Article  CAS  PubMed  Google Scholar 

  36. Van’t Erve TJ, Lih FB, Kadiiska MB, Deterding LJ, Eling TE, Mason RP (2015) Reinterpreting the best biomarker of oxidative stress: The 8-iso-PGF(2α)/PGF(2α) ratio distinguishes chemical from enzymatic lipid peroxidation. Free Radic Biol Med 83:245–51. https://doi.org/10.1016/j.freeradbiomed.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  37. Hira HS, Samal P, Kaur A, Kapoor S (2014) Plasma level of hypoxanthine/xanthine as markers of oxidative stress with different stages of obstructive sleep apnea syndrome. Ann Saudi Med 34:308–313. https://doi.org/10.5144/0256-4947.2014.308

    Article  PubMed  PubMed Central  Google Scholar 

  38. Khan N, Lambert-Messerlian G, Monteiro JF, Hodosy J, Tothova L, Celec P, Eklund E et al (2018) Oxidative and carbonyl stress in pregnant women with obstructive sleep apnea. Sleep Breath 22:233–240. https://doi.org/10.1007/s11325-017-1475-8

    Article  PubMed  Google Scholar 

  39. Sunnetcioglu A, Asker S, Alp HH, Gunbatar H (2016) Increased Asymmetric Dimethylarginine and Ischemia-Modified Albumin Levels in Obstructive Sleep Apnea. Respir Care 61:1038–1043. https://doi.org/10.4187/respcare.04472

    Article  PubMed  Google Scholar 

  40. Düger M, Seyhan EC, Günlüoğlu MZ, Bolatkale M, Özgül MA, Turan D, Uğur E, Ülfer G (2021) Does ischemia-modified albumin level predict severity of obstructive sleep apnea? Sleep Breath 25:65–73. https://doi.org/10.1007/s11325-020-02038-9

    Article  PubMed  Google Scholar 

  41. Silva-Adaya D, Gonsebatt ME, Guevara J (2014) Thioredoxin system regulation in the central nervous system: experimental models and clinical evidence. Oxid Med Cell Longev 2014:590808. https://doi.org/10.1155/2014/590808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang XH, Liu HG, Liu X, Chen JN (2012) Thioredoxin and impaired spatial learning and memory in the rats exposed to intermittent hypoxia. Chin Med J 125:3074–3080

    CAS  PubMed  Google Scholar 

  43. Miranda-Vizuete A, Ljung J, Damdimopoulos AE, Gustafsson JA, Oko R, Pelto-Huikko M, Spyrou G (2001) Characterization of Sptrx, a novel member of the thioredoxin family specifically expressed in human spermatozoa. J Biol Chem 276:31567–31574. https://doi.org/10.1074/jbc.M101760200

    Article  CAS  PubMed  Google Scholar 

  44. Dinc ME, Ozdemir C, Ayan NN, Bozan N, Ulusoy S, Koca C, Erel O (2017) Thiol/disulfide homeostasis as a novel indicator of oxidative stress in obstructive sleep apnea patients. Laryngoscope 127:E244-e250. https://doi.org/10.1002/lary.26444

    Article  CAS  PubMed  Google Scholar 

  45. Eisele HJ, Markart P, Schulz R (2015) Obstructive Sleep Apnea, Oxidative Stress, and Cardiovascular Disease: Evidence from Human Studies. Oxid Med Cell Longev 2015:608438. https://doi.org/10.1155/2015/608438

    Article  PubMed  PubMed Central  Google Scholar 

  46. Couto N, Wood J, Barber J (2016) The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med 95:27–42. https://doi.org/10.1016/j.freeradbiomed.2016.02.028

    Article  CAS  PubMed  Google Scholar 

  47. Dalmases M, Torres M, Marquez-Kisinousky L, Almendros I, Planas AM, Embid C, Martinez-Garcia MA, Navajas D et al (2014) Brain Tissue Hypoxia and Oxidative Stress Induced by Obstructive Apneas is Different in Young and Aged Rats. Sleep 37:1249–1256. https://doi.org/10.5665/sleep.3848

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhou L, Ouyang R, Luo H, Peng Y, Chen P, Ren S, Liu G (2018) Dysfunction of Nrf2-ARE Signaling Pathway: Potential Pathogenesis in the Development of Neurocognitive Impairment in Patients with Moderate to Severe Obstructive Sleep Apnea-Hypopnea Syndrome. Oxid Med Cell Longev 2018:3529709. https://doi.org/10.1155/2018/3529709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koike S, Sudo H, Turudome S, Ueyama M, Tanaka Y, Kimura H, Ishida YI, Ogasawara Y (2022) Hyperoxidized Peroxiredoxin 2 Is a Possible Biomarker for the Diagnosis of Obstructive Sleep Apnea. Antioxidants 11:2486. https://doi.org/10.3390/antiox11122486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Valentim-Coelho C, Vaz F, Antunes M, Neves S, Martins IL, Osório H, Feliciano A, Pinto P, Bárbara C and Penque D (2020) Redox-Oligomeric State of Peroxiredoxin-2 and Glyceraldehyde-3-Phosphate Dehydrogenase in Obstructive Sleep Apnea Red Blood Cells under Positive Airway Pressure Therapy. Antioxidants (Basel) 9. https://doi.org/10.3390/antiox9121184

  51. Muronetz VI, Melnikova AK, Saso L, Schmalhausen EV (2020) Influence of Oxidative Stress on Catalytic and Non-glycolytic Functions of Glyceraldehyde-3-phosphate Dehydrogenase. Curr Med Chem 27:2040–2058. https://doi.org/10.2174/0929867325666180530101057

    Article  CAS  PubMed  Google Scholar 

  52. Holtgrefe S, Gohlke J, Starmann J, Druce S, Klocke S, Altmann B, Wojtera J, Lindermayr C et al (2008) Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications. Physiol Plant 133:211–228. https://doi.org/10.1111/j.1399-3054.2008.01066.x

    Article  CAS  PubMed  Google Scholar 

  53. Hildebrandt T, Knuesting J, Berndt C, Morgan B, Scheibe R (2015) Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub? Biol Chem 396:523–537. https://doi.org/10.1515/hsz-2014-0295

    Article  CAS  PubMed  Google Scholar 

  54. Tarafdar A and Pula G (2018) The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders. Int J Mol Sci 19. https://doi.org/10.3390/ijms19123824

