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Abstract
The blood-brain barrier consists of tightly connected endothelial cells protecting the brain’s microenvironment from the 
periphery. These endothelial cells are characterized by specific tight junction proteins such as Claudin-5 and Occludin, 
forming the endothelial barrier. Disrupting these cells might lead to blood-brain barrier dysfunction. The Wnt/β-catenin 
signaling pathway can regulate the expression of these tight junction proteins and subsequent barrier permeability. The aim 
of this study was to investigate the in vitro effects of Wnt7a mediated β-catenin signaling on endothelial barrier integrity. 
Mouse brain endothelial cells, bEnd.3, were treated with recombinant Wnt7a protein or XAV939, a selective inhibitor 
of Wnt/β-catenin mediated transcription to modulate the Wnt signaling pathway. The involvement of Wnt/HIF1α signal-
ing was investigated by inhibiting Hif1α signaling with Hif1α siRNA. Wnt7a stimulation led to activation and nuclear 
translocation of β-catenin, which was inhibited by XAV939. Wnt7a stimulation decreased Claudin-5 expression medi-
ated by β-catenin and decreased endothelial barrier formation. Wnt7a increased Hif1α and Vegfa expression mediated by 
β-catenin. However, Hif1α signaling pathway did not regulate tight junction proteins Claudin-5 and Occludin. Our data 
suggest that Wnt7a stimulation leads to a decrease in tight junction proteins mediated by the nuclear translocation of 
β-catenin, which hampers proper endothelial barrier formation. This process might be crucial in initiating endothelial cell 
proliferation and angiogenesis. Although HIF1α did not modulate the expression of tight junction proteins, it might play 
a role in brain angiogenesis and underlie pathogenic mechanisms in Wnt/HIF1α signaling in diseases such as cerebral 
small vessel disease.
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Introduction

The blood-brain barrier (BBB) constitutes a highly special-
ized vascular structure, which separates the blood circula-
tion from the central nervous system (CNS) and functions 
to control the passage of molecules and ions to the brain in 
a protective manner. The BBB prevents the entry of harmful 
toxins, inflammatory cells, and pathogens, while still pro-
viding oxygen and nutrients necessary for the normal func-
tioning of the brain [1]. An important feature of the BBB is 
the specific characteristics of the endothelial cells (ECs) that 
line the blood vessels in the CNS, such as tight junctions 
(TJs) and reduced pinocytosis [2]. Other cells, such as astro-
cytes, pericytes and oligodendrocytes, are also involved in 
the tight regulation of the brain microenvironment, forming 
the neurovascular unit (NVU) [3].

Brain ECs possess TJ proteins and maintain a homeo-
static environment by tightly holding cells together and thus 
form a protective structural barrier [4]. These TJ proteins 
also link adjacent brain ECs together by forming homodimer 
transmembrane proteins, and normal function of TJ proteins 
ensures the correct regulation of intercellular communica-
tion and paracellular transport [4, 5]. Claudins, one class of 
TJ proteins, exhibit homophilic binding to other claudins, 
and heterophilic binding to other TJ-associated proteins to 
form multiprotein junctional complexes between adjacent 
cells [6]. Claudin-5 (CLDN5) is the most abundant isoform 
in the BBB and is crucial for the regulation of its properties 
[5–8]. Dysfunction of ECs can disrupt TJ proteins and BBB 
function, ultimately leading to neurodegenerative disorders 
such as Alzheimer’s disease, multiple sclerosis, stroke, and 
cerebral small vessel disease (cSVD) [4, 8–10]. Dysregula-
tion of secreted factors, such as Wingless-related integration 
site (Wnt), by cells of the NVU might play a key role in 
this EC dysfunction [11, 12]. A recent study demonstrated 
the contribution of Wnt/β-catenin signaling to the regulation 
of the BBB permeability by affecting TJ proteins such as 
CLDN5 and Occludin (OCLN) in adult mice [13].

The β-catenin mediated Wnt signaling pathway leads to 
the recruitment of the β-catenin destruction complex upon 
binding of Wnt molecules to receptor protein Frizzled (Fzd) 
4 and co-receptor low density lipoprotein receptor-related 
protein (Lrp) 5 or 6. This leads to the intracellular stabiliza-
tion of β-catenin, resulting in its translocation to the nucleus. 
Once in the nucleus, β-catenin mediates the transcription of 
numerous genes involved in processes such as EC prolifera-
tion and differentiation, and TJ protein expression, implying 
an important role in the BBB [7, 14–16]. The Wnt/β-catenin 
signaling pathway is the most important pathway regulat-
ing the BBB in development, but seems to also play a role 
in adulthood [7, 17–20]. Thus, understanding the involve-
ment of Wnt signaling in regulating TJ proteins in adult ECs 

might give insight into BBB pathology in diseases such as 
stroke and cSVD.

