Skip to main content

Advertisement

Log in

The Untargeted Metabolomics Reveals Differences in Energy Metabolism in Patients with Different Subtypes of Ischemic Stroke

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Aims

Ischemic stroke (IS) is the most common subtype of stroke. The risk factors and pathogenesis of IS are complex and varied due to different subtypes. Therefore, we used metabolomics technology to investigate the biomarkers and potential pathophysiological mechanisms of different subtypes of IS.

Methods

We included 126 IS patients and divided them into two groups based on the TOAST classification: large-artery atherosclerosis (LAA) group (n = 87) and small-vessel occlusion (SVO) group (n = 39). Plasma metabolomics analysis was performed using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) to identify metabolic profiles in LAA and SVO subtype IS patients and to determine metabolic differences between patients with the two subtypes of IS.

Results

We identified 26 differential metabolites between LAA and SVO subtype IS. A multiple prediction model based on the plasm metabolites had good predictive ability for IS subtyping (AUC = 0.822, accuracy = 77.8%), with 12,13-DHOME being the most important differential metabolite in the model. The differential metabolic pathways between the two subtypes of IS patients included tricarboxylic acid (TCA) cycle, alanine, aspartate and glutamate metabolism, and pyruvate metabolism, mainly focused on energy metabolism.

Conclusion

12,13-DHOME emerged as the primary discriminatory metabolite between LAA and SVO subtypes of IS. In LAA subtype IS patients, energy metabolism, encompassing pyruvate metabolism and the TCA cycle, exhibited lower activity levels when compared to patients with the SVO subtype IS. The utilization of targeted metabolomics holds the potential to improve diagnostic accuracy for distinguishing stroke subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Liu S, Li Y, Zeng X, Wang H, Yin P, Wang L et al (2019) Burden of Cardiovascular Diseases in China, 1990–2016: findings from the 2016 Global Burden of Disease Study. JAMA Cardiol 4(4):342–52. https://doi.org/10.1001/jamacardio.2019.0295

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wu S, Wu B, Liu M, Chen Z, Wang W, Anderson CS et al (2019) Stroke in China: advances and challenges in epidemiology, prevention, and management. Lancet Neurol 18(4):394–405. https://doi.org/10.1016/s1474-4422(18)30500-3

    Article  PubMed  Google Scholar 

  3. Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM et al (2019) Ischaemic stroke. Nat Rev Dis Primers 5(1):70. https://doi.org/10.1038/s41572-019-0118-8

    Article  PubMed  Google Scholar 

  4. Wang YJ, Li ZX, Gu HQ, Zhai Y, Jiang Y, Zhao XQ et al (2020) China Stroke Statistics 2019: A Report from the National Center for Healthcare Quality Management in Neurological Diseases, China National Clinical Research Center for Neurological Diseases, the Chinese Stroke Association, National Center for Chronic and Non-Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention and Institute for Global Neuroscience and Stroke Collaborations. Stroke Vasc Neurol 5(3):211–39. https://doi.org/10.1136/svn-2020-000457

    Article  PubMed  PubMed Central  Google Scholar 

  5. Liu M, Wu B, Wang WZ, Lee LM, Zhang SH, Kong LZ (2007) Stroke in China: Epidemiology, Prevention, and Management Strategies. Lancet Neurol 6(5):456–64. https://doi.org/10.1016/s1474-4422(07)70004-2

    Article  PubMed  Google Scholar 

  6. Guan T, Ma J, Li M, Xue T, Lan Z, Guo J et al (2017) Rapid transitions in the epidemiology of stroke and its risk factors in China from 2002 to 2013. Neurology 89(1):53–61. https://doi.org/10.1212/WNL.0000000000004056

    Article  PubMed  Google Scholar 

  7. Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL et al (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a Multicenter Clinical Trial. Toast. Trial of Org 10172 in acute stroke treatment. Stroke 24(1):35–41. https://doi.org/10.1161/01.str.24.1.35

    Article  PubMed  Google Scholar 

  8. Montaner J, Perea-Gainza M, Delgado P, Ribó M, Chacón P, Rosell A et al (2008) Etiologic diagnosis of ischemic stroke subtypes with plasma biomarkers. Stroke 39(8):2280–7. https://doi.org/10.1161/strokeaha.107.505354

    Article  PubMed  CAS  Google Scholar 

  9. Bamford J, Sandercock P, Dennis M, Burn J, Warlow C (1991) Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet (London, England) 337(8756):1521–6. https://doi.org/10.1016/0140-6736(91)93206-o

    Article  PubMed  CAS  Google Scholar 

  10. Sacco SE, Whisnant JP, Broderick JP, Phillips SJ, O’Fallon WM (1991) Epidemiological characteristics of lacunar infarcts in a population. Stroke 22(10):1236–41. https://doi.org/10.1161/01.str.22.10.1236

