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Abstract
Tau, a microtubule-associated protein predominantly localized in neuronal axons, plays a crucial role in promoting micro-
tubule assembly, stabilizing their structure, and participating in axonal transport. Perturbations in tau’s structure and func-
tion are implicated in the pathogenesis of neurodegenerative diseases collectively known as tauopathies, the most common 
disorder of which is Alzheimer’s disease (AD). In tauopathies, it has been found that tau has a variety of post-translational 
modification (PTM) abnormalities and/or tau is cleaved into a variety of fragments by some specific proteolytic enzymes; 
however, the precise contributions of these abnormal modifications and fragments to disease onset and progression remain 
incompletely understood. Herein, we provide an overview about the involvement of distinctive abnormal tau PTMs and dif-
ferent tau fragments in the pathogenesis of AD and other tauopathies and discuss the involvement of proteolytic enzymes 
such as caspases, calpains, and asparagine endopeptidase in mediating tau cleavage while also addressing the intercellular 
transmission role played by tau. We anticipate that further exploration into PTMs and fragmented forms of tau will yield 
valuable insights for diagnostic approaches and therapeutic interventions targeting AD and other related disorders.

Keywords  Post-translational modification of tau · Tau fragment · Alzheimer’s disease

Introduction

Alzheimer’s disease (AD), a progressive neurodegenerative 
brain disease featured by cognitive impairment and mem-
ory loss, has become the most common reason for demen-
tia among the elderly [1]. AD has two main features: the 

formation of β-amyloid plaques and hyperphosphorylated 
tau-caused neurofibrillary tangles (NFTs) [2, 3]. Tau is a 
microtubule-associated protein (MAP) present in neurons 
that improves microtubule assembly, stabilizes microtubules, 
and participates in axonal transport [4–7]. Studies found that 
tau, as a synaptic protein, had synaptic functions to promote 
dendrite elongation, spine formation, and synaptic plastic-
ity [8, 9]. The abnormal misfolding of tau protein forms 
β-folded fibrils that aggregate in the central nervous system 
(CNS) neurons to form tau aggregates, leading to neurode-
generative diseases collectively termed as tauopathies [10]. 
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Disorders included in this category are AD, progressive 
supranuclear palsy (PSP), corticobasal degeneration (CBD), 
argyrophilic grain disease, aging-associated tau astrocytosis, 
and primary age-related tauopathies [11, 12].

Under pathological conditions, Tau aggregation begins 
with tau detaching from microtubules, leading to microtu-
bule disassembly. The detached tau protein aggregates to 
generate oligomers, which in turn form paired helical fila-
ments (PHFs) with a double-helix bond structure, and finally 
form NFTs [13]. Tau affinity for tubulin is modulated by 
post-translational modifications (PTMs) of tau [13, 14], 
which include phosphorylation, glycosylation, O-linked 
N-acetylglucosamine (O-GlcNAc) glycosylation, acetyla-
tion, methylation, oxidation, nitrification, ubiquitination, 
and SUMOylation. Tau phosphorylation has been the most 
studied so far.

In addition to PTMs mentioned above, tau truncation is 
another important modification mediated by specific pro-
teases that promote neurodegenerative variations via neu-
rotoxic tau fragments that can aggregate and/or propagate 
across cells. To date, a number of proteolytic fragments 
of tau have already been identified in cerebrospinal fluid 
(CSF) and plasma from patients with neurodegenerative 
diseases, supporting their application as biomarkers of dis-
ease progression [15]. At present, there are corresponding 
therapeutic strategies to inhibit the toxicity of truncated tau, 
such as repressing protease activity, selectively weakening 
protease-substrate interaction, and preventing truncated tau 
from acting [16]. However, the protein breakdown process 
and pathological changes caused by the transformation of 
each tau isoform to distinct tau fragments remain to be fur-
ther studied.

Therefore, this review aims to comprehensively under-
stand PTMs of tau and has a special focus on protease-
mediated tau truncation, including their formation process, 
distribution location, possible pathogenic mechanism, and 
pathological impacts. Furthermore, we also discuss tau 
fragments in intercellular secretion and transmission. It is 
desired to find the action points of inhibiting tau lesions 
and provide crucial targets for the diagnosis and treatment 
of tauopathies including AD.

Molecular Structure and Functions of Tau

Human tau is a MAP encoded by the MAPT gene, which is 
located on chromosome 17 and consists of 16 exons [17]. 
Tau is overall hydrophilic with its relatively low propor-
tion of hydrophobic amino acids and thus has a high degree 
of thermal stability and solubility [18]. Tau can be subdi-
vided into four functional domains: an N-terminal projection 
domain (amino acids 1–150), a proline-rich domain (PRD) 
encompassing residue 151–243, a microtubule-binding 

domain (MBD) encompassing residue 244–369, and a C-ter-
minal region (amino acids 370–443), which are character-
ized by their diverse biochemical properties [19] (Fig. 1). 
Microtubule binding repeat sequences in MBD (termed R) 
and N-terminal exons (termed N) together determine the 
type and naming of six different major tau isoforms, and 
the expression of these isoforms is developmentally modu-
lated [20]. In adults, all six main isoforms of tau are formed 
by alternative splicing around MBD and the N-terminal 
region in the CNS, while only 0N3R isoform is present in 
fetal brain [20]. The second and third MBD repeats tend 
to exhibit a well-ordered β-sheet structure [21]. Exon 10 
encodes the R2 fragment, and thus, tau with exon 10 in 
MBD is collectively referred to as 4R tau, and vice versa as 
3R tau. In the brains of adult humans, the proportion of 3R 
tau and 4R tau is equivalent, while there is only 4R tau in 
adult mice [17, 22]. Collectively, tau expresses in six main 
distinct isoforms in the human CNS via alternative splicing 
processes, and alternative splicing around exon 6 produces 
six additional isoforms [23]. For instance, a set of additional 
tau isoforms 6D and 6P generated by the alternative splicing 
of exon 6 may ameliorate the polymerization of full length 
tau (htau40) and thus are promising endogenous inhibitors 
of filamentous tau formation [24].