Of the 19 Wnt ligands, the regulation of BBB maturation 
is controlled by one of the most investigated Wnt ligands, 
namely Wnt7a. The interaction of Wnt7a with receptor Fzd4 
and Lrp5/Lrp6 co-receptor controls brain angiogenesis and 
vessel formation by regulating endothelial tip cell forma-
tion [21]. In addition, Wnt7a mediated β-catenin activation 
regulates neural progenitor cell proliferation and differen-
tiation [22]. Deletion of Wnt7a leads to major defects in 
CNS angiogenesis, while knocking out β-catenin resulted 
in similar angiogenic abnormalities [17]. Treatment with 
Wnt7a protein increases the expression of Cldn5 in an 
immortalized brain endothelioma cell line (bEnd.3), leading 
to increased trans-endothelial electrical resistance (TEER) 
and decreased permeability of the endothelial monolayer 
following β-catenin activation [23–25]. The expression of 
CLDN5 was increased in both passage 1 and 3 ECs derived 
from human pluripotent stem cell (hPSC) in response to 
β-catenin activation, but the effects were less prominent in 
the later passage cells [25]. In passage 4 cells, β-catenin acti-
vation did not increase the number of ECs or CLDN5 levels, 
indicating a stage-dependent response to Wnt7a stimulation 
[25]. On the contrary, activation and nuclear accumulation 
of β-catenin resulted in the inhibition of Cldn5 expression 
and promotion of angiogenesis [26, 27]. Thus, the molecular 
effects of Wnt7a mediated β-catenin activation on mature 
ECs and BBB integrity remains unclear.

The aim of this study was to investigate the underlying 
pathways determining in vitro effects of Wnt7a mediated 
β-catenin signaling on mature brain endothelial barrier integ-
rity. The impact of Wnt7a stimulation on TJ protein expres-
sion mediated by β-catenin activation was investigated in 
bEnd.3 mouse brain ECs along with TEER measurements 
to investigate the effects on barrier function. Additionally, 
Gene ontology (GO) enrichment analysis of the transcrip-
tomic signature was performed to identify modulators of this 
signaling pathway. GO enrichment analysis is used widely 
to interpret high throughout molecular data and to generate 
hypothesis about underlying biology. It represents a uniform 
vocabulary to specify cellular location, molecular function, 
and participation in biological process of human and model 
organisms [28]. Typically, analysis begins by identifying a 
list of differentially expressed genes. GO enrichment is then 
used to determine which GO terms are over- or under-repre-
sented with a gene set of interested in order to gain insights 
into the biological relevance of alterations in genes [29–34]. 
Results from these studies can then be used to support or 
refute hypotheses, inferences, or conclusions about the biol-
ogy or evolution of the study system. We hypothesized that 
Wnt7a activates β-catenin-mediated Wnt signaling leading 
to regulation of TJ protein expression, affecting the barrier 
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function of ECs. A clear understanding of this pathway 
might present a potential therapeutic target in repairing 
BBB damage in disease.

Materials and Methods

Cell Culture

The immortalized murine brain ECs, bEnd.3 cells (Cat no. 
CRL-2299, American Type Culture Collection, Manas-
sas, VA, USA [35]) were cultured in Dulbecco’s Modified 
Eagle’s Medium high glucose (DMEM, Cat no. D6429, 
Merck Millipore, Burlington, MA, USA) supplemented 
with 10% fetal bovine serum (FBS) and 100 µg/mL peni-
cillin/streptomycin (P/S) at 37 °C and in an atmosphere of 
5% CO2. BEnd.3 cells between passage 26 and 28 were 
seeded onto multi-well plates, membrane inserts, or glass 
coverslips at a density of 1.5 × 104 to 1.0 × 105 cells/cm2 for 
expression and functional studies and treated at confluency 
(1–3 days after seeding).

Cells were treated with recombinant Wnt7a (Cat no. 
SRP3296, Sigma-Aldrich, St. Louis, MO, USA), dissolved 
in PBS containing 0.1% bovine serum albumin (BSA-PBS) 
to study the effects of paracrine mediated Wnt signaling on 
ECs. Briefly, cells were grown to confluency and treated 
with control (0.1% BSA-PBS) or Wnt7a (50 or 100 ng/ml 
in 0.1% BSA-PBS) for 24  h. These concentrations were 
used based on manufacturer’s ED50 and previous publica-
tions [36–39]. Wnt7a activation of β-catenin was investi-
gated by co-administration with XAV939 (XAV, Cat no. 
X3004, Sigma-Aldrich), a Tankyrase inhibitor known to 
selectively inhibit Wnt/β-catenin mediated transcription 
[40, 41]. Briefly, cells were grown to confluency and treated 
with control, Wnt7a (100 ng/ml), XAV (10 µM) or a co-
administrated of Wnt7a with XAV (100 ng/ml and 10 µM, 
respectively) for 24 h.

Hypoxia-inducible factor 1α (Hif1α) activation medi-
ated by Wnt7a was investigated by silencing the Hif1α gene 
with siRNA. Briefly, cells were grown to confluency and 
transfected with 4 µg/ml Lipofectamine™ 2000 Transfec-
tion Reagent (Cat no. 11668, Invitrogen, Waltham, MA, 
USA) and 20 µM siRNA in DMEM high glucose contain-
ing 10% FBS and 10% Opti-MEM (Cat no. 31985070, 
ThermoFisher Scientific, Waltham, MA, USA) for 24  h. 
Negative control siRNA (Silencer™ Cy™3-labeled 
Negative Control No. 1 siRNA, Cat no. AM4621, Invi-
trogen), or a validated Hif1α siRNA (Silencer™ Select 
Pre-Designed mouse Hif1α siRNA, sequence 5’◊3’: Sense 
CCUUUACCUUCAUCGGGAAAtt; Antisense UUUC-
CGAUGAAGGUAAAGGag, Cat no. 4,390,771, Invitro-
gen) were used. After 24  h, cells were washed with PBS 

and treated with either control or Wnt7a (100 ng/ml) for 
24 h. Cells were washed and fixed with 4% paraformalde-
hyde (PFA) for immunocytochemistry or lysed for RNA 
isolation, after respective treatment. Immunocytochemistry 
samples were kept at 4 °C and RNA samples at -20 °C until 
further use.