    Article  PubMed  CAS  Google Scholar 

  11. Petty GW, Brown RD Jr, Whisnant JP, Sicks JD, O’Fallon WM, Wiebers DO (1999) Ischemic stroke subtypes: a population-based study of incidence and risk factors. Stroke 30(12):2513–6. https://doi.org/10.1161/01.str.30.12.2513

    Article  PubMed  CAS  Google Scholar 

  12. Boodt N, Compagne KCJ, Dutra BG, Samuels N, Tolhuisen ML, Alves H et al (2020) Stroke etiology and thrombus computed tomography characteristics in patients with acute ischemic stroke: A Mr clean registry substudy. Stroke 51(6):1727–35. https://doi.org/10.1161/strokeaha.119.027749

    Article  PubMed  CAS  Google Scholar 

  13. Vemmos KN, Takis CE, Georgilis K, Zakopoulos NA, Lekakis JP, Papamichael CM et al (2000) The Athens stroke registry: results of a five-year hospital-based study. Cerebrovasc Dis (Basel, Switzerland) 10(2):133–41. https://doi.org/10.1159/000016042

    Article  CAS  Google Scholar 

  14. Kelly DM, Li L, Rothwell PM (2020) Etiological subtypes of transient ischemic attack and ischemic stroke in chronic kidney disease: population-based study. Stroke 51(9):2786–94. https://doi.org/10.1161/strokeaha.120.030045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Grau AJ, Weimar C, Buggle F, Heinrich A, Goertler M, Neumaier S et al (2001) Risk factors, outcome, and treatment in subtypes of ischemic stroke: the German stroke data bank. Stroke 32(11):2559–66. https://doi.org/10.1161/hs1101.098524

    Article  PubMed  CAS  Google Scholar 

  16. Hajat C, Heuschmann PU, Coshall C, Padayachee S, Chambers J, Rudd AG et al (2011) Incidence of aetiological subtypes of stroke in a multi-ethnic population based study: the South London stroke register. J Neurol Neurosurg Psychiatry 82(5):527–33. https://doi.org/10.1136/jnnp.2010.222919

    Article  PubMed  Google Scholar 

  17. Nielsen J (2017) Systems biology of metabolism. Ann Rev Biochem 86:245–75. https://doi.org/10.1146/annurev-biochem-061516-044757

    Article  PubMed  CAS  Google Scholar 

  18. Jung JY, Lee HS, Kang DG, Kim NS, Cha MH, Bang OS et al (2011) 1h-Nmr-based metabolomics study of cerebral infarction. Stroke 42(5):1282–8. https://doi.org/10.1161/strokeaha.110.598789

    Article  PubMed  CAS  Google Scholar 

  19. Au A (2018) Metabolomics and lipidomics of ischemic stroke. Adv Clin Chem 85:31–69. https://doi.org/10.1016/bs.acc.2018.02.002

    Article  PubMed  CAS  Google Scholar 

  20. Chi NF, Chang TH, Lee CY, Wu YW, Shen TA, Chan L et al (2021) Untargeted metabolomics predicts the functional outcome of ischemic stroke. J Formosan Med Assoc = Taiwan yi zhi 120(1 Pt 1):234–41. https://doi.org/10.1016/j.jfma.2020.04.026

    Article  PubMed  CAS  Google Scholar 

  21. Fan TW, Higashi RM, Lane AN (2006) Integrating metabolomics and transcriptomics for probing Se anticancer mechanisms. Drug Metab Rev 38(4):707–32. https://doi.org/10.1080/03602530600959599

    Article  PubMed  CAS  Google Scholar 

  22. Wissenbach DK, Meyer MR, Remane D, Philipp AA, Weber AA, Maurer HH (2011) Drugs of abuse screening in urine as part of a metabolite-based Lc-Msn screening concept. Anal Bioanal Chem 400(10):3481–9. https://doi.org/10.1007/s00216-011-5032-1

    Article  PubMed  CAS  Google Scholar 

  23. Rocha BA, Asimakopoulos AG, Barbosa F Jr, Kannan K (2017) Urinary concentrations of 25 phthalate metabolites in Brazilian children and their association with oxidative DNA damage. Sci Total Environ 586:152–62. https://doi.org/10.1016/j.scitotenv.2017.01.193

    Article  PubMed  CAS  Google Scholar 

  24. Gago-Ferrero P, Schymanski EL, Bletsou AA, Aalizadeh R, Hollender J, Thomaidis NS (2015) Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with Lc-Hrms/Ms. Environ Sci Technol 49(20):12333–41. https://doi.org/10.1021/acs.est.5b03454

    Article  PubMed  CAS  Google Scholar 

  25. Jickling GC, Sharp FR (2015) Biomarker panels in ischemic stroke. Stroke 46(3):915–20. https://doi.org/10.1161/strokeaha.114.005604