  55. Carbone F, Teixeira PC, Braunersreuther V, Mach F, Vuilleumier N, Montecucco F (2015) Pathophysiology and Treatments of Oxidative Injury in Ischemic Stroke: Focus on the Phagocytic NADPH Oxidase 2. Antioxid Redox Signal 23:460–489. https://doi.org/10.1089/ars.2013.5778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sheng WS, Hu S, Feng A, Rock RB (2013) Reactive oxygen species from human astrocytes induced functional impairment and oxidative damage. Neurochem Res 38:2148–2159. https://doi.org/10.1007/s11064-013-1123-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC, Curnutte JT, Thomas GR (1997) Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28:2252–2258. https://doi.org/10.1161/01.str.28.11.2252

    Article  CAS  PubMed  Google Scholar 

  58. Ekin S, Yildiz H, Alp HH (2021) NOX4, MDA, IMA and oxidative DNA damage: can these parameters be used to estimate the presence and severity of OSA? Sleep Breath 25:529–536. https://doi.org/10.1007/s11325-020-02093-2

    Article  PubMed  Google Scholar 

  59. Altenhöfer S, Kleikers PW, Radermacher KA, Scheurer P, Rob Hermans JJ, Schiffers P, Ho H, Wingler K, Schmidt HH (2012) The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cell Mol Life Sci 69:2327–2343. https://doi.org/10.1007/s00018-012-1010-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang Y, Zhang SX, Gozal D (2010) Reactive oxygen species and the brain in sleep apnea. Respir Physiol Neurobiol 174:307–316. https://doi.org/10.1016/j.resp.2010.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nayernia Z, Jaquet V, Krause KH (2014) New insights on NOX enzymes in the central nervous system. Antioxid Redox Signal 20:2815–2837. https://doi.org/10.1089/ars.2013.5703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee KH, Cha M and Lee BH (2021) Crosstalk between Neuron and Glial Cells in Oxidative Injury and Neuroprotection. Int J Mol Sci 22. https://doi.org/10.3390/ijms222413315

  63. Bai L, Sun CY, Zhai HF, Chen C, Hu XT, Ye XL, Li M, Fang Y et al (2019) Investigation of Urinary Sestrin2 in Patients with Obstructive Sleep Apnea. Lung 197:123–129. https://doi.org/10.1007/s00408-019-00205-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mochol J, Gawrys J, Szahidewicz-Krupska E, Wisniewski J, Fortuna P, Rola P, Martynowicz H, Doroszko A (2022) Effect of Obstructive Sleep Apnea and CPAP Treatment on the Bioavailability of Erythrocyte and Plasma Nitric Oxide. Int J Environ Res Publ Health 19:14719. https://doi.org/10.3390/ijerph192214719

    Article  CAS  Google Scholar 

  65. Bozkurt H, Neyal A, Geyik S, Taysi S, Anarat R, Bulut M, Neyal AM (2015) Investigation of the Plasma Nitrite Levels and Oxidant-Antioxidant Status in Obstructive Sleep Apnea Syndrome. Noropsikiyatri Arsivi-Arch Neuropsychiatry 52:221–225. https://doi.org/10.5152/npa.2015.7607

    Article  Google Scholar 

  66. Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5:834–842. https://doi.org/10.1021/tx00030a017

    Article  CAS  PubMed  Google Scholar 

  67. Ip MS, Lam B, Chan LY, Zheng L, Tsang KW, Fung PC, Lam WK (2000) Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by nasal continuous positive airway pressure. Am J Respir Crit Care Med 162:2166–2171. https://doi.org/10.1164/ajrccm.162.6.2002126

    Article  CAS  PubMed  Google Scholar 

  68. Schulz R, Seeger W, Grimminger F (2001) Serum nitrite/nitrate levels in obstructive sleep apnea. Am J Respir Crit Care Med 164:1997–1998. https://doi.org/10.1164/ajrccm.164.10.correspondence_b

    Article  CAS  PubMed  Google Scholar 

  69. Kis A, Meszaros M, Tarnoki DL, Tarnoki AD, Lazar Z, Horvath P, Kunos L, Bikov A (2019) Exhaled carbon monoxide levels in obstructive sleep apnoea. J Breath Res 13:036012. https://doi.org/10.1088/1752-7163/ab231d

    Article  PubMed  Google Scholar 

  70. Vavougios G, Pastaka C, Tsilioni I, Natsios G, Seitanidis G, Florou E, Gourgoulianis KI (2014) The DJ-1 protein as a candidate biomarker in obstructive sleep apnea syndrome. Sleep Breath 18:897–900. https://doi.org/10.1007/s11325-014-0952-6

    Article  PubMed  Google Scholar 

  71. Snyder B, Duong P, Trieu J, Cunningham RL (2018) Androgens modulate chronic intermittent hypoxia effects on brain and behavior. Horm Behav 106:62–73. https://doi.org/10.1016/j.yhbeh.2018.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Coimbra-Costa D, Garzón F, Alva N, Pinto TCC, Aguado F, Torrella JR, Carbonell T and Rama R (2021) Intermittent Hypobaric Hypoxic Preconditioning Provides Neuroprotection by Increasing Antioxidant Activity, Erythropoietin Expression and Preventing Apoptosis and Astrogliosis in the Brain of Adult Rats Exposed to Acute Severe Hypoxia. Int J Mol Sci 22. https://doi.org/10.3390/ijms22105272

  73. Liu P, Zhao D, Pan Z, Tang W, Chen H, Hu K (2023) Identification and validation of ferroptosis-related hub genes in obstructive sleep apnea syndrome. Front Neurol 14:1130378. https://doi.org/10.3389/fneur.2023.1130378

    Article  PubMed  PubMed Central  Google Scholar 

  74. De Felice M, Germelli L, Piccarducci R, Da Pozzo E, Giacomelli C, Baccaglini-Frank A, Martini C (2023) Intermittent hypoxia treatments cause cellular priming in human microglia. J Cell Mol Med 27:819–830. https://doi.org/10.1111/jcmm.17682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang D, Gao F, Hu F and Wu J (2022) Nobiletin Alleviates Astrocyte Activation and Oxidative Stress Induced by Hypoxia In Vitro. Molecules 27. https://doi.org/10.3390/molecules27061962

  76. Chiu SC, Lin YJ, Huang SY, Lien CF, Chen SP, Pang CY, Lin JH, Yang KT (2015) The Role of Intermittent Hypoxia on the Proliferative Inhibition of Rat Cerebellar Astrocytes. PLoS ONE 10:e0132263. https://doi.org/10.1371/journal.pone.0132263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xu L, Zhang L, Xiang Y, Zhang X (2023) Therapeutic role of adipose-derived mesenchymal stem cells-derived extracellular vesicles in rats with obstructive sleep apnea hypopnea syndrome. Regen Ther 22:210–223. https://doi.org/10.1016/j.reth.2023.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gao W, Ning Y, Peng Y, Tang X, Zhong S, Zeng H (2021) LncRNA NKILA relieves astrocyte inflammation and neuronal oxidative stress after cerebral ischemia/reperfusion by inhibiting the NF-κB pathway. Mol Immunol 139:32–41. https://doi.org/10.1016/j.molimm.2021.08.002