Immunocytochemistry

Immunocytochemistry was performed after seeding bEnd.3 
cells at a density of 1.5-5.0 × 104 cells/cm2 on glass cov-
erslips or on a 96-well plate. Cells were washed in PBS 
and fixed with 4% PFA for 10 min. at room temperature. 
Cells were then blocked in PBS blocking buffer containing 
1% normal donkey serum and 0.3% Triton X-100 for 1 h. 
Then, cells were incubated with appropriate primary anti-
body (Supplementary Table 1) overnight at 4°C followed by 
incubation with appropriate secondary antibodies in block-
ing buffer (Supplementary Table 1) for 2 h. Lastly, a coun-
terstaining of the nuclei with NucBlue (Cat no. R37605, 
Invitrogen) was performed and cells were mounted using 
antifading Mounting Medium (Prolong gold, Agilent Tech-
nologies, Santa Clara, CA, USA) before imaging.

Image Acquisition and Analysis

Images were captured by an investigator masked to the 
treatment conditions using a confocal microscope (DMI 
4000, Leica, Freiburg, Germany) or a fluorescent live cell 
imager (ImageXpress Pico Automated Cell Imaging Sys-
tem, Molecular Devices, San Jose, CA, USA). For confocal 
imaging, six image volumes (175 × 175 μm) were acquired 
with a 1 μm step size at a magnification of 63x. Images cap-
tured with the fluorescent live cell imager (690 × 690 μm) 
were acquired at a magnification of 40x. Subsequently, 
image stacks underwent maximal intensity projections and 
mean gray values and integrated density values of the result-
ing images were obtained using ImageJ software (National 
Institutes of Health, Bethesda, MD, USA). Three fields of 
view were acquired from every replicate to compare the 
different treatment conditions. In each field of view, the 
overall mean gray value and integrated density values were 
normalized to the number of cells. Additionally, for active 
β-catenin the average nuclear, cytoplasmic, and membrane 
concentrations were measured by averaging values of the 
mean intensity of three randomly selected cells per field 
of view. All quantifications were performed in ImageJ and 
expressed as intensity levels corrected versus control.
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differentially expressed with an adjusted p-value (false dis-
covery rate; FDR) below 0.01. Gene ontology (GO) enrich-
ment analysis was performed using g:Profiler [42] and the 
Database for Annotation, Visualization, and Integrated Dis-
covery (DAVID) v6.8 [43, 44]. The modified Fisher exact 
p-value (EASE score) < 0.05 and FDR < 0.05 were consid-
ered enriched. Gene interaction network analysis was per-
formed using Cytoscape version 3.9.1 [45].

Trans Endothelial Electrical Resistance (TEER) Assay

TEER was monitored every 2–3 days using an epithelial 
volt ohm meter (EVOM-2, WPI, UK) connected to an elec-
trode (STX4 EVOM, Cat no. EVM-EL-03-03-01, WPI). 
Experiments were performed using PET membrane inserts 
(Cat no. 353,095, Falcon) with an insert diameter of 6.4 mm 
and pore diameter of 0.4 μm in combination with a 24-well 
companion plate (Cat no. 353,504, Falcon). Inserts were 
coated with rat tail collagen I (100  µg/ml, Cat no. 3440-
005-01, R&D Systems, Minneapolis, MN, USA) for 1 h at 
37 °C. Before seeding cells, resistance measurements were 
performed on all coated wells to determine the blank resis-
tance. Measurements were performed on a heating surface 
to maintain a stable temperature of 37 °C during measure-
ments. BEnd.3 cells were plated on the membrane inserts at 
a density of 4.5 × 104 cells/cm2 and left to attach and reach 
full confluency for 3 days. Treatment with either control or 
100 ng/ml Wnt7a was initiated at day 3 and refreshed every 
2–3 days before measurements. The TEER was calculated 
using the following formula:

TEER (Ω ∗ cm2) = (Rtotal − Rblank) ∗ Insertmembrane area

Statistical Analysis

Data was analysed using GraphPad Prism 9 (Dotmatics). 
Data distribution was tested using Shapiro-Wilk test for 
normality. Unpaired Student t-tests were used to compare 
Wnt7a vs. control. One-way ANOVA or Kruskal-Wallis test 
(for non-parametric data) with post-hoc Tukey’s multiple 
comparisons test was used to assess multiple comparisons. 
P < 0.05 was considered statistically significant and data are 
expressed as mean ± SEM.