Tau expression exists throughout the whole brain devel-
opment, and six isoforms of tau eventually exist in human 
embryonic stem cell-derived neurons [25]; hence, severity 
of the increase in tau mRNA levels is synchronized with the 
degree of maturation of cells [26]. Specifically, tau expres-
sion levels are high in SYN + /TBR1 + mature neurons and 
low in intermediate precursor cells in deep white matter 
and radial glia in the subventricular zone, with minimal 
expression in the germinal matrix and subventricular zone 
[26]. Tau shares a similar expression pattern with induced 
pluripotent stem cell–derived cortical organisms, and both 
increase with neuronal maturation, being a promising target 
for the therapy of neurodevelopmental disorders [26, 27]. 
Under pathological conditions, tau may accumulate in the 
perinuclear region of neurons or be expressed in certain 
neuronal populations. For instance, all the six isoforms of 
tau exist in dystrophic olfactory epithelial neurites of AD 
patients [28].

Biophysical studies have shown that tau is a soluble 
unfolded protein with little secondary structure but highly 
flexible conformation under physiological conditions [29]. 
However, tau can perform its tertiary structure when tau is 
separated from microtubules: “paperclip” conformational 
folding via intramolecular interactions between charged 
regions, with the C-terminus folded on MBD and the N-ter-
minus folded on the C-terminus [30–32]. Recent studies 
have revealed that phosphatase activation domain (PAD), 
the N-terminus region spanning amino acid 2–18, is tucked 
away beneath the native protein in a paperclip conformation. 
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Aberrant modification of tau is likely to alter its conforma-
tion through abnormal exposure of PAD, thereby thwarting 
normal biological functions of tau [33] and exerting promi-
nent effects on inhibiting tau aggregation and rapid axonal 
transport [34]. Proline-directed tau phosphorylation also 
tends to impair tau conformation, loosing or tightening its 
paperclip conformation [35]. The unfolding of the paper-
clip conformation may occur before tau oligomers and NFTs 
form, giving a hint that the unfolded paperclip is a precursor 
from NFTs [36].

As a multifunctional protein, tau can not only regulate 
microtubule dynamics and influence cytoskeletal compo-
nents but also modulate signaling pathways through serv-
ing as a protein scaffold for signaling cascades. Numerous 
studies have found that tau has a novel and important role in 
multiple physiological functions.

Tau protein, as MAP, combines with microtubules 
to maintain neuronal health. The prevailing view is that 
the crucial physiological function of tau in neurons is to 

stabilize microtubules in axons. A new opinion suggested 
that tau do not stabilize axon microtubules but promote the 
assembly of labile domains while restricting its binding to 
microtubule stabilizers, resulting in long labile regions of 
axon microtubules [37]. The binding of tau to microtubules 
is interfered by PTMs, inducing the pathological aggregation 
of tau. Recently, one pseudo-repeat sequence R’ of MBD 
of tau were targeted. R’ outperforms the other four repeat 
sequences when combining to microtubules. Since R’ con-
tains the most charged residues, charge-charge interactions 
could promote the combination of tau and microtubules [38]. 
Additionally, MAP has a pivotal role in the modulation of 
neuronal microtubule cytoskeleton and dynamics, among 
which tau is the most enriched. Tau bundles and cross-links 
actin filaments.

Tau is also located in the nucleus of neurons. It is mainly 
expressed in the nucleolus and pericentromeric heterochro-
matin (PCH), and nuclear chromatin proteins like tau may 
modulate chromosome stability and transcription. Tau could 

Fig. 1   Organization of tau gene and isoforms of tau protein
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interact with nuclear lamina; hence, the nuclear transport 
in neurons would be influenced under pathogenic condi-
tions [39]. In the nucleolus, the co-localization was found 
between tau and the related nucleolus proteins, for exam-
ple, epigenetic factor BAZ2Aor upstream binding transcrip-
tion factor [40], which suggests that tau may be involved in 
rDNA transcription and ribosome synthesis. Furthermore, 
it has been found that tau’s binding to the promotor region 
of rDNA locus could act as a potential role in regulating 
transcriptional processes [41]. By utilizing a tau gene knock-
out mouse model to alter tau expression, its involvement in 
transcriptional regulation could possibly confirmed. Nuclear 
tau may act as a protective role during stressful events, since 
PCH heat shock–induced DNA repair was damaged in tau 
KO mice [42].

The significance of tau in maintaining the normal struc-
ture and function of neurons has been further elucidated 
through extensive research, highlighting its multifaceted 
roles and indispensability.

Role of Post‑translational Modification 
of Tau in Tauopathies

The affinity of tau to tubulin is regulated by various PTMs, 
encompassing phosphorylation, glycosylation, acetyla-
tion, methylation, oxidation, nitration, ubiquitination, and 
SUMOylation. Among these PTMs studied extensively thus 
far is tau phosphorylation. Acetylation and some other PTMs 
also impair the functions of tau and promote tau monomer 
aggregation [43]. The study of the pathological mecha-
nisms of major PTMs is helpful for the targeted treatment 
of tauopathies.

Phosphorylation

Numerous amino acids of tau are potential phosphorylation 
sites. Tau phosphorylation is regulated by the activities of 
protein kinase and phosphatase. A large number of studies 
have shown that the activity of multiple protein kinases in 
the brain region of AD patients increases, while the activ-
ity of phosphatase decreases [44, 45]. A certain degree of 
phosphorylation of tau in its normal state does not interfere 
with the affinity with microtubules, but hyperphosphoryla-
tion can separate tau from microtubules in cell [46, 47] and 
destabilizes microtubules by making itself more likely to 
aggregate into insoluble inclusions [48]. Eventually, fila-
mentous, insoluble tau aggregates and aggregated PHFs are 
formed, namely NFTs [49].