    Article  CAS  PubMed  Google Scholar 

  79. Lacedonia D, Carpagnano GE, Crisetti E, Cotugno G, Palladino GP, Patricelli G, Sabato R, Barbaro MPF (2015) Mitochondrial DNA alteration in obstructive sleep apnea. Respir Res 16:47. https://doi.org/10.1186/s12931-015-0205-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li L, Ren FY, Qi C, Xu LQ, Fang YS, Liang ML, Feng J, Chen BY et al (2018) Intermittent hypoxia promotes melanoma lung metastasis via oxidative stress and inflammation responses in a mouse model of obstructive sleep apnea. Respir Res 19:28. https://doi.org/10.1186/s12931-018-0727-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li L, Ren F, Qi C, Xu L, Fang Y, Liang M, Feng J, Chen B et al (2018) Intermittent hypoxia promotes melanoma lung metastasis via oxidative stress and inflammation responses in a mouse model of obstructive sleep apnea. Respir Res 19:28. https://doi.org/10.1186/s12931-018-0727-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Santos CX, Tanaka LY, Wosniak J, Laurindo FR (2009) Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11:2409–2427. https://doi.org/10.1089/ars.2009.2625

    Article  CAS  PubMed  Google Scholar 

  83. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313. https://doi.org/10.1152/physrev.00044.2005

    Article  CAS  PubMed  Google Scholar 

  84. Kubota C, Torii S, Hou N, Saito N, Yoshimoto Y, Imai H, Takeuchi T (2010) Constitutive reactive oxygen species generation from autophagosome/lysosome in neuronal oxidative toxicity. J Biol Chem 285:667–674. https://doi.org/10.1074/jbc.M109.053058

    Article  CAS  PubMed  Google Scholar 

  85. Prabhakar NR (2002) Sleep apneas: an oxidative stress? Am J Respir Crit Care Med 165:859–860. https://doi.org/10.1164/ajrccm.165.7.2202030c

    Article  PubMed  Google Scholar 

  86. Xu LH, Yang YB and Chen J (2020) The role of reactive oxygen species in cognitive impairment associated with sleep apnea. Experimental and Therapeutic Medicine 20. https://doi.org/10.3892/etm.2020.9132

  87. Nanduri J, Vaddi DR, Khan SA, Wang N, Makarenko V, Semenza GL, Prabhakar NR (2015) HIF-1α activation by intermittent hypoxia requires NADPH oxidase stimulation by xanthine oxidase. PLoS ONE 10:e0119762. https://doi.org/10.1371/journal.pone.0119762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yuan G, Nanduri J, Khan S, Semenza GL, Prabhakar NR (2008) Induction of HIF-1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol 217:674–685. https://doi.org/10.1002/jcp.21537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yuan G, Khan SA, Luo W, Nanduri J, Semenza GL, Prabhakar NR (2011) Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia. J Cell Physiol 226:2925–2933. https://doi.org/10.1002/jcp.22640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang C, Zhou Y, Liu H and Xu P (2022) The Role of Inflammation in Cognitive Impairment of Obstructive Sleep Apnea Syndrome. Brain Sci 12. https://doi.org/10.3390/brainsci12101303

  91. Lisy K, Peet DJ (2008) Turn me on: regulating HIF transcriptional activity. Cell Death Differ 15:642–649. https://doi.org/10.1038/sj.cdd.4402315

    Article  CAS  PubMed  Google Scholar 

  92. Arias-Cavieres A, Khuu MA, Nwakudu CU, Barnard JE, Dalgin G and Garcia AJ, 3rd (2020) A HIF1a-Dependent Pro-Oxidant State Disrupts Synaptic Plasticity and Impairs Spatial Memory in Response to Intermittent Hypoxia. eNeuro 7. https://doi.org/10.1523/eneuro.0024-20.2020

  93. Jackman KA, Zhou P, Faraco G, Peixoto PM, Coleman C, Voss HU, Pickel V, Manfredi G, Iadecola C (2014) Dichotomous effects of chronic intermittent hypoxia on focal cerebral ischemic injury. Stroke 45:1460–1467. https://doi.org/10.1161/strokeaha.114.004816

    Article  PubMed  PubMed Central  Google Scholar 

  94. Dinkova-Kostova AT, Kostov RV, Kazantsev AG (2018) The role of Nrf2 signaling in counteracting neurodegenerative diseases. Febs j 285:3576–3590. https://doi.org/10.1111/febs.14379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tian Y, Wang W, Xu L, Li H, Wei Y, Wu Q, Jia J (2019) Activation of Nrf2/ARE pathway alleviates the cognitive deficits in PS1V97L-Tg mouse model of Alzheimer’s disease through modulation of oxidative stress. J Neurosci Res 97:492–505. https://doi.org/10.1002/jnr.24357

    Article  CAS  PubMed  Google Scholar 

  96. Chai JG, Wang J, Jiang R, Wang HY, Zhai HF, Zheng YY, Du XH, He HL, Fang Y, Sun SB (2020) Diagnostic Value of Sestrin2 in Patients with Obstructive Sleep Apnea. Metab Syndr Relat Disord 18:362–367. https://doi.org/10.1089/met.2020.0018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen SD, Yang JL, Lin TK and Yang DI (2019) Emerging Roles of Sestrins in Neurodegenerative Diseases: Counteracting Oxidative Stress and Beyond. J Clin Med 8. https://doi.org/10.3390/jcm8071001

  98. Pasha M, Eid AH, Eid AA, Gorin Y, Munusamy S (2017) Sestrin2 as a Novel Biomarker and Therapeutic Target for Various Diseases. Oxid Med Cell Longev 2017:3296294. https://doi.org/10.1155/2017/3296294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gao Y, Yin H, Zhang Y, Dong Y, Yang F, Wu X, Liu H (2019) Dexmedetomidine protects hippocampal neurons against hypoxia/reoxygenation-induced apoptosis through activation HIF-1α/p53 signaling. Life Sci 232:116611. https://doi.org/10.1016/j.lfs.2019.116611