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yu F, Zhou X, Li Z, Feng X, Liao D, Liu Z et al (2019) Diagnostic significance of plasma levels of novel adipokines in patients with symptomatic intra- and extracranial atherosclerotic stenosis. Front Neurol 10:1228. https://doi.org/10.3389/fneur.2019.01228

    Article  PubMed  PubMed Central  Google Scholar 

  27. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) Xcms: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78(3):779–87. https://doi.org/10.1021/ac051437y

    Article  PubMed  CAS  Google Scholar 

  28. Shen X, Wang R, Xiong X, Yin Y, Cai Y, Ma Z et al (2019) Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. 10(1):1516. https://doi.org/10.1038/s41467-019-09550-x

  29. Wang X, Zhang L, Sun W, Pei LL, Tian M, Liang J et al (2020) Changes of metabolites in acute ischemic stroke and its subtypes. Front Neurosci 14:580929. https://doi.org/10.3389/fnins.2020.580929

    Article  PubMed  Google Scholar 

  30. Lee EJ, Kim DJ, Kang DW, Yang W, Jeong HY, Kim JM et al (2023) Targeted metabolomic biomarkers for stroke subtyping. Transl Stroke Res. https://doi.org/10.1007/s12975-023-01137-5

    Article  PubMed  Google Scholar 

  31. Liu M, Tang L, Liu X, Fang J, Zhan H, Wu H et al (2016) An evidence-based review of related metabolites and metabolic network research on cerebral ischemia. Oxid Med Cell Longev 2016:9162074. https://doi.org/10.1155/2016/9162074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hu ZL, Xia HH, Yang YJ, Zheng H, Zhao LC, Chen YC et al (2018) Metabolic alterations in the rat cerebellum following acute middle cerebral artery occlusion, as determined by 1h Nmr spectroscopy. Mol Med Rep 17(1):531–41. https://doi.org/10.3892/mmr.2017.7918

    Article  PubMed  CAS  Google Scholar 

  33. Wang Y, Wang YG, Ma TF, Li M, Gu SL (2014) Dynamic metabolites profile of cerebral ischemia/reperfusion revealed by (1)H Nmr-based metabolomics contributes to potential biomarkers. Int J Clin Exp Pathol 7(7):4067–4075

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Irie M, Fujimura Y, Yamato M, Miura D, Wariishi H (2014) Integrated Maldi-Ms imaging and Lc-Ms techniques for visualizing spatiotemporal metabolomic dynamics in a rat stroke model. Metabolomics 10(3):473–83. https://doi.org/10.1007/s11306-013-0588-8

    Article  PubMed  CAS  Google Scholar 

  35. Cheng X, Yang YL, Li WH, Liu M, Zhang SS, Wang YH et al (2020) Dynamic alterations of brain injury, functional recovery, and metabolites profile after cerebral ischemia/reperfusion in rats contributes to potential biomarkers. J Mol Neurosci 70(5):667–76. https://doi.org/10.1007/s12031-019-01474-x

    Article  PubMed  CAS  Google Scholar 

  36. Wang PR, Wang JS, Yang MH, Kong LY (2014) Neuroprotective effects of Huang-Lian-Jie-Du-Decoction on ischemic stroke rats revealed by (1)H Nmr metabolomics approach. J Pharm Biomed Anal 88:106–16. https://doi.org/10.1016/j.jpba.2013.08.025

    Article  PubMed  CAS  Google Scholar 

  37. Yang M, Wang S, Hao F, Li Y, Tang H, Shi X (2012) Nmr analysis of the rat neurochemical changes induced by middle cerebral artery occlusion. Talanta 88:136–44. https://doi.org/10.1016/j.talanta.2011.10.022

    Article  PubMed  CAS  Google Scholar 

  38. Apaya MK, Lin CY, Chiou CY, Yang CC, Ting CY, Shyur LF (2016) Simvastatin and a plant galactolipid protect animals from septic shock by regulating oxylipin mediator dynamics through the Mapk-Cpla(2) signaling pathway. Mol Med 21(1):988–1001. https://doi.org/10.2119/molmed.2015.00082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Medina-Gomez G, Gray S, Vidal-Puig A (2007) Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor gamma (Ppargamma) and Ppargammacoactivator-1 (Pgc1). Public Health Nutr 10(10A):1132–7. https://doi.org/10.1017/S1368980007000614

    Article  PubMed  Google Scholar 

  40. Lecka-Czernik B, Moerman EJ, Grant DF, Lehmann JM, Manolagas SC, Jilka RL (2002) Divergent effects of selective peroxisome proliferator-activated Receptor-Gamma 2 Ligands on adipocyte versus osteoblast differentiation. Endocrinology 143(6):2376–84. https://doi.org/10.1210/endo.143.6.8834