In recent years, many researches devoted to exploring 
which sites of tau phosphorylation can reduce its affin-
ity for microtubules. Some of the known phosphorylation 
sites that alter microtubule stability are S258, S262, S324, 

and S356 [50–52]. A recent tau structure analysis done by 
Brotzakis et al. found that S262, S324, and S356 all had an 
effect on tau-microtubule complex stability, and among these 
sites, S262 had a relatively more significant effect [52]. Pro-
tein kinase R (PKR)-mediated phosphorylation of Thr181, 
Ser199/202, Thr231, Ser262, Ser396, Ser404, and Ser409 
could remove tau from intracellular microtubules [53]. 
Tyrosine sites, which are less numerous than the other two 
amino acids, can also be phosphorylated but may also play 
a stronger role in the affinity between tau and microtubules. 
Phosphorylation of multiple N-terminal tyrosine residues, 
or specific phosphorylation at the residue of tyr-310 only, 
locally reduces the β-sheet tendency structural domain of tau 
in PHF6, thereby eliminating tau aggregation and inhibiting 
its properties of microtubule binding [54, 55]. Phosphoryla-
tion of Ser396-404, present in 50% of the total structure of 
early phosphorylated tau aggregates in brain sections from 
AD and Down syndrome patients [56], is also thought to be 
more important for tau events since being found to reduce 
the solubility of full-length tau and promote aggregation 
[57]. Site-specific phosphorylation of tau could lead to tau 
mislocalization and accumulation. Phosphorylated-T231-tau 
mislocalizes to the somatodendrites and accumulates there, 
which is a prerequisite for the formation of tau tangles in 
neurogenic fibers [58]. But the opposite is also reported. 
Biophysical studies have recently revealed that phosphoryl-
ated-Ser356-tau (pS356-tau) can affect the stability of β6 
and β7 structures in protofibrils of PHFs and straight fila-
ment, blocking the interaction between tau and Aβ peptides. 
Thus, pS356-tau alters the structure of PHFs and disrupts 
the formation of NFTs [59].

Intracellularly, NFTs formed by hyperphosphorylated tau 
proteins can lead to neurodegeneration and cell death, by 
activating calpain and causing mitochondrial dysfunction 
[60]. However, there are arguments that tau protects against 
cell death. For instance, phosphorylated tau antagonizes 
apoptosis by stabilizing β-catenin [61, 62]. Hyperphospho-
rylation of tau could also negatively regulate the physical 
function of nuclear tau when protecting DNA from damage 
[63]. This may suggest that phosphorylation at distinct tau 
residues and different contexts may cause diverse effects on 
downstream signals, which may alter the course of cell death 
[64].

Acetylation

Acetylation belongs to one of the crucial PTMs of tau with 
various biological functions such as metabolism, histone 
regulation, and stress response. In transgenic AD mice mod-
els and AD patients, tau acetylation level is significantly 
increased [65]. Multiple research projects have focused on 
the potential pathogenesis and impact of tau hyperacetyla-
tion in AD.
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Recently, tau acetylation at the lysine sites has been found 
significantly increased in brains with human tauopathies [66, 
67] and influences numerous biological functions of tau, 
such as synaptic connection, mitochondrial function, tau 
aggregation, and diffusion of pathogenic tau [65, 67, 68]. 
Mitochondrial dysfunction is a clear early feature of AD 
[69]. Increased acetylation of tau at K274 and K281 has 
been identified in the brains of AD patients and has recently 
been found to have damaging effects on mitochondria 
[70]. However, BGP-15, a poly (ADP-ribose) polymerase 
(PARP) inhibitor and insulin sensitizer [71], is a potential 
therapeutic agent for AD as it mitigates these impairments 
in memory and learning via attenuating the aforementioned 
impairments caused by acetylation of tau at K274 and K281 
[70, 72]. On the other hand, recent studies have shown that 
acetylation of tau sites K311 and K340 both reduced the 
rate of microtubule polymerization, so it may affect AD by 
promoting NFT formation [73]. Li et al. identified lysine 
residue acetylation patterns on tau fragments flanking the 
amyloidogenic motifs that contributed to fibril assembly and 
observed amyloid fibril structures composed of acetylated 
tau fragments. It suggests that specific lysine residue acety-
lation patterns cause pro-aggregation interactions of tau, 
which can assemble tau into different amyloid folds [74].

Tauopathies result in synaptic loss and are one of the 
earliest structure-related factors in cognitive dysfunction 
and AD progression. It is worth noting that the increase of 
phosphorylation and acetylation induces tau to mislocate the 
synapse, inhibit the release of synaptic vesicles, and affect 
the activity-dependent secretion of tau from neurons [75]. 
Therefore, the accumulation of acetylated tau at synapses 
has a negative effect on crucial neurons related to neuronal 
activity and synaptic function. Furthermore, most tau pro-
teins are degraded through chaperone-mediated autophagy, 
while when tau undergoes acetylation, it is preferentially 
degraded through endosomal microautophagy and macroau-
tophagy, in part because acetylated tau inhibits chaperone-
mediated autophagy and leads to the extracellular release 
of tau [76].

cAMP-response element binding protein (CBP) mediates 
tau acetylation, while histone deacetylase 6 (HDAC6) and 
sirtuin 1 (SIRT1) mediate tau deacetylation [65]. According 
to reports, tau acetylation at the sites regulated by HDAC6 
competes with tau phosphorylation, thus disrupting tau 
aggregation [50]. It has been found that HDAC6 inhibitor 
CKD-504 significantly alters the tau interactome in the brain 
of animal models with AD and brain organoids derived from 
AD patients [77]. Acetylated tau collects chaperone proteins 
including Hsp40, Hsp70, and Hsp110 to form a complex and 
then combines with new tau E3 ligases, including RNF14 
and UBE2O [77]. Such tau interactome might degrade path-
ological tau via the proteasome pathway, thus improving 
cognitive capability and synaptic impairment of AD mice. 