    Article  CAS  PubMed  Google Scholar 

  100. Quintero M, Olea E, Conde SV, Obeso A, Gallego-Martin T, Gonzalez C, Monserrat JM, Gómez-Niño A et al (2016) Age protects from harmful effects produced by chronic intermittent hypoxia. J Physiol 594:1773–1790. https://doi.org/10.1113/jp270878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Stradling JR, Schwarz EI, Schlatzer C, Manuel AR, Lee R, Antoniades C, Kohler M (2015) Biomarkers of oxidative stress following continuous positive airway pressure withdrawal: data from two randomised trials. Eur Respir J 46:1065–1071. https://doi.org/10.1183/09031936.00023215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Monneret D, Bonnefont-Rousselot D (2016) Paradoxical decrease in isoprostane and increase in superoxide dismutase following CPAP withdrawal in OSA. Eur Respir J 47:1012–1014. https://doi.org/10.1183/13993003.01603-2015

    Article  CAS  PubMed  Google Scholar 

  103. Antoniades C, Lee R, Kohler M, Stradling J (2016) Paradoxical decrease in isoprostane and increase in superoxide dismutase following CPAP withdrawal in OSA. Eur Respir J 47:1014–1015. https://doi.org/10.1183/13993003.01725-2015

    Article  PubMed  Google Scholar 

  104. Snyder B, Duong P, Tenkorang M, Wilson EN and Cunningham RL (2018) Rat Strain and Housing Conditions Alter Oxidative Stress and Hormone Responses to Chronic Intermittent Hypoxia. Frontiers in Physiology 9. https://doi.org/10.3389/fphys.2018.01554

  105. Kargar B, Zamanian Z, Hosseinabadi MB, Gharibi V, Moradi MS, Cousins R (2021) Understanding the role of oxidative stress in the incidence of metabolic syndrome and obstructive sleep apnea. Bmc Endocrine Disorders 21:77. https://doi.org/10.1186/s12902-021-00735-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Andaku DK, D’Almeida V, Carneiro G, Hix S, Tufik S, Togeiro SM (2015) Sleepiness, inflammation and oxidative stress markers in middle-aged males with obstructive sleep apnea without metabolic syndrome: a cross-sectional study. Respir Res 16:3. https://doi.org/10.1186/s12931-015-0166-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pries R, Lange C, Behn N, Bruchhage KL and Steffen A (2022) Dynamics of Circulating CD14/CD16 Monocyte Subsets in Obstructive Sleep Apnea Syndrome Patients upon Hypoglossal Nerve Stimulation. Biomedicines 10. https://doi.org/10.3390/biomedicines10081925

  108. Lam CS, Tipoe GL, So KF, Fung ML (2015) Neuroprotective mechanism of Lycium barbarum polysaccharides against hippocampal-dependent spatial memory deficits in a rat model of obstructive sleep apnea. PLoS ONE 10:e0117990. https://doi.org/10.1371/journal.pone.0117990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kim YS, Kwak JW, Lee KE, Cho HS, Lim SJ, Kim KS, Yang HS, Kim HJ (2014) Can Mitochondrial Dysfunction Be a Predictive Factor for Oxidative Stress in Patients with Obstructive Sleep Apnea? Antioxid Redox Signal 21:1285–1288. https://doi.org/10.1089/ars.2014.5955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Scholz CC, Taylor CT (2013) Hydroxylase-dependent regulation of the NF-κB pathway. Biol Chem 394:479–493. https://doi.org/10.1515/hsz-2012-0338

    Article  CAS  PubMed  Google Scholar 

  111. Chang RC, Chiu K, Ho YS, So KF (2009) Modulation of neuroimmune responses on glia in the central nervous system: implication in therapeutic intervention against neuroinflammation. Cell Mol Immunol 6:317–326. https://doi.org/10.1038/cmi.2009.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kheirandish-Gozal L and Gozal D (2019) Obstructive Sleep Apnea and Inflammation: Proof of Concept Based on Two Illustrative Cytokines. Int J Mol Sci 20. https://doi.org/10.3390/ijms20030459

  113. Chen LW, Egan L, Li ZW, Greten FR, Kagnoff MF, Karin M (2003) The two faces of IKK and NF-kappaB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nat Med 9:575–581. https://doi.org/10.1038/nm849

    Article  CAS  PubMed  Google Scholar 

  114. Arias-Loste MT, Fábrega E, López-Hoyos M, Crespo J (2015) The Crosstalk between Hypoxia and Innate Immunity in the Development of Obesity-Related Nonalcoholic Fatty Liver Disease. Biomed Res Int 2015:319745. https://doi.org/10.1155/2015/319745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Müller-Edenborn K, Léger K, Glaus Garzon JF, Oertli C, Mirsaidi A, Richards PJ, Rehrauer H, Spielmann P et al (2015) Hypoxia attenuates the proinflammatory response in colon cancer cells by regulating IκB. Oncotarget 6:20288–301. https://doi.org/10.18632/oncotarget.3961

    Article  PubMed  PubMed Central  Google Scholar 

  116. Tang T, Huang Q, Liu J, Zhou X, Du J, Wu H, Li Z (2019) Oxidative stress does not contribute to the release of proinflammatory cytokines through activating the Nod-like receptor protein 3 inflammasome in patients with obstructive sleep apnoea. Sleep Breath 23:535–542. https://doi.org/10.1007/s11325-018-1726-3

    Article  PubMed  Google Scholar 

  117. Angelova PR, Kasymov V, Christie I, Sheikhbahaei S, Turovsky E, Marina N, Korsak A, Zwicker J et al (2015) Functional Oxygen Sensitivity of Astrocytes. J Neurosci 35:10460–10473. https://doi.org/10.1523/jneurosci.0045-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yang Q, Wang Y, Feng J, Cao J, Chen B (2013) Intermittent hypoxia from obstructive sleep apnea may cause neuronal impairment and dysfunction in central nervous system: the potential roles played by microglia. Neuropsychiatr Dis Treat 9:1077–1086. https://doi.org/10.2147/ndt.S49868

    Article  PubMed  PubMed Central  Google Scholar 

  119. Yenari MA, Kauppinen TM, Swanson RA (2010) Microglial activation in stroke: therapeutic targets. Neurotherapeutics 7:378–391. https://doi.org/10.1016/j.nurt.2010.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chéret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, Mallet J, Cumano A et al (2008) Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci 28:12039–12051. https://doi.org/10.1523/jneurosci.3568-08.2008

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kim HS, Cho IH, Kim JE, Shin YJ, Jeon JH, Kim Y, Yang YM, Lee KH et al (2008) Ethyl pyruvate has an anti-inflammatory effect by inhibiting ROS-dependent STAT signaling in activated microglia. Free Radic Biol Med 45:950–963. https://doi.org/10.1016/j.freeradbiomed.2008.06.009

    Article  CAS  PubMed  Google Scholar 

  122. Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K (2006) Microglia provide neuroprotection after ischemia. Faseb j 20:714–716. https://doi.org/10.1096/fj.05-4882fje