Quantitative PCR (qPCR)

Total RNA was isolated using TRIzol Reagent (Invitrogen) 
according to the TRIzol method and stored at -80 °C before 
use. Quality and quantity were checked using NanoDrop 
1000 spectrophotometer and the RNA was reverse tran-
scribed into cDNA using the high-capacity RNA-to-cDNA 
kit (Cat no. 1,708,891, Bio-rad laboratories, Inc., Hercules, 
CA, USA) according to manufacturer’s manual. CDNA 
samples were stored at -20 °C before use. QPCR was per-
formed using Sensimix™ SYBER® & Fluorescein kit (Cat 
no. QT615-05, Meridian Bioscience Inc., Cincinnati, OH, 
USA) on the Light Cycler 480 (Roche Applied Science, 
Penzberg, Germany) with the following qPCR program: 
10 min. at 95 °C followed by 55 cycles a 10s at 95 °C and 
20s at 60 °C. Temperature was increased from 60 to 95 °C 
for melting curve analyses. Primers were designed to cover 
exon-exon junctions and all possible splice variants using 
NCBI Primer-BLAST tool. Primers were synthesized by 
Eurofins Genomics (Ebersberg, Germany) and quality was 
ensured by testing on cell cultures, as well as by calculation 
of primer efficiency. At least two stable reference house-
keeping genes were selected from a selection of three genes 
by using the GeNorm Software (Primerdesign, Southamp-
ton, NY, USA). Primers are listed in Supplementary Table 
2. Gene expression analysis was performed using LinReg 
PCR (Ver. 2014.0) and the Light Cycler 480 data converter 
(Ver. 2014.1) and shown as fold change (FC) compared to 
control.

RNA Sequencing

Total isolated RNA quantity was checked using Qubit 2.0 
Fluorometer (Invitrogen) and RNA quality was assessed 
using Bioanalyzer (Cat no. RNA 6000 Nano kit; 2100 Bio-
analyzer, Agilent Technologies). Purification of mRNA 
from total RNA (NEXTFLEX Poly(A) Beads 2.0, Cat 
no. NOVA-512,992, PerkinElmer, Waltham, MA, USA) 
and directional, strand-specific RNA library preparation 
(NEXTFLEX Rapid Directional RNA-Seq Kit 2.0, Cat no. 
NOVA-5198, PerkinElmer) was performed according to 
manufacturer’s protocol. Sequencing was performed using 
NovaSeq 6000 Sequencing system (NovaSeq S Prime flow 
cell 200 cycles; NovaSeq 6000, Illumina, Inc, San Diego, 
CA, USA) according to manufacturer’s protocol. The raw 
sequencing data was trimmed using fastp, remaining reads 
were then mapped against the Ensembl mouse genome 
(release 100) using STAR (version 2.7.3a) and quantified 
using RSEM (v.1.3.1). The resulting raw read counts were 
processed using the R package DESeq2. Genes with were 
not sequenced (0 reads) in more than 75% of the samples of 
any given condition were removed. Genes were considered 
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in membrane (1.12 ± 0.06 FC, p = 0.370), cytoplasmic 
(1.23 ± 0.07, p = 0.116), or nuclear intensity (1.40 ± 0.15 
increase, p = 0.092) compared to control. These results 
indicate that 100 ng/ml Wnt7a was effective to promote 
β-catenin activation.

Next, we investigated whether XAV, a known Tankyrase 
inhibitor, was able to inhibit the Wnt7a-mediated increase 
in active β-catenin. XAV inhibits the PARylation of Axin, 
which is one of the proteins in the β-catenin destruction 
complex. Tankyrase mediated PARylation of Axin leads to 
the ubiquitination and degradation of this protein. Thus, by 
inhibiting Trankyrase, the β-catenin destruction complex 
can assemble and lead to the ubiquitination and degradation 
of β-catenin [46].

Treatment with 100 ng/ml Wnt7a did not lead to a signifi-
cant increase in the transcription of Axin2 (0.98 ± 0.29 FC, 
p > 0.99; Fig. 2A), a direct target of the Tcf/LEF factor medi-
ated Wnt pathway [47]. Inhibition of the active β-catenin 
with XAV also did not lead to any significant changes 
in Axin2 mRNA expression (1.66 ± 0.33 FC, p = 0.26; 

Results

Wnt7a Leads to Increased Levels of Nuclear Active 
β-Catenin

To investigate whether Wnt7a stimulation causes β-catenin 
mediated signaling in a mouse brain EC line, we performed 
immunocytochemistry on bEnd.3 cells treated with recom-
binant Wnt7a protein for 24 h (Fig. 1A). The overall sig-
nal intensity of the active form of β-catenin was quantified 
in addition to the signal intensity in the membrane, cyto-
plasm, and nucleus. A significant increase in overall active 
β-catenin intensity was observed when cells were treated 
with 100 ng/ml Wnt7a compared to control (1.46 ± 0.17 
FC, p = 0.025). Similar increases in active β-catenin were 
observed in the membrane (1.24 ± 0.05 FC, p = 0.036), cyto-
plasm (1.48 ± 0.11 FC, p = 0.001), and nucleus (1.52 ± 0.06 
FC, p = 0.002). Treatment with 50 ng/ml Wnt7a, how-
ever, did not lead to a significant increase in overall active 
β-catenin intensity (1.24 ± 0.04 FC, p = 0.305), as well as 

Fig. 1  Wnt7a led to increase in active β-catenin levels in bEnd.3 
cells in vitro. A Immunocytochemistry of active β-catenin after treat-
ment with either 50 or 100 ng/ml recombinant Wnt7a. Images were 
acquired at a magnification of 63x; Scale bar, 50 μm. B Quantifica-
tion of relative active β-catenin intensity revealed an increase in total 
active β-catenin in bEnd.3 cells when treated with 100 ng/ml Wnt7a. C 