Mounting evidence suggests that SIRT1 can protect neu-
rons from neurodegenerative diseases including AD [78]. In 
the brains of patients with AD, the decrease of SIRT1 level 
elicits the hyperacetylation and accumulation of tau, thus 
aggravating the transmission of pathogenic tau [68, 79]. The 
latest research found that the activation of AMP-activated 
protein kinase (AMPK) reduces the tau acetylation level and 
attenuates memory damage, becoming a potential target for 
future AD treatment [80]. Furthermore, in tauP301S trans-
genic mice, a high level of SIRT1 significantly ameliorates 
the diffusion of tau pathology into anatomically associated 
brain regions, suggesting that SIRT1 not only regulates tau 
acetylation but also inhibits the propagation of tau pathol-
ogy in vivo [81].

Methylation

In common proteins, lysine residues can be methylated three 
times at most, resulting in a mono-, di-, or trimethylated 
lysine, which lead to different biological outcomes. Each 
time methylation is conducted, a proton would be removed 
from the ε-amino group, therefore reducing the hydrogen 
bond potential of the Lys. Thus, methylation could also 
increase the hydrophobicity and bulk of the Lys side chain 
[82].

Tau proteins can be mono- or dimethylated in both 
healthy or AD brains. Methylated tau may be involved in 
the pathogenesis of tauopathies, which is related to aging, 
tau aggregation, and changes in microtubule dynamics. One 
study found that tau aggregated in AD brains was mono-
methylated at seven Lys sites in the PRD and MBD, where 
the relative abundance varied between 12 and 67% [83]. 
Later, they discovered that methylated tau was widely dis-
tributed in the AD brain and co-localized with neurogenic 
fibers in late AD [83]. Several types of methylation mimetics 
with tau mutation P301L show impairment of microtubule 
binding and enhancement of prion-like seeding aggrega-
tion in frontotemporal dementia [84]. It is interesting that 
the methylation status of tau changes qualitatively with the 
progression of aging and disease [84]. There is a possibil-
ity that aging alone determines tau methylation, which is 
similar to the “aging clock” described by DNA methylation 
[85]. However, the result of this conversion may be patho-
logical. Lysine methylation is a physiological PTM of tau 
protein which shifts from predominantly dimethyl lysine to 
monomethyl lysine along with the aging and progress of dis-
ease, and pharmacologically enhancing tau methylation may 
provide a way of preventing pathological tau aggregation 
[86]. In addition, several studies show that residue-specific 
methylated tau proteins are more likely to assemble into 
insoluble structures. methylation of K317 reduces tau solu-
bility, which facilitates efficient dimerization of tau proteins 
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and thus promotes more advanced oligomerization [87–89]. 
Besides, K317 methylation may also increase microtubule 
dynamics and somewhat inhibit tau-dependent proliferation 
of Hela cells [87, 90–92].

Other PTMs

Other PTMs of tau include glycosylation, ubiquitination, and 
SUMOylation.

N-terminal glycosylation occurs in hyperphosphorylated 
tau proteins. The role of N-terminal glycosylation in AD 
is unclear, and some questions remain about its correlation 
with tau function [82]. Increased O-GlcNAcylization on 
serine and threonine residues on tau proteins may protect 
tau from being phosphorylated [93]; O-GlcNAcylization 
increases tau-microtubule interactions, increases tau deg-
radation, and inhibits tau aggregation [94–96]. Therefore, 
O-GlcNAcylization of tau may have neuroprotective effects.

As a lysine-rich residue protein, tau is highly sensitive 
to ubiquitination. There are 17 residues of the 44 lysine 
residues from the 2N4R tau isoform that have been found 
to be ubiquitinated. And most of them are located in the 
MBD [97, 98]. Lysine 63 ubiquitinated tau oligomers play 
an important role in tau pathological aggregation, accumu-
lation, and proliferation [99]. Insoluble tau from AD brains 
is predominantly ubiquitinated through K48-linked modifi-
cations [97], when soluble tau could also be ubiquitinated 
through K63 polyubiquitin coupling [100], which suggests 
that dissolvable and aggregated tau are degraded by differ-
ent pathways [101]. There is no direct evidence to prove that 
tau ubiquitination has something to do with neurotoxicity. 
However, as AD progresses, proteasomal damage could lead 
to the accumulation of ubiquitinated proteins. It has been 
found that proteasome inhibition increases the accumulation 
and insolubility of tau proteins independent of tau phos-
phorylation and that proteasome inhibition may also indi-
rectly lead to reduced relative tau phosphorylation in the rat 
brain through c-JUN terminal kinase (JNK) inhibition [102]. 
When E3 ligase attaches ubiquitin, deubiquitinases (dUbs) 
remove them. Cysteine protease Otub1 is the only dUbs 
reported to target tau, removing the K48 polyubiquitin chain 
from endogenous tau and preventing tau from degrading in 
transgenic mouse-derived primary neurons [103]. Overex-
pression of USP10, one of the important dUbs, directly leads 
to elevated levels of total and phosphorylated tau, inducing 
tau aggregation and delaying tau degradation [104].

SUMOylation may be a PTM that is highly correlated 
with tauopathies. SUMO1 modification, combining with tau 
truncation, may contribute to the pathogenesis of PSP [105]. 
Tau-SUMOylation could induce tau to be hyperphospho-
rylated at a series of AD-associated sites, and tau hyper-
phosphorylation can in turn promote its SUMOylation and 
inhibit tau degradation by reducing tau protein solubility and 

ubiquitination [106]. Phosphorylation of tau at residue S-214 
promoted its SUMOylation at specific sites and improved its 
stability [107]. In an in vivo model of AD, few phospho-tau 
particles in neuritis plaques were ubiquitin-positive in corti-
cal sections from Tg2576 mice, whereas all phospho-tau par-
ticles and punctate deposits were SUMO-1-positive [108].