    Article  CAS  PubMed  Google Scholar 

  123. Badoer E (2010) Microglia: activation in acute and chronic inflammatory states and in response to cardiovascular dysfunction. Int J Biochem Cell Biol 42:1580–1585. https://doi.org/10.1016/j.biocel.2010.07.005

    Article  CAS  PubMed  Google Scholar 

  124. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394. https://doi.org/10.1038/nn1997

    Article  CAS  PubMed  Google Scholar 

  125. Liddelow SA, Barres BA (2017) Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity 46:957–967. https://doi.org/10.1016/j.immuni.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  126. Pekny M, Pekna M, Messing A, Steinhäuser C, Lee JM, Parpura V, Hol EM, Sofroniew MV et al (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131:323–345. https://doi.org/10.1007/s00401-015-1513-1

    Article  CAS  PubMed  Google Scholar 

  127. Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18:942–952. https://doi.org/10.1038/nn.4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pekny M, Pekna M (2014) Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 94:1077–1098. https://doi.org/10.1152/physrev.00041.2013

    Article  PubMed  Google Scholar 

  129. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35. https://doi.org/10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  130. Barateiro A, Brites D, Fernandes A (2016) Oligodendrocyte Development and Myelination in Neurodevelopment: Molecular Mechanisms in Health and Disease. Curr Pharm Des 22:656–679. https://doi.org/10.2174/1381612822666151204000636

    Article  CAS  PubMed  Google Scholar 

  131. Spaas J, van Veggel L, Schepers M, Tiane A, van Horssen J, Wilson DM 3rd, Moya PR, Piccart E et al (2021) Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci 78:4615–4637. https://doi.org/10.1007/s00018-021-03802-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Giacci M, Fitzgerald M (2018) Oligodendroglia Are Particularly Vulnerable to Oxidative Damage After Neurotrauma In Vivo. J Exp Neurosci 12:1179069518810004. https://doi.org/10.1177/1179069518810004

    Article  PubMed  PubMed Central  Google Scholar 

  133. Thorburne SK, Juurlink BH (1996) Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J Neurochem 67:1014–1022. https://doi.org/10.1046/j.1471-4159.1996.67031014.x

    Article  CAS  PubMed  Google Scholar 

  134. Lloret A, Esteve D, Lloret MA, Monllor P, López B, León JL, Cervera-Ferri A (2021) Is Oxidative Stress the Link Between Cerebral Small Vessel Disease, Sleep Disruption, and Oligodendrocyte Dysfunction in the Onset of Alzheimer’s Disease? Front Physiol 12:708061. https://doi.org/10.3389/fphys.2021.708061

    Article  PubMed  PubMed Central  Google Scholar 

  135. Mauney SA, Pietersen CY, Sonntag KC, Woo TW (2015) Differentiation of oligodendrocyte precursors is impaired in the prefrontal cortex in schizophrenia. Schizophr Res 169:374–380. https://doi.org/10.1016/j.schres.2015.10.042

    Article  PubMed  PubMed Central  Google Scholar 

  136. Lassmann H, van Horssen J (2016) Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochim Biophys Acta 1862:506–510. https://doi.org/10.1016/j.bbadis.2015.09.018

    Article  CAS  PubMed  Google Scholar 

  137. Kumar R, Pham TT, Macey PM, Woo MA, Yan-Go FL, Harper RM (2014) Abnormal myelin and axonal integrity in recently diagnosed patients with obstructive sleep apnea. Sleep 37:723–732. https://doi.org/10.5665/sleep.3578

    Article  PubMed  PubMed Central  Google Scholar 

  138. Tummala S, Roy B, Vig R, Park B, Kang DW, Woo MA, Aysola R, Harper RM et al (2017) Non-Gaussian Diffusion Imaging Shows Brain Myelin and Axonal Changes in Obstructive Sleep Apnea. J Comput Assist Tomogr 41:181–189. https://doi.org/10.1097/rct.0000000000000537

    Article  PubMed  PubMed Central  Google Scholar 

  139. Trigo D, Avelar C, Fernandes M, Sá J, da Cruz ESO (2022) Mitochondria, energy, and metabolism in neuronal health and disease. FEBS Lett 596:1095–1110. https://doi.org/10.1002/1873-3468.14298

    Article  CAS  PubMed  Google Scholar 

  140. Meliante PG, Zoccali F, Cascone F, Di Stefano V, Greco A, de Vincentiis M, Petrella C, Fiore M, Minni A and Barbato C (2023) Molecular Pathology, Oxidative Stress, and Biomarkers in Obstructive Sleep Apnea. Int J Mol Sci 24. https://doi.org/10.3390/ijms24065478

  141. Ding Q, Dimayuga E, Keller JN (2007) Oxidative stress alters neuronal RNA- and protein-synthesis: Implications for neural viability. Free Radic Res 41:903–910. https://doi.org/10.1080/10715760701416996

    Article  CAS  PubMed  Google Scholar 

  142. Liu T and Ouyang R (2021) Effect of continuous positive air pressure on cognitive impairment associated with obstructive sleep apnea. Zhong Nan Da Xue Xue Bao Yi Xue Ban 46:865–871. https://doi.org/10.11817/j.issn.1672-7347.2021.190600

  143. Lee MH, Yun CH, Min A, Hwang YH, Lee SK, Kim DY, Thomas RJ, Han BS and Shin C (2019) Altered structural brain network resulting from white matter injury in obstructive sleep apnea. Sleep 42. ARTN zsz120. https://doi.org/10.1093/sleep/zsz120

  144. Cai XH, Zhou YH, Zhang CX, Hu LG, Fan XF, Li CC, Zheng GQ, Gong YS (2010) Chronic intermittent hypoxia exposure induces memory impairment in growing rats. Acta Neurobiol Exp (Wars) 70:279–287

    Article  PubMed  Google Scholar 

  145. Daurat A, Sarhane M, Tiberge M (2016) Obstructive sleep apnea syndrome and cognition: A review. Neurophysiol Clin 46:201–215. https://doi.org/10.1016/j.neucli.2016.04.002

    Article  PubMed  Google Scholar 

  146. Wu HH, Wang ZJ, Cheng CH, Wang J, Wang QJ, Chen R (2021) Effects of daytime hypercapnia on logical memory and working memory in patients with obstructive sleep apnea hypopnea syndrome. Zhonghua Jie He He Hu Xi Za Zhi 44:873–879. https://doi.org/10.3760/cma.j.cn112147-20210210-00105

    Article  CAS  PubMed  Google Scholar 

  147. Zhu Q, Han F, Wang J, Chen C, Su T, Wang Q and Chen R (2023) Sleep Spindle Characteristics and Relationship with Memory Ability in Patients with Obstructive Sleep Apnea-Hypopnea Syndrome. J Clin Med 12. https://doi.org/10.3390/jcm12020634