    Article  PubMed  CAS  Google Scholar 

  41. Montaigne D, Butruille L, Staels B (2021) Ppar control of metabolism and cardiovascular functions. Nat Rev Cardiol 18(12):809–23. https://doi.org/10.1038/s41569-021-00569-6

    Article  PubMed  CAS  Google Scholar 

  42. Edwards LM, Lawler NG, Nikolic SB, Peters JM, Horne J, Wilson R et al (2012) Metabolomics reveals increased isoleukotoxin Diol (12,13-Dhome) in human plasma after acute intralipid infusion. J Lipid Res 53(9):1979–86. https://doi.org/10.1194/jlr.P027706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Viswanathan S, Hammock BD, Newman JW, Meerarani P, Toborek M, Hennig B (2003) Involvement of Cyp 2c9 in mediating the proinflammatory effects of linoleic acid in vascular endothelial cells. J Am Coll Nutr 22(6):502–10. https://doi.org/10.1080/07315724.2003.10719328

    Article  PubMed  CAS  Google Scholar 

  44. Hada M, Edin ML, Hartge P, Lih FB, Wentzensen N, Zeldin DC et al (2019) Prediagnostic serum levels of fatty acid metabolites and risk of ovarian cancer in the Prostate, Lung, Colorectal, and Ovarian (Plco) cancer screening trial. Cancer Epidemiol Biomarkers Prev 28(1):189–97. https://doi.org/10.1158/1055-9965.EPI-18-0392

    Article  PubMed  Google Scholar 

  45. Chen L, Chao Y, Cheng P, Li N, Zheng H, Yang Y (2019) Uplc-Qtof/Ms-based metabolomics reveals the protective mechanism of hydrogen on mice with ischemic stroke. Neurochem Res 44(8):1950–63. https://doi.org/10.1007/s11064-019-02829-x

    Article  PubMed  CAS  Google Scholar 

  46. Zhang SJ, Sandström ME, Lanner JT, Thorell A, Westerblad H, Katz A (2007) Activation of aconitase in mouse fast-twitch skeletal muscle during contraction-mediated oxidative stress. Am J Physiol Cell Physiol 293(3):C1154-9. https://doi.org/10.1152/ajpcell.00110.2007

    Article  PubMed  CAS  Google Scholar 

  47. Baxter P, Chen Y, Xu Y, Swanson RA (2014) Mitochondrial dysfunction induced by nuclear Poly(Adp-Ribose) polymerase-1: a treatable cause of cell death in stroke. Transl Stroke Res 5(1):136–44. https://doi.org/10.1007/s12975-013-0283-0

    Article  PubMed  CAS  Google Scholar 

  48. Longuemare MC, Hill MP, Swanson RA (1994) Glycolysis can prevent non-synaptic excitatory amino acid release during hypoxia. Neuroreport 5(14):1789–92. https://doi.org/10.1097/00001756-199409080-00026

    Article  PubMed  CAS  Google Scholar 

  49. MacMillan VH (1989) Cerebral energy metabolism in cyanide encephalopathy. J Cerebral Blood Flow Metab Off J Int Soc Cerebral Blood Flow Metab 9(2):156–62. https://doi.org/10.1038/jcbfm.1989.23

    Article  CAS  Google Scholar 

  50. Lowry OH, Passonneau JV, Hasselberger FX, Schulz DW (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 239:18–30

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Statistical analysis was conducted using SPSS 22.0 and web-based software MetaboAnalyst 5.0 (https://www.metaboanalyst.ca).

Funding

This work was supported by the National Key Research and Development Projects (2022YFC3602400, 2022YFC3602401), the National Natural Science Foundation of China (82271369, 82101407) and the Natural Science Foundation of Hunan Province (2021JJ31109).

Author information

Authors and Affiliations

Authors

Contributions

Study design: Xi Li, Jiaxin Li; data collection and analysis: Xi Li, Jiaxin Li, Fang Yu, Xianjing Feng, Yunfang Luo, Zeyu Liu, Tingting Zhao; writing: Xi Li, Jiaxin Li; funding: Jian Xia; administration: Jian Xia.

Corresponding author

Correspondence to Jian Xia.

Ethics declarations

Consent for Publication

Not applicable.

Ethics Approval and Consent to Participate

The studies involving human participants were reviewed and approved by Xiangya Hospital Ethics Committee. The patients/participants provided their written informed consent to participate in this study.

Competing Interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xi Li and Jiaxin Li contributed equally to this work and share first authorship.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28.4 KB)

Supplementary file2 (DOCX 1239 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, J., Yu, F. et al. The Untargeted Metabolomics Reveals Differences in Energy Metabolism in Patients with Different Subtypes of Ischemic Stroke. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-023-03884-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03884-w

Keywords

Navigation