Role of Tau Fragments in Neurodegeneration

Truncation is one of the most important modifications in 
PTMs. Cleavage of tau by diverse proteolytic enzymes pro-
duces short, easily aggregated fragments that participate in 
the pathogenesis of neurodegenerative diseases such as AD, 
CBD, and PSP. Tau accumulation in neurons and glial cells 
is a crucial characteristic of tauopathies [6, 109]. Tau deg-
radation is found to be the precipitating factor of tau accu-
mulation, and different tau fragments are detected in CSF 
and brain extract [110, 111]. Tau in CSF is composed of a 
number of fragments, with the central region and N-terminal 
tau being the most affluent [112]. However, variants of CSF 
tau are of a complex variety, containing tau peptides from 
the N-terminal to the C-terminal, and the most reproducible 
phenomenon is a significantly increased level of C-terminal 
truncated tau in patients with AD [111, 113, 114]. Most 
CSF tau lack C-terminal and MBD parts, and the neuronal 
secretion of these tau fragments is induced by Aβ exposure, 
suggesting that CSF tau levels exhibit neuronal responses 
to Aβ pathology [115]. Numerous tau fragments cleaved 
by diverse proteolytic enzymes play different roles in tau 
pathology (Table 1).

Caspase

Caspases are a cysteine protease family that are primarily 
involved in cell death and inflammatory responses. On the 
one hand, caspase-8, -9, and -10 could initiate apoptosis by 
activating the executioner caspase-3, -6 and -7. On the other 
hand, caspase-1, -4, -5 and -11 are regarded as inflamma-
tory caspases [140]. Especially, activated caspase-3 could 
lead to non-inflammatory cell death [141–143]. Caspase-
3-cleaved tau could be possible markers of preclinical neu-
rodegenerative disease [144]. The substrate for caspase-6 is 
lamin A, and its cleavage is crucial for apoptotic chromatin 
condensation [145]. Degenerative diseases such as AD are 
also associated with neuronal apoptosis and inflammation 
[146, 147], so it can be assumed that there is a relationship 
between caspases and the progression of AD. Activation 
of caspase induces the formation of NFTs via cleaving tau. 
Truncated tau cleaved by activated caspases recruits normal 
tau to form tangles, which in turn reduce caspase activity to 
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inhibit acute neuronal death and make tangle-bearing neu-
rons long-lived [148, 149]. Caspase-cleaved human tau frag-
ments (tauΔD402, and tauΔD421) are proved in the patho-
genesis of tau and induce cognitive impairment [16, 150].

TauΔD421

TauΔD421 is produced by caspase-3, caspase-6, and cas-
pase-7, whereas tauDΔ402 is produced only by caspase-6. 
Tau is cleaved at aspartate 421 (D421) by these caspases to 
form tauΔD421. In individuals without cognitive impair-
ment, active caspase-6 is present only in the regions where 
NFTs first appear: hippocampal CA1 and the entorhinal 
cortex [151]. Tau fragments cleaved by caspase-6 at 
amino acids 421 (tauΔD421), as well as active caspase-6, 
are present in pre- and mature NFTs composed mainly 
of tau filaments in the patients’ brains with mild cogni-
tive impairment (MCI) or early stage of AD, while absent 
in the non-AD brains [150, 152]. Levels of tauΔD421-
positive CA1 are negatively associated with mini-Mental 
State Examination scores, and the levels of serum distin-
guish patients with AD and MCI from those with other 
dements [116, 153].

Numerous studies have demonstrated that tauΔD421 
participates in the pathological mechanisms of tau in many 
aspects, inducing axonal loss, mitochondrial dysfunction, 
and tau polymerization and aggregation in vitro [116–119]. 
TauΔD421-induced alterations in mitochondrial dynam-
ics could abruptly affect normal synaptic communication. 
In AD mice, cells expressing tauΔD421 show fragmented 
mitochondria and impaired mitochondrial dynamics by 
inhibiting the optic atrophy protein (Opa1) [154]. In addi-
tion, tauΔD421 inhibits mitochondrial transport by increas-
ing the co-localization of trafficking kinesin-binding protein 

2 (TRAK2) with mitochondria and reducing ATP produc-
tion, which in turn reduces the number of transporting mito-
chondria, leading to the deposition of mitochondria in the 
cytoplasm and a reduction of synaptic mitochondria, which 
leads to synaptic failure in AD [155].

Immunodepleting of tauΔD421 inhibits the aggregation 
of tau induced by high molecular weight protein fraction in 
AD brain, indicating that tauΔD421 affects the pathologi-
cal spread of tau [156]. Furthermore, tauΔD421 may lead 
to tau oligomers, microgliosis, and neurodegeneration [148, 
157]. However, if a tau mutant that cannot be cleaved by 
caspase in D421 is expressed, mice could develop memory 
deficits, synaptic plasticity defects, and prepathological tau 
changes [158]. The accumulation of tauΔD421 correlates 
with increasing age. Overexpression of tauΔD421 in middle-
aged mice contributes to significant hippocampal long-term 
potentiation deficits and cognitive deficits, and the increas-
ing age is positively associated with the neuronal degenera-
tion affected by tauΔD421 accumulation [159]. Moreover, 
the apoptosis of rat cortical neurons is initiated, when treated 
with aggregated Aβ, and during the process, tau is cleaved 
at D421 with the onset of neurite death, indicating that tau 
cleavage is an important component of the deleterious cas-
cade resulting in neuronal dysfunction and apoptosis [160]. 
Fasulo et al. found that tau151–421 cleaved by caspase-3 
exerted significant apoptotic effects on rat hippocampal neu-
rons [161]. But how the D421 could still remain in undead 
neurons and how it reverses the apoptotic effect and found 
in the AD brain are still unknown. TauΔD421 impairs neu-
ronal firing, causing inefficient initiation of network bursts, 
consistent with reduced excitatory drive. Since reduced neu-
ronal activity is coupled to proteasome dysfunction, it drives 
cleaved tau accumulation at the post synaptic density and 
subsequent synaptotoxicity [162].