  148. Bucks RS, Olaithe M, Eastwood P (2013) Neurocognitive function in obstructive sleep apnoea: a meta-review. Respirology 18:61–70. https://doi.org/10.1111/j.1440-1843.2012.02255.x

    Article  PubMed  Google Scholar 

  149. Alchanatis M, Zias N, Deligiorgis N, Amfilochiou A, Dionellis G, Orphanidou D (2005) Sleep apnea-related cognitive deficits and intelligence: an implication of cognitive reserve theory. J Sleep Res 14:69–75. https://doi.org/10.1111/j.1365-2869.2004.00436.x

    Article  PubMed  Google Scholar 

  150. Ling JZ, Yu Q, Li YN, Yuan XH, Wang XY, Liu WY, Guo T, Duan YN, Li LF (2020) Edaravone Improves Intermittent Hypoxia-Induced Cognitive Impairment and Hippocampal Damage in Rats. Biol Pharm Bull 43:1196–1201. https://doi.org/10.1248/bpb.b20-00085

    Article  CAS  PubMed  Google Scholar 

  151. Si J, Liu B, Qi K, Chen X, Li D, Yang S, Ji E (2023) Tanshinone IIA inhibited intermittent hypoxia induced neuronal injury through promoting autophagy via AMPK-mTOR signaling pathway. J Ethnopharmacol 315:116677. https://doi.org/10.1016/j.jep.2023.116677

    Article  CAS  PubMed  Google Scholar 

  152. Jackson ML, Howard ME, Barnes M (2011) Cognition and daytime functioning in sleep-related breathing disorders. Prog Brain Res 190:53–68. https://doi.org/10.1016/b978-0-444-53817-8.00003-7

    Article  PubMed  Google Scholar 

  153. Grigg-Damberger M, Ralls F (2012) Cognitive dysfunction and obstructive sleep apnea: from cradle to tomb. Curr Opin Pulm Med 18:580–587. https://doi.org/10.1097/MCP.0b013e328358be18

    Article  PubMed  Google Scholar 

  154. Macey PM, Kumar R, Woo MA, Valladares EM, Yan-Go FL, Harper RM (2008) Brain structural changes in obstructive sleep apnea. Sleep 31:967–977

    PubMed  PubMed Central  Google Scholar 

  155. Morrell MJ, Twigg G (2006) Neural consequences of sleep disordered breathing: the role of intermittent hypoxia. Adv Exp Med Biol 588:75–88. https://doi.org/10.1007/978-0-387-34817-9_8

    Article  PubMed  Google Scholar 

  156. Row BW, Kheirandish L, Neville JJ, Gozal D (2002) Impaired spatial learning and hyperactivity in developing rats exposed to intermittent hypoxia. Pediatr Res 52:449–453. https://doi.org/10.1203/00006450-200209000-00024

    Article  PubMed  Google Scholar 

  157. Gu XQ, Haddad GG (1985) (2001) Decreased neuronal excitability in hippocampal neurons of mice exposed to cyclic hypoxia. J Appl Physiol 91:1245–1250. https://doi.org/10.1152/jappl.2001.91.3.1245

    Article  Google Scholar 

  158. Row BW, Liu R, Xu W, Kheirandish L, Gozal D (2003) Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat. Am J Respir Crit Care Med 167:1548–1553. https://doi.org/10.1164/rccm.200209-1050OC

    Article  PubMed  Google Scholar 

  159. Xu W, Chi L, Row BW, Xu R, Ke Y, Xu B, Luo C, Kheirandish L et al (2004) Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience 126:313–23. https://doi.org/10.1016/j.neuroscience.2004.03.055

    Article  CAS  PubMed  Google Scholar 

  160. Huang Y, Liu Z, Wang X, Li Y, Liu L, Li B (2023) TGF-β3 Protects Neurons Against Intermittent Hypoxia-Induced Oxidative Stress and Apoptosis Through Activation of the Nrf-2/KEAP1/HO-1 Pathway via Binding to TGF-βRI. Neurochem Res 48:2808–2825. https://doi.org/10.1007/s11064-023-03942-8

    Article  CAS  PubMed  Google Scholar 

  161. Wilde GJ, Pringle AK, Wright P, Iannotti F (1997) Differential vulnerability of the CA1 and CA3 subfields of the hippocampus to superoxide and hydroxyl radicals in vitro. J Neurochem 69:883–886. https://doi.org/10.1046/j.1471-4159.1997.69020883.x

    Article  CAS  PubMed  Google Scholar 

  162. Tang S, Zhu J, Zhao D, Mo HH, Zeng ZF, Xiong MQ, Dong ML, Hu K (2020) Effects of the excitation or inhibition of basal forebrain cholinergic neurons on cognitive ability in mice exposed to chronic intermittent hypoxia. Brain Res Bull 164:235–248. https://doi.org/10.1016/j.brainresbull.2020.08.027

    Article  CAS  PubMed  Google Scholar 

  163. Wu X, Gong L, Xie L, Gu W, Wang X, Liu Z, Li S (2021) NLRP3 Deficiency Protects Against Intermittent Hypoxia-Induced Neuroinflammation and Mitochondrial ROS by Promoting the PINK1-Parkin Pathway of Mitophagy in a Murine Model of Sleep Apnea. Front Immunol 12:628168. https://doi.org/10.3389/fimmu.2021.628168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Li XC, Ying HY, Zhang ZL, Yang ZJ, You CC, Cai XH, Lin ZD, Xiao YF (2022) Sulforaphane Attenuates Chronic Intermittent Hypoxia-Induced Brain Damage in Mice via Augmenting Nrf2 Nuclear Translocation and Autophagy. Frontiers in Cellular Neuroscience 16:827527. https://doi.org/10.3389/fncel.2022.827527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Xu L, Yang Y, Chen J (2020) The role of reactive oxygen species in cognitive impairment associated with sleep apnea. Exp Ther Med 20:4. https://doi.org/10.3892/etm.2020.9132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wu Y, Chen M, Jiang J (2019) Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion 49:35–45. https://doi.org/10.1016/j.mito.2019.07.003

    Article  CAS  PubMed  Google Scholar 

  167. Leuner K, Pantel J, Frey C, Schindowski K, Schulz K, Wegat T, Maurer K, Eckert A and Müller WE (2007) Enhanced apoptosis, oxidative stress and mitochondrial dysfunction in lymphocytes as potential biomarkers for Alzheimer's disease. J Neural Transm Suppl:207–15. https://doi.org/10.1007/978-3-211-73574-9_27