Membrane bound active β-catenin was increased in cells treated with 
100 ng/ml Wnt7a and in the D cytoplasm and E nucleus. Treatment 
with 50 ng/ml did not lead to significant changes in active β-catenin. 
Graph represents mean ± SEM; n = 6; *p < 0.05, **p < 0.01, One-way 
ANOVA with post-hoc Tukey’s multiple comparisons; ##p < 0.01, 
Kruskal-Wallis with post-hoc Dunn’s multiple comparisons
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by β-catenin activation were investigated with qPCR and 
immunocytochemistry, respectively (Fig. 3). Wnt7a stimu-
lation led to a significant decrease in both Cldn5 (p = 0.0002; 
Fig. 3A) and Ocln (p = 0.007; Fig. 3B) mRNA expression 
levels compared to cells in which β-catenin was inhibited 
with XAV. Similar results were observed for protein levels 
of CLDN5, which was significantly decreased by Wnt7a 
stimulation compared to control (0.80 ± 0.04 FC, p = 0.022; 
Fig.  3D). No difference in protein levels of CLDN5 was 
observed when Wnt7a and XAV were co-administered 
compared to control (0.92 ± 0.05 FC, p = 0.730; Fig.  3D). 
Despite reducing Ocln mRNA levels, Wnt7a treatment did 
not lead to changes in OCLN protein levels compared to 
control (1.10 ± 0.06 FC, p = 0.483; Fig. 3E). However, treat-
ment with XAV, and co-treatment with Wnt7a and XAV, 
significantly increased protein levels of OCLN compared to 
control (1.21 ± 0.05 FC and 1.27 ± 0.06 FC, p = 0.031 and 
p = 0.005, respectively; Fig. 3E). These results indicate that 
β-catenin mediated the effects of Wnt7a stimulation on TJ 
proteins, which are responsible for EC barrier function.

Fig.  2A). However, overall β-catenin activity, assessed 
by immunocytochemistry (Fig.  2B), showed a significant 
increase in active β-catenin in cells treated with 100 ng/ml 
Wnt7a compared to controls (1.20 ± 0.02 FC, p < 0.0001; 
Fig. 2C). The increase in active β-catenin was not observed 
when cells were treated with XAV (0.90 ± 0.03 FC com-
pared to control, p = 0.07; Fig. 2C) or when cells were co-
treated with Wnt7a and XAV (1.02 ± 0.03 FC compared to 
control, p = 0.96; Fig. 2C). Total active β-catenin levels in 
Wnt7a treated cells were significantly increased compared 
to co-treatment with Wnt7a and XAV (p = 0.0002; Fig. 2C), 
indicating the ability of XAV to inhibit the Wnt7a mediated 
activation of β-catenin.

Wnt7a Stimulation Leads to Reduced Endothelial 
Barrier Function by Decreasing Tight Junction 
Protein Claudin-5 Via β-Catenin Mediated Signaling

The effects of Wnt7a signaling on the TJ proteins Cldn5 
and Ocln mRNA expression and protein levels mediated 

Fig. 2  XAV inhibited the activation of β-catenin in response to Wnt7a 
treatment. A In vitro Wnt7a treatment did not lead to any changes 
in the β-catenin target gene Axin2 mRNA expression B Immunocy-
tochemistry of active β-catenin in bEnd.3 cells treated with either 
control, 100 ng/ml Wnt7a, 10 µM XAV, or co-treatment with Wnt7a 
and XAV. Images were acquired at a magnification of 63x; Scale bar, 

50 μm. C The overall total β-catenin activation mediated by Wnt7a 
was significantly inhibited by XAV. XAV led to decreased active 
β-catenin levels compared to control. Graph represents mean ± SEM; 
n = 8–9; *p < 0.05, ***p < 0.001, ****p < 0.0001; One-way ANOVA 
with post-hoc Tukey’s multiple comparisons
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treated with Wnt7a protein and control over a period of 14 
days (Fig. 4A). However, a significant increase in resistance 
from day 3 to day 5 was observed, with Wnt7a treatment 
leading to a reduced increase in resistance compared to con-
trol (10.17 ± 0.39 vs. 16.58 ± 1.15 Ω, p < 0.0001; Fig. 4B). 
These results suggest that Wnt7a stimulation inhibits endo-
thelial barrier formation.

The EC barrier integrity was studied by measuring the 
electrical resistance of the endothelial monolayer in culture 
by TEER. The establishment of the BBB is characterized 
by the endothelial barrier formation comprised of TJ pro-
teins tightly connecting the ECs, resulting in an increased 
electrical resistance over time [48]. No overall differences 
were observed in electrical resistance between cultures 

Fig. 4  Wnt7a led to a reduction in formation of the endothelial barrier. 
A Trans endothelial electrical resistance (TEER) measurements of the 
bEnd.3 monolayer in vitro. No differences in electrical resistance were 
observed after 14 days of Wnt7a treatment compared to control. Dotted 

vertical line indicates start of Wnt7a treatment. B Wnt7a blunted the 
increase in the electrical resistance between day 3 to day 5 compared 
to control. Graph represents mean ± SEM; n = 10–11, ****p < 0.0001; 
Unpaired students t-test

 