Table 1   Main tau fragments involved in tau pathology

Type of fragments Associated proteases Found in CSF Lesion References

TauΔD421 Caspase-3, -6, -7 Reported Axonal loss, mitochondrial dysfunction, tau polymeriza-
tion, and aggregation in vitro

[116–119]

ΔTau314 Caspase-2 Not yet reported Mislocalization to dendritic spine, reduction of AMPA 
receptor, and excitatory neurotransmission

[120, 121]

17 kDa tau Calpain-1 and -2 Not yet reported Altering the composition of cytoskeleton, synaptic degen-
eration through clathrin-mediated pathway, blocking 
axonal transport

[122, 123]

N224 tau Calpain-2 Reported Not clear (but worthy of diagnosis) [124–126]
Tau1–368 AEP Reported Promoting aggregation, promoting the expression of Aβ, 

phosphorylation inducing memory impairment
[127–130]

Tau168–368 AEP Not yet reported Accumulation in microglial cells [131]
26–230tau (NH2-tau), 

26–44 NH2-tau
Caspase and 

calpain-1 and 
caplain-2

Reported Damage of mitochondrial function, presynaptic defect, 
damage of study/memory function

[110, 132–137]

tau151–391, tau297–391 Unknown Not yet reported Form PHFs in vitro and cultured cells [138, 139]
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As to possible treatment for this target, a study reveals 
that tauΔD421 expression significantly reduces dendritic 
spine density and synaptic vesicle number in hippocampal 
neurons. Also, neurons transfected with tauΔD421 showed 
a significant accumulation of synaptophysin protein in soma. 
All these synaptic changes could be prevented by cyclo-
sporine A, a drug which could inhibit the function of mito-
chondrial permeability transition pore (mPTP). It means that 
mPTP may play a role in synaptic dysfunction derived from 
caspase-3-cleaved tauΔD421, and cyclosporine A may have 
a cure for AD and other neural dysfunctional diseases [163].

ΔTau314

Aspartate 314 (D314) of tau is another site for cleavage by 
caspase-2; this process could mislocalize tau to dendritic 
spines, which can facilitate the mislocalization of tau pro-
teins, leading to reduced postsynaptic AMPA receptors and 
reduced excitatory neurotransmission [120], thereby affect-
ing cognitive and synaptic function in animal and cellular 
models of tauopathies and reversibly damaging memory in 
animal models [121]. The soluble fragment Δtau314 brought 
about by this cleavage is significantly elevated in the brains 
of individuals with Huntington’s disease, Lewy body dis-
ease, and AD [120, 164], so Δtau314 could become a CSF 
biomarker to predict tauopathies. Δtau314 protein has now 
been found to have a distribution in the human striatum and 
prefrontal cortex [164] and has also been found to be pre-
sent in the inferior temporal gyrus [165]. Using caspase-2 
inhibitors could block the production of Δtau314, inhibiting 
the excessive dendritic spinal accumulation of tau and thus 
influencing excitatory neurotransmission in reverse in cul-
tured primary hippocampal neurons of rats [166]. Another 
treatment for this target is the D314E mutation. Targeted 
insertion of D314E mutated htau into mice to express cleav-
age-resistant D314E mutant retards transgene-mediated 
accumulation of tau in postsynaptic densities [167].

Calpain

Calpains are a series of calcium-dependent proteases that 
are widely expressed in a variety of organisms and exert 
activity under neutral pH conditions [168]. Calpain activa-
tion is a crucial neurodegenerative factor leading to apop-
tosis and is closely associated with pathological processes 
of neurodegenerative diseases [169]. There is always a link 
between neurodegenerative diseases like AD, Huntington’s 
disease and PD, and an abnormal increase in calcium con-
centration, which leads to the abnormal activation of calpain 
[170]. Abnormal activation of calpain can nonspecifically 
cleave a variety of target proteins including tau proteolysis. 
Specifically, calpain-1 and -2 lead to the cleavage of 17 kDa 
tau, and calpain-2 mediates the formation of N224 tau [171, 

172], both of which are common tau fragments with neuro-
toxic effects and mediation in the progression of degenera-
tive diseases. Focus on possible treatment, calpain-1 activ-
ity may be downregulated by UB-ALT-EV, a new NMDA 
receptor antagonist, under which 5FXAD mice show a better 
cognitive performance, revealing that UB-ALT-EV could 
reduce cognitive alterations in the mice model of familial 
AD [173].

17 kDa tau (Tau45–230)

β-Amyloid oligomers could induce calpain activation and 
thus cleavage of tau. One of the more studied fragments 
is the 17  kDa tau fragment comprising 45–230, which 
arises due to the cleavage by calpain-1 at K44–K45 [174] 
and cleavage by calpain-1 and -2 at R230–T231 [172]. 
Tau45–230 occurs in the temporal cortex of AD patients 
and can also be detected in the brains of patients with 
other tauopathies such as Pick’s disease and Parkinson’s 
syndrome-17 [175]. Tau45–230 may exert toxicity by way 
of oligomerization. The oligomer can be incorporated by 
neurons and indirectly induce neurosynaptic degeneration. 
In vitro, tau45–230 can oligomerize to form heptamers and 
octamers [176]. Another study reported that tau45–230 oli-
gomers can be internalized by cultured hippocampal neurons 
and induce neurosynaptic degeneration through a clathrin-
mediated mechanism [177].

Tau45–230 can also function as a toxic agent by alter-
ing the composition of the normal neuronal cytoskeleton 
and affecting neurite growth and transport. In cultured hip-
pocampal neurons, tau45–230 can exert toxicity by partially 
blocking axonal transport along the microtubules, mark-
edly reducing the organelles transported along axons [178]. 
Tau45–230 can also trigger a transient increase in unstable 
tyrosine microtubules [123]. Significant synaptic deficits 
were detected in mice expressing tau45–230 at 6 months 
postnatally, accompanied by altered NMDA receptor expres-
sion [122]. Tau45–230 overexpression leads to apoptosis in 
Chinese hamster ovary cells CHO, hippocampal neurons, 
and mouse hippocampus [122, 179, 180]. Yet it has also 
been argued that the 17 kDa tau fragment may be actually a 
shorter tau (125–230) fragment [172]. The accumulation of 
both tau125–230 and tau45–230 fragments has recently been 
found in brain tissue from acute ischemic shock [181]. Thus, 
the 125–230 fragment may also be involved in pathological 
progression of neurodegenerative disease.