  168. Pan R, Rong Z, She Y, Cao Y, Chang LW, Lee WH (2012) Sodium pyruvate reduces hypoxic-ischemic injury to neonatal rat brain. Pediatr Res 72:479–489. https://doi.org/10.1038/pr.2012.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kartal Ö, Aydınöz S, Kartal AT, Kelestemur T, Caglayan AB, Beker MC, Karademir F, Süleymanoğlu S et al (2016) Time dependent impact of perinatal hypoxia on growth hormone, insulin-like growth factor 1 and insulin-like growth factor binding protein-3. Metab Brain Dis 31:827–835. https://doi.org/10.1007/s11011-016-9816-z

    Article  CAS  PubMed  Google Scholar 

  170. Qi G, Mi Y, Wang Y, Li R, Huang S, Li X, Liu X (2017) Neuroprotective action of tea polyphenols on oxidative stress-induced apoptosis through the activation of the TrkB/CREB/BDNF pathway and Keap1/Nrf2 signaling pathway in SH-SY5Y cells and mice brain. Food Funct 8:4421–4432. https://doi.org/10.1039/c7fo00991g

    Article  CAS  PubMed  Google Scholar 

  171. Xie H, Yung WH (2012) Chronic intermittent hypoxia-induced deficits in synaptic plasticity and neurocognitive functions: a role for brain-derived neurotrophic factor. Acta Pharmacol Sin 33:5–10. https://doi.org/10.1038/aps.2011.184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Yin X, Zhang X, Lv C, Li C, Yu Y, Wang X, Han F (2015) Protocatechuic acid ameliorates neurocognitive functions impairment induced by chronic intermittent hypoxia. Sci Rep 5:14507. https://doi.org/10.1038/srep14507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. el Akool S, Gauer S, Osman B, Doller A, Schulz S, Geiger H, Pfeilschifter J, Eberhardt W (2012) Cyclosporin A and tacrolimus induce renal Erk1/2 pathway via ROS-induced and metalloproteinase-dependent EGF-receptor signaling. Biochem Pharmacol 83:286–295. https://doi.org/10.1016/j.bcp.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  174. Zhao YN, Wang HY, Li JM, Chen BY, Xia G, Zhang PP, Ge YL (2016) Hippocampal mitogen-activated protein kinase activation is associated with intermittent hypoxia in a rat model of obstructive sleep apnea syndrome. Mol Med Rep 13:137–145. https://doi.org/10.3892/mmr.2015.4505

    Article  CAS  PubMed  Google Scholar 

  175. Chipuk JE, Fisher JC, Dillon CP, Kriwacki RW, Kuwana T, Green DR (2008) Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins. Proc Natl Acad Sci U S A 105:20327–20332. https://doi.org/10.1073/pnas.0808036105

    Article  PubMed  PubMed Central  Google Scholar 

  176. Karmakar S, Banik NL, Patel SJ, Ray SK (2007) Garlic compounds induced calpain and intrinsic caspase cascade for apoptosis in human malignant neuroblastoma SH-SY5Y cells. Apoptosis 12:671–684. https://doi.org/10.1007/s10495-006-0024-x

    Article  CAS  PubMed  Google Scholar 

  177. Abdel-Wahab BA, Abdel-Wahab MM (2016) Protective effect of resveratrol against chronic intermittent hypoxia-induced spatial memory deficits, hippocampal oxidative DNA damage and increased p47Phox NADPH oxidase expression in young rats. Behav Brain Res 305:65–75. https://doi.org/10.1016/j.bbr.2016.02.030

    Article  CAS  PubMed  Google Scholar 

  178. Christou K, Kostikas K, Pastaka C, Tanou K, Antoniadou I, Gourgoulianis KI (2009) Nasal continuous positive airway pressure treatment reduces systemic oxidative stress in patients with severe obstructive sleep apnea syndrome. Sleep Med 10:87–94. https://doi.org/10.1016/j.sleep.2007.10.011

    Article  PubMed  Google Scholar 

  179. Tichanon P, Wilaiwan K, Sopida S, Orapin P, Watchara B and Banjamas I (2016) Effect of Continuous Positive Airway Pressure on Airway Inflammation and Oxidative Stress in Patients with Obstructive Sleep Apnea. Canadian Respiratory Journal 2016. Artn 3107324. https://doi.org/10.1155/2016/3107324

  180. Mar HLPY, Hazen SL, Tracy RP, Strohl KP, Auckley D, Bena J, Wang L, Walia HK et al (2016) Effect of Continuous Positive Airway Pressure on Cardiovascular Biomarkers The Sleep Apnea Stress Randomized Controlled Trial. Chest 150:80–90. https://doi.org/10.1016/j.chest.2016.03.002

    Article  Google Scholar 

  181. Campos-Rodriguez F, Asensio-Cruz MI, Cordero-Guevara J, Jurado-Gamez B, Carmona-Bernal C, Gonzalez-Martinez M, Troncoso MF, Sanchez-Lopez V et al (2019) Effect of continuous positive airway pressure on inflammatory, antioxidant, and depression biomarkers in women with obstructive sleep apnea: a randomized controlled trial. Sleep 42:zaz145. https://doi.org/10.1093/sleep/zsz145

    Article  Google Scholar 

  182. Richards KC, Gooneratne N, Dicicco B, Hanlon A, Moelter S, Onen F, Wang Y, Sawyer A et al (2019) CPAP Adherence May Slow 1-Year Cognitive Decline in Older Adults with Mild Cognitive Impairment and Apnea. J Am Geriatr Soc 67:558–564. https://doi.org/10.1111/jgs.15758

    Article  PubMed  PubMed Central  Google Scholar 

  183. Wang Y, Cheng C, Moelter S, Fuentecilla JL, Kincheloe K, Lozano AJ, Carter P, Gooneratne N, Richards KC (2020) One Year of Continuous Positive Airway Pressure Adherence Improves Cognition in Older Adults With Mild Apnea and Mild Cognitive Impairment. Nurs Res 69:157–164. https://doi.org/10.1097/nnr.0000000000000420

    Article  PubMed  PubMed Central  Google Scholar 

  184. Elliot-Portal E, Laouafa S, Arias-Reyes C, Janes TA, Joseph V, Soliz J (2018) Brain-derived erythropoietin protects from intermittent hypoxia-induced cardiorespiratory dysfunction and oxidative stress in mice. Sleep 41:zsz072. https://doi.org/10.1093/sleep/zsy072

    Article  Google Scholar 

  185. Andrade DC, Haine L, Toledo C, Diaz HS, Quintanilla RA, Marcus NJ, Iturriaga R, Richalet JP et al (2018) Ventilatory and Autonomic Regulation in Sleep Apnea Syndrome: A Potential Protective Role for Erythropoietin? Front Physiol 9:1440. https://doi.org/10.3389/fphys.2018.01440