Fig. 3  Modulation of β-catenin 
led to changes in TJ proteins 
Claudin-5 and Occludin. A In 
vitro activation of β-catenin 
mediated by Wnt7a led to 
downregulation of claudin-5 and 
Boccludin mRNA. C Immuno-
cytochemistry of Claudin-5 or 
Occludin in bEnd.3 cells treated 
with either control, 100 ng/ml 
Wnt7a, XAV, or co-treatment 
with Wnt7a and XAV. Images 
were acquired at a magnifica-
tion of 63x; Scale bar, 50 μm. 
D Decreased levels of Clau-
din-5 protein were mediated by 
wnt7a activation of β-catenin. 
E inhibition β-catenin levels 
by XAV led to a significant 
increase in Occludin compared 
to control. However, Wnt7a did 
not decrease levels of Occludin. 
Abbreviations: Cldn5 = clau-
din-5; Ocln = Occludin. Graph 
represents mean ± SEM; 
n = 8–9, *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001; 
One-way ANOVA with post-hoc 
Tukey’s multiple comparisons
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between the negative control and Hif1α siRNA treated cells 
treated with Wnt7a (p = 0.59). These results show that HIF1α 
signaling does not directly interact with Wnt7a signaling in 
regulating the expression of TJ proteins CLDN5 and OCLN 
but might modulate gene expression (Fig. 6D-E).

Discussion

The aim of this study was to investigate the effects of the 
Wnt7a/β-catenin signaling pathway on EC barrier func-
tion. We showed that 100 ng/ml Wnt7a increased protein 
levels of active β-catenin in the cytoplasm, membrane, and 
nucleus of the bEnd.3 EC line. This increase was reversed 
when degradation of the destruction complex was prevented 
by the Tankyrase inhibitor XAV, validating Wnt7a medi-
ated activation of β-catenin signaling. Of note, increased 
β-catenin activation did not translate to an increase in 
expression of its target gene Axin2, implying that other fac-
tors might influence the transcription of the downstream 
β-catenin target genes, in response to Wnt7a stimulation. 
This Wnt7a/β-catenin signaling had functional significance 
since Wnt7a stimulation impaired EC barrier formation via 
reduced expression of the TJ protein, CLDN5. Endothelial 
genes commonly activated in response to hypoxia, Hif1α and 
Vegfa, were upregulated by Wnt7a activation of β-catenin. 
Interestingly, other studies have described the expression 
of Wnt7a following hypoxic conditions, indicating that the 
interplay of these signaling molecules might contribute to 
hypoxia-induced events, during pathological conditions 
such as stroke or cSVD [50]. However, decreases in TJ pro-
teins in CLDN5 and OCLN were not mediated by Hif1α in 
our study. Overall, our analysis of TJ protein expression and 
EC barrier function suggest the involvement of Wnt7a in 
increasing the permeability of ECs, an effect that could have 
consequences for the endothelial barrier function.

Activation of β-catenin signaling by Wnt7a has been 
shown to depend on the cell type and developmental stage 
within the CNS. Activation of Wnt7a in the developing hip-
pocampus triggers β-catenin mediated signaling, leading to 
positive influences on synaptogenesis [51].

Here, β-catenin mediated signaling by Wnt7a is enhanced 
by the presence of receptor co-factors Gpr124 and Reck 
[21]. However, β-catenin is not involved in all aspects of 
Wnt7a function at the synapse. For example, localization 
of Wnt7a in mouse cerebellar synapses increased the size 
and spreading of axonal growth cones, and was essential 
for neurotransmitter release via actions on the cytoskeleton 
that do not involve β-catenin [52]. These findings suggest 
that Wnt7a might activate both β-catenin dependent and 
independent signaling, or one or the other, depending on 
environmental factors. Based on our findings that Wnt7a 

Hif1α Activation in Response to β-Catenin Mediated 
Wnt7a Signaling is Not Involved in the Decrease of 
Tight Junction Proteins Claudin-5 and Occludin

To decipher the molecular mechanisms involved in the 
response of brain ECs to Wnt7a stimulation, RNA sequenc-
ing was performed to assess their transcriptomic regulation. 
This revealed 2,107 differently expressed genes (DEG) 
when comparing Wnt7a to control treatment (Fig. 5A). GO 
enrichment analysis of the top 100 DEG revealed enriched 
pathways such as vasculature development (6.2-fold 
enriched), blood vessel development (6.3-fold enriched) 
and angiogenesis (6.8-fold enriched, Fig.  5B). Pathway 
analysis of the genes mediated by β-catenin in the angio-
genesis pathway showed upregulation of Hif1α and vas-
cular endothelial growth factor A (Vegfa) (0.28 and 0.26 
log2FC, respectively), genes typically involved in response 
to hypoxia (Fig. 5C) [49]. Quantification of mRNA levels in 
cells treated with Wnt7a showed an increase in both Hif1α 
and Vegfa compared to control (1.76 ± 0.20 and 1.42 ± 0.07 
FC, p = 0.010 and p = 0.047; Fig. 5D and E respectively).

The contribution of Hif1α activation in regulating TJ pro-
teins was investigated by silencing the Hif1α gene with a 
validated commercially available siRNA. Hif1α was signifi-
cantly downregulated when treated with Wnt7a and Hif1α 
siRNA compared to Wnt7a and negative control siRNA 
(0.14 ± 0.02 FC, p < 0.0001; Fig. 6A). No differences were 
found in Vegfa expression when treated with either Wnt7a 
or co-treated with Wnt7a and Hif1α siRNA (Fig. 6B). The 
expression of Axin2 was significantly downregulated by 
Wnt7a (0.42 ± 0.08 FC, p = 0.019; Fig.  6C), with no dif-
ference compared to when treated with Wnt7a and Hif1α 
siRNA (p = 0.42). Cldn5 expression was significantly down-
regulated by Wnt7a only when inhibiting Hif1α mRNA 
(0.70 ± 0.08 FC, p = 0.01; Fig. 6D), while Ocln expression 
was downregulated by Wnt7a treatment alone (0.59 ± 0.02 
FC, p = 0.009; Fig. 6E).