N224 tau

Tau in CSF is recently found to have a major calpain-2-in-
duced cleavage at amino acid (aa) 224, and the N-terminal 
tau fragment terminating at aa224 (N224) is prominently 
upregulated in AD [182]. Levels of N224 tau from the 
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soluble brain fraction of AD patients are significantly lower 
than that of controls, while in CSF, N224 tau is higher in 
AD patients than in controls [124]. High levels of N224 tau 
correlate with low Mini-Mental State Examination (MMSE) 
scores [126]. Cicognola et al. demonstrated that increased 
levels of N224 tau in CSF were connected with conversion 
from MCI to cognitive decline and AD [124]. Moreover, 
N224 tau levels are lower in PSP or corticobasal syndrome 
(CBS) than in AD [125]. N224 tau exists in tangles and neu-
ronally derived extracellular vesicles (NDEV), with neuron-
specific secretion in CSF and upregulation in AD, indicating 
its involvement in cognitive impairment and AD pathology 
[124]. In addition, a recent study has revealed that levels of 
N224 tau in AD patients were higher than that in MCI, sub-
jective cognitive decline SCD, PD, PD dementia, multiple 
system atrophy, and PSP [126]. Therefore, N224 tau could 
contribute to distinguish AD from SCD and other dementias 
and may be an important tau biomarker to study species of 
tau fragments in CSF.

NH2‑tau

NH2-tau is a 20–22  kDa fragment that predominantly 
involves in mitochondria from synaptosomes of the AD 
brain [134]. This fragment was discovered by Corsetti et al. 
while studying the toxic effects of the N-terminal fragment 
of tau. At that time, they found that some NH2-terminal 
fragments, such as 26–44 tau and 26–230 tau, induced 
N-methyl-D-aspartate receptor (NMDAR)-mediated cell 
death [183], and 26–230 tau was also found by others in cel-
lular and animal models of AD, so they named this fragment 
NH2-26–230 tau (aka NH2-tau) [184]. The full length of 
NH2-tau comprises 26–230 aa, and the first 25 amino acids 
have been clearly sheared down by caspases, while amino 
acids after 231 are sheared by calpain-1 and -2 [185, 186]. 
NH2-tau is an essential component in the toxic cascade that 
leads to neurodegeneration or cell death [186]. Following 
apoptotic stimulation or neurodegenerative injury, aberrant 
activation of cysteinyl asparaginase may produce toxic NH2-
tau fragments which could then propagate and also elaborate 
cellular dysfunction.

NH2-tau enrichment in hippocampal parenchyma 
revealed significant impairment of learning/memory capac-
ity in treated healthy mice, which was associated with 
reduced synaptic linkages and neuroinflammatory responses 
[132, 133]. NH2-tau can accumulate in AD synapses and be 
detected in CSF [110], and this truncated tau protein in vitro 
can acutely cause presynaptic defects in K+-induced glu-
tamate release from hippocampal synaptosomes as well as 
altered local calcium dynamics [133]. Downregulation of 
the CREB/c-fos pathway can be detected in the hippocam-
pus following subchronic intracerebroventricular infusion of 
NH2-tau protein into wild-type mice [132]. A more widely 

reported function of NH2-tau is its damage to mitochon-
dria. Extracts of Aβ oligomers may damage mitochondrial 
function by producing this kind of fragment in vitro in rat 
hippocampal neurons and mature human SY5Y cells [134]. 
NH2-tau can impair mitochondrial autophagy, directly 
through the inhibition of ADP/ATP exchange depending 
on ANT-1 [135, 137, 187] and indirectly through impair-
ing mitochondrial autophagy [135]. One of the pathways 
is that NH2-tau causes abnormal recruiting of parkin and 
UCHL-1 to mitochondria, where deleterious autophagic 
clearance occurs [187].

NH2 26–44 tau acts as the minimum active moiety of 
NH2-tau. Experiments with the NH2-derived NH2 26–44 
tau peptide revealed that both cytochrome C oxidase and 
adenine nucleotide translocators are targets of this frag-
ment, but adenine nucleotide translocation is a characteristic 
target of the fragment, and this action significantly affects 
cellular access to ATP synthesized by mitochondria [136, 
137]. In contrast, fragments 1–25 do not have such a sig-
nificant toxic effect. Another example is that this truncated 
tau protein accumulates at synapses of AD individual and 
can be secreted into parenchyma. This could acutely trigger 
presynaptic defects in glutamate release evoked by K+ at 
synaptosomes in the hippocampus as well as alter local Ca2+ 
dynamics [133].

It has recently been shown that 12A12mAb can well neu-
tralize NH2tau fragments [188], restoring synaptic linkage 
and cytoskeletal function and effectively improving learning 
and memory function in pathological AD mice [189]. NH2-
tau proteins may be involved in pathological degeneration 
of the retina, but targeted injection of monoclonal antibodies 
can ameliorate the degenerative process [188] and improve 
visuo-spatial recognition memory [190]. Interestingly, 
12A12mAb could downregulate the steady state expression 
levels of APP and beta-secretase 1 (BACE-1), thus limit-
ing the Aβ production both in the hippocampus and retina, 
showing that 12A12mAb could also make an influence on 
APP involved pathological mechanisms [191].

AEP

Asparagine endopeptidase (AEP) is a lysosomal cysteine 
proteinase, also named δ-secretase, which is not expressed 
in neurons but in microglia [131, 192]. AEP specifically 
hydrolyses the carboxyl-terminal peptide bond of aspara-
gine residues and is a crucial enzyme participating in the 
processing of antigens and autoantigen processing, since it 
is known to involve in the processing of antigens for MHC 
class II presentation in the lysosomes of antigen-presenting 
cells [193, 194]. A decrease in pH can activate inactive full-
length pro-AEP [194]. AEP is related to neurodegeneration 
[192, 195]; it could mediate dementia by enhancing amy-
loid plaque and tau hyperphosphorylation, indicating that 
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it played an important role in neurodegeneration [196]. It 
can specifically shear human synuclein (aSyn) at the N103 
site and trigger its aggregation to produce neurotoxicity 
and mediate PD pathogenesis [197]. In the brain of patients 
with PD, Netrin-1 expression is downregulated, and UNC5C 
receptors are specifically sheared by activated AEP, leading 
to apoptosis of dopaminergic neurons [198]. In AD, AEP 
activity is upregulated, and the activation of AEP leads to 
hyperphosphorylation of tau protein, mediating the neu-
rofibrillary pathology [192, 197, 198]. Tau168–368 and 
tau1–368 are important fragments processed by AEP.