    Article  PubMed  PubMed Central  Google Scholar 

  186. Al-Qahtani JM, Abdel-Wahab BA, Abd El-Aziz SM (2014) Long-term moderate dose exogenous erythropoietin treatment protects from intermittent hypoxia-induced spatial learning deficits and hippocampal oxidative stress in young rats. Neurochem Res 39:161–171. https://doi.org/10.1007/s11064-013-1201-2

    Article  CAS  PubMed  Google Scholar 

  187. Muccioli G, Ghè C, Ghigo MC, Papotti M, Arvat E, Boghen MF, Nilsson MH, Deghenghi R et al (1998) Specific receptors for synthetic GH secretagogues in the human brain and pituitary gland. J Endocrinol 157:99–106. https://doi.org/10.1677/joe.0.1570099

    Article  CAS  PubMed  Google Scholar 

  188. Nair D, Ramesh V, Li RC, Schally AV, Gozal D (2013) Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse. J Neurochem 127:531–540. https://doi.org/10.1111/jnc.12360

    Article  CAS  PubMed  Google Scholar 

  189. Singh M, Su C (2013) Progesterone and neuroprotection. Horm Behav 63:284–290. https://doi.org/10.1016/j.yhbeh.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  190. Joseph V, Laouafa S, Marcouiller F, Roussel D, Pialoux V, Bairam A (2020) Progesterone decreases apnoea and reduces oxidative stress induced by chronic intermittent hypoxia in ovariectomized female rats. Exp Physiol 105:1025–1034. https://doi.org/10.1113/Ep088430

    Article  CAS  PubMed  Google Scholar 

  191. Jazwa A, Rojo AI, Innamorato NG, Hesse M, Fernández-Ruiz J, Cuadrado A (2011) Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism. Antioxid Redox Signal 14:2347–2360. https://doi.org/10.1089/ars.2010.3731

    Article  CAS  PubMed  Google Scholar 

  192. Song J, He Y, Luo C, Feng B, Ran F, Xu H, Ci Z, Xu R et al (2020) New progress in the pharmacology of protocatechuic acid: A compound ingested in daily foods and herbs frequently and heavily. Pharmacol Res 161:105109. https://doi.org/10.1016/j.phrs.2020.105109

    Article  CAS  PubMed  Google Scholar 

  193. Kakkar S, Bais S (2014) A review on protocatechuic Acid and its pharmacological potential. ISRN Pharmacol 2014:952943. https://doi.org/10.1155/2014/952943

    Article  PubMed  PubMed Central  Google Scholar 

  194. Abdel-Wahab BA, Abd El-Aziz SM (2012) Ginkgo biloba protects against intermittent hypoxia-induced memory deficits and hippocampal DNA damage in rats. Phytomedicine 19:444–450. https://doi.org/10.1016/j.phymed.2011.11.011

    Article  CAS  PubMed  Google Scholar 

  195. Sun Y, Meng X, Hu X, Liu R, Zhao Z, Wang S, Zhang R, Guo K et al (2023) Dietary supplementation with Lycium barbarum polysaccharides conducive to maintaining the health of Luciobarbus capito via the enhancement of enzyme activities and the modulation of gut microbiota. Int J Biol Macromol 232:123500. https://doi.org/10.1016/j.ijbiomac.2023.123500

    Article  CAS  PubMed  Google Scholar 

  196. Xiao J, Liong EC, Ching YP, Chang RC, Fung ML, Xu AM, So KF, Tipoe GL (2013) Lycium barbarum polysaccharides protect rat liver from non-alcoholic steatohepatitis-induced injury. Nutr Diabetes 3:e81. https://doi.org/10.1038/nutd.2013.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Chen Q, Lin RJ, Hong XC, Ye L, Lin QC (2016) Treatment and prevention of inflammatory responses and oxidative stress in patients with obstructive sleep apnea hypopnea syndrome using Chinese herbal medicines. Exp Ther Med 12:1572–1578. https://doi.org/10.3892/etm.2016.3484

    Article  PubMed  PubMed Central  Google Scholar 

  198. Wang P, Cao J, Liu N, Ma L, Zhou X, Zhang H, Wang Y (2016) Protective Effects of Edaravone in Adult Rats with Surgery and Lipopolysaccharide Administration-Induced Cognitive Function Impairment. PLoS ONE 11:e0153708. https://doi.org/10.1371/journal.pone.0153708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Zhao YM, Li HL, Chen Y, Li KX, Yang SF (2021) Edaravone mitigates cognitive impairment and hippocampal injury in juvenile rats with obstructive sleep apnea hypopnea syndrome via regulation of cAMP/PKA- CREB pathway. Trop J Pharm Res 20:2299–2304. https://doi.org/10.4314/tjpr.v20i11.10

    Article  CAS  Google Scholar 

  200. Li W, Yang S, Yu FY, Zhao Y, Sun ZM, An JR, Ji E (2018) Hydrogen ameliorates chronic intermittent hypoxia-induced neurocognitive impairment via inhibiting oxidative stress. Brain Res Bull 143:225–233. https://doi.org/10.1016/j.brainresbull.2018.09.012

    Article  CAS  PubMed  Google Scholar 

  201. Bai HY, Li AP (2013) P2X(7) receptors in cerebral ischemia. Neurosci Bull 29:390–398. https://doi.org/10.1007/s12264-013-1338-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Del Puerto A, Fronzaroli-Molinieres L, Perez-Alvarez MJ, Giraud P, Carlier E, Wandosell F, Debanne D, Garrido JJ (2015) ATP-P2X7 Receptor Modulates Axon Initial Segment Composition and Function in Physiological Conditions and Brain Injury. Cereb Cortex 25:2282–2294. https://doi.org/10.1093/cercor/bhu035

    Article  PubMed  Google Scholar 

  203. Deng Y, Guo XL, Yuan X, Shang J, Zhu D, Liu HG (2015) P2X7 Receptor Antagonism Attenuates the Intermittent Hypoxia-induced Spatial Deficits in a Murine Model of Sleep Apnea Via Inhibiting Neuroinflammation and Oxidative Stress. Chin Med J 128:2168–2175. https://doi.org/10.4103/0366-6999.162495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China (grant number 82060218).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. The first draft of the manuscript was written by XiaoPing Zhang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ping Xu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhou, H., Liu, H. et al. Role of Oxidative Stress in the Occurrence and Development of Cognitive Dysfunction in Patients with Obstructive Sleep Apnea Syndrome. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03899-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03899-3

Keywords

Navigation