When Hif1α was silenced in cells treated with Wnt7a, 
Ocln mRNA levels normalized compared to control 
(0.86 ± 0.12 FC, p = 0.48; Fig. 6E), suggesting that HIF1α 
signaling might play a role in regulating the effects of Wnt7a 
on endothelial barrier function. Protein levels of CLDN5 
and OCLN were investigated after Hif1α knockdown by 
immunocytochemistry (Fig.  6F). Consistent with our pre-
vious data (Fig. 3D), treatment with Wnt7a reduced levels 
of CLDN5 protein compared to control (0.73 ± 0.06 FC, 
p = 0.002; Fig. 6G). However, no differences in CLDN5 lev-
els were observed between Wnt7a treated cells treated with 
either negative control or Hif1α siRNA (p = 0.68). Similar 
effects on OCLN levels were observed, with Wnt7a treat-
ment inducing a reduction compared to control (0.71 ± 0.05 
FC, p = 0.0003; Fig. 6H), and with no differences observed 
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Fig. 5  Wnt7a led to regulation of 2,017 differentially expressed genes 
involved in e.g. angiogenesis. A Wnt7a treatment led to changes in 
2,017 differentially expressed genes (DEG) in bEnd.3 cells (n = 3) B 
Gene Ontology (GO) enrichment analysis revealed the enrichment 
of biological processes such as vascular development, blood vessel 
development, and angiogenesis. C Analysis of Wnt7a regulated genes 

mediated by β-catenin in the angiogenesis pathway revealed the upreg-
ulation of Hif1α and Vegfa. D The upregulation of Hif1α and EVegfa 
by Wnt7a was mediated by β-catenin (n = 8–9). Graph represents 
mean ± SEM; *p < 0.05, **p < 0.01; One-way ANOVA with post-hoc 
Tukey’s multiple comparisons
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mouse brain ECs (bEnd.3 cells). However, previous stud-
ies have shown β-catenin mediated increases in TJ proteins. 
Stabilization of β-catenin via glycogen synthase kinase 3β 
(GSK-3β) inhibitor CHIR99021 in hPSC, or LiCl in an 
immortalized human brain microvascular EC line (hCMEC/
D3), led to the upregulation of CLDN5 [13, 23]. Similarly, 
in vivo deletion of β-catenin in the brain endothelium led to 
decreased protein levels of both CLDN5 and OCLN in the 
cerebral cortex of mice [25]. Wnt7a derived from oligoden-
drocyte precursor cell (OPC) conditioned medium showed 
increased β-catenin and Cldn5 expression in bEnd.3 cells, 

increases levels of active β-catenin, the ability of XAV to 
reverse Wnt7a effects, and evidence from previous work, 
we suggest that the effects of Wnt7a on brain ECs are pre-
dominantly mediated via β-catenin signaling. However, 
β-catenin independent signaling effects might also play a 
role [21, 51, 53]. In addition to confirming the role of the 
Wnt7a/β-catenin pathway, our findings highlight XAV as a 
potent molecule to modulate Wnt7a induced β-catenin sig-
naling in brain ECs.

In our study, Wnt7a activation of β-catenin in vitro led 
to a decrease in the TJ proteins CLDN5 and OCLN in 

Fig. 6  Wnt7a regulation of tight 
junction proteins Claudin-5 and 
Occludin was not mediated by 
Hif1α. A Transfection with Hif1α 
siRNA led to the downregula-
tion of Hif1α. B Wnt7a did not 
change Vegfa mRNA expres-
sion, with no effect of Hif1α.C 
Wnt7a led to the significant 
downregulation of the β-catenin 
target gene Axin2, which was not 
mediated by Hif1α. DClaudin-5 
was downregulated by Wnt7a 
only when Hif1α was silenced, 
E while Occludin was normal-
ized by silencing Hif1α in the 
present of Wnt7a. F Immuno-
cytochemistry of Claudin-5 or 
Occludin in bEnd.3 cells treated 
with either control and negative 
control siRNA, 100 ng/ml Wnt7a 
and negative control siRNA, 
or 100 ng/ml Wnt7a and Hif1α 
siRNA. Images were acquired 
at a magnification of 40x; Scale 
bar, 100 μm. G Decreased 
Claudin-5 protein level by Wnt7a 
was not mediated by Hif1α. H 
Similar results were observed 
for Occludin. Abbreviations: 
Neg = negative; Cldn5 = clau-
din-5; Ocln = Occludin. Graph 
represents mean ± SEM; 
n = 7–9, *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001; 
One-way ANOVA with post-hoc 
Tukey’s multiple comparisons
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Wnt7a can increase the expression of Hif1α in ECs. HIF1α 
can regulate Wnt signaling and be the target of Wnt induced 
regulation [62–64], whilst hypoxia and HIF1α signaling 
regulates Wnt/β-catenin signaling in a cell- and develop-
mental stage-specific manner [65, 66]. It is also suggested 
that these signaling pathways might have an indirect inter-
action rather than exerting direct regulation [64]. On the 
other hand, nuclear β-catenin/Tcf complex formation has 
been shown to induce Hif1α expression [63]. These results 
indicate that Wnt/β-catenin signaling can affect the expres-
sion of Hif1α to modulate the cellular response to events 
such as hypoxia. Our data support this notion of Wnt7a/β-
catenin mediating the expression of Hif1α. However, in our 
study, the silencing of Hif1α with siRNA did not reverse the 
Wnt7a/β-catenin mediated downregulation of TJ proteins 
CLDN5 and OCLN. Interestingly, mRNA levels of Ocln 
were normalized by inhibiting Hif1α, while OCLN proteins 
levels were increased independently from β-catenin, sug-
gesting that these signaling pathways might interact and 
indirectly regulate the endothelial barrier function. Thus, 
Wnt/HIF1α signaling in mature ECs may not be critical for 
barrier formation, but may play an indirect role in a context-
dependent manner, for example via HIF1α/VEGFA signal-
ing during hypoxic conditions in diseases such as stroke and 
cSVD. There was some discrepancy regarding the regula-
tion of OCLN by Wnt7a in two of our data sets (Fig. 3E 
vs. 6H). On one hand (Fig.  3E), OCLN was not changed 
by Wnt7a stimulation while blocking β-catenin with XAV 
had a positive effect. On the other hand (Fig. 6H), OCLN 
was downregulated by Wnt7a stimulation and unchanged 
by Hif1α silencing. While these data are contradicting, it 
also indicates that the Wnt7a/β-catenin signaling can lead to 
HIF1α independent regulation of OCLN.

In conclusion, we suggest that Wnt7a activates the 
β-catenin mediated Wnt signaling pathway, causing nuclear 
translocation of β-catenin, suppression of TJ protein expres-
sion, and ultimately a decrease in EC barrier function (illus-
trated in Fig. 7). Furthermore, we propose that these changes 
in EC properties are associated with events such as endothe-
lial proliferation and angiogenesis, which are stimulated by 
Wnt7a signaling. Wnt7a/β-catenin mediated regulation of 
TJ proteins occurs independently of the Wnt/HIF1α signal-
ing pathway. This pathway may play other roles in inducing 
angiogenesis in response to environmental factors such as 
hypoxia. However, future studies are needed to determine 
the specific role of HIF1α in modulating the Wnt/β-catenin 
signaling pathway. Understanding the role of Wnt/β-catenin 
signaling in hypoxia might lead to a better understanding of 
the cellular mechanisms involved in diseases such as cSVD.

while siRNA knock down of Wnt7a in OPCs blocked these 
effects [54]. Conversely, stabilization of β-catenin with LiCl 
in ECs derived from murine embryonic stem cells showed 
a significant reduction in Cldn5 mRNA and protein levels 
[27]. Here, translocation of β-catenin to the nucleus led 
to its binding to Foxo1, forming a Foxo1–β-catenin–Tcf 
complex at the Cldn5 gene promotor site that inhibited 
its expression [27]. A correlation was observed between 
increased β-catenin and decreased CLDN5 expression in 
both patient glioma tissue and malignant glioma cells lines 
[55]. The expression of β-catenin gradually increased in 
higher glioma tumor grades, while the expression of TJ pro-
teins CLDN1 and CLDN5 were both decreased [55].

There is some discrepancy in the literature regarding the 
Wnt7a/β-catenin regulation of TJ proteins. For example, an 
in vitro study in bEnd.3 cells detected significant increases 
in levels of BBB-specific influx transporters, but did not 
observe changes in the expression of TJ proteins such as 
Ocln [17]. Functional effects of Wnt7a/β-catenin have also 
been examined. For example, an in vitro bEnd.3 perme-
ability assay using Evans blue dye, decreased endothelial 
permeability in cells treated with Wnt7a compared to con-
trol treated cells [54]. Similarly, CHIR99021 treated hPSC 
showed increased TEER resistance and decreased perme-
ability to a small molecule tracer, sodium fluorescein [25]. 
However, primary mouse brain ECs treated with Wnt3a, 
another activator of the β-catenin dependent Wnt pathway, 
did not produce an effect on EC permeability [56]. These 
findings contrast with the decrease in TEER values we 
observed after a 2-day stimulation with Wnt7a. Of note, 
results similar to ours were observed in a study of human 
aortic ECs where similar β-catenin mediated increases in 
permeability were detected [57].

The observed decrease in TEER values in both Wnt7a 
and control treated cells after 5 days may be explained by 
a model of EC function in which β-catenin levels must be 
maintained above a certain threshold level of β-catenin to 
ensure barrier function in adult CNS vasculature [58]. In 
this context, the β-catenin signaling response of bEnd.3 cells 
treated with 100 ng/ml Wnt7a might decrease after repeated 
stimulations due to desensitization, leading to disabled tight 
barrier maintenance and a decrease in electrical resistance. 
In support of this idea, previous studies suggest that activa-
tion of β-catenin due to phosphorylation and internalization 
of LRP6, leads to desensitization [59, 60].

Modulation of EC barrier permeability might be a cru-
cial step towards EC proliferation and the initiation of 
brain angiogenesis through EC sprouting, both of which 
are processes known to require Wnt signaling [17, 21, 61]. 
An interesting factor that might modulate the angiogenic 
response of ECs is hypoxia induced transcription factor 1 α 
(HIF1α). Our data suggest that β-catenin activation through 
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