Tau168–368

Tau is cleaved at N167 and N368 by AEP after endo-
cytic uptake into microglia rather than neurons, forming 
tau168–368 fragment at similar concentrations in both AD 
and control groups, which does not accumulate in micro-
glia [131]. AEP-mediated tau cleavage does not alter in AD 
compared with control groups. Therefore, AEP-cleaved 
tau168–368 is a component of the proteolytic cascade that 
induces tau degradation, and AEP-mediated cleavage of 
tau is a physiological response that occurs when secreted 
neuronal protein is degraded in microglia. Additionally, the 
amount of tau fragment cleaved at the site N368 in insolu-
ble tau aggregates is very small (< 0.1%) compared with 
uncleaved tau, indicating that AEP-cleaved tau has a lim-
ited role in tau aggregation in AD [199]. Based on these 
results, AEP-mediated tau cleavage might not be a direct 
valid therapeutic target for AD. However, AEP-cleaved tau 
does participate in other important aspects of AD pathology.

Tau1–368

To date, effective fluid biomarkers for tau pathology in AD 
are still lacking. A new SIMOA® quantification assay has 
recently been established to assess the presence of tau1–368 
in CSF. The results showed that tau1–368 is a tangle-rich 
fragment, and the tau1–368/total tau (t-tau) ratio is signifi-
cantly decreased in AD patients, reflecting tangle pathology. 
This ratio in CSF is negatively associated with the retention 
of 18F-Genentech Tau Probe 1 (GTP1) [200]. This new tau 
biomarker might aid in the AD diagnosis and contribute to 
drug development targeting tau pathology. In addition to 
cleaving tau at N368, AEP can also cleave amyloid precursor 
protein (APP) to form APP 586–695, contributing to cog-
nitive impairment and the pathogenesis of AD [127, 128]. 
Upon APP stimulation, tau1–368 significantly enhances 
beta-secretase1 (BACE1) expression and Aβ production, 
facilitating its nuclear translocation [127]. Notably, the 
activation of JAK2 or SGK1 kinases by Aβ phosphorylates 
STAT1 and triggers its binding to tau1–368 [201]. Thus, 
not only tau may be a downstream effector of Aβ, but also 

tau1–368 can exacerbate Aβ production. Notably, aberrant 
PTMs of truncated tau are equally important in endogenous 
tau pathology and neurodegeneration. Tau1–368 contains 
MBD and PRD, whose phosphorylation stimulates endog-
enous tau phosphorylation and aggregation. Interestingly, 
phosphorylated tau1–368 causes body weight loss and rec-
ognition memory impairment of C57BL/6 J mice, whereas 
non-phosphorylated tau1–368 does not [129, 130]. In addi-
tion, overexpression of phosphorylated tau1–368 elicits hip-
pocampal neuronal loss and gliosis, but tau1–368 delivery 
and tau1–368-mediated neurotoxicity are phosphorylation 
independent [129, 192]. Spinal cord injury could stimulate 
AEP activation in mice. Activated AEP then cleaved APP 
and tau, resulting in tau1–368 formations, and consequen-
tially accelerated Aβ deposit and Tau hyperphosphorylation, 
resulting in cognitive impairment [196].

Secretion and Transmission of Truncated Tau

The aggregation and diffusion of misfolded tau protein in the 
CNS is one of the hallmark features of tauopathies. In AD 
brains, tau aggregates accumulate first in the trans-entorhi-
nal cortex and then spread to the anatomically connected 
hippocampus, leading to progressive cognitive deficits and 
neurodegeneration [202]. Numerous studies have revealed 
that tau can undergo prion-like pathological propagation 
between cells [203], that is, cellular secretion of tau pro-
tein, internalization of tau, and misfolding of normal tau 
in recipient cells, but currently, no epidemiological evi-
dence shows that tau aggregates are infectious [204, 205]. 
Specifically, prion-like transmission of tau starts with the 
production of transmissible seed-competent tau monomers 
[206], which generate distinct biologically active and self-
replicating assemblies called strains in distinct tauopathies. 
Secondly, pathological cells secrete and normal cells sub-
sequently uptake seed-competent tau. Finally, templated tau 
misfolding occurs in recipient cells, resulting in the forma-
tion of new tau seeds. Under physiological and pathological 
conditions, tau seeds are actively secreted outside the cell 
through a variety of possible unconventional pathways, such 
as plasma membrane translocation, secretion based on mem-
brane organelles, and ectosomal shedding [207–209]. The 
physiological role of extracellular tau needs to be further 
investigated, but preliminary studies revealed that tau in the 
extracellular space enhances electrical activity in primary 
neuronal cultures [210].

Hyperphosphorylation can promote tau detachment 
from microtubules and cell secretion of full-length tau 
[211]. Recently, however, truncated tau has been found to 
be transmitted between cells in a limited capacity, independ-
ent of phosphorylation. Although phosphorylation does not 
affect the cell-to-cell transmission of tau1–368, it mediates 
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neurotoxicity when tau1–368 is over-expressed in the hip-
pocampal CA1 region, resulting in anxiety, impaired recog-
nition memory, and weight loss [129]. In addition, tau fibrils 
synthesized artificially with truncated tau were sufficient 
to deliver tau inclusions in mouse models. To be specific, 
synthetic preformed fibrils (pffs) assembled from truncated 
tau containing four microtubule-binding repeats induce the 
time-dependent propagation of NFT-like inclusions from the 
injection site to contiguous brain regions [212].

Tau degradation is normally completed via the ubiqui-
tin–proteasome system and autophagy-lysosome system [213, 
214]. However, phosphorylated tau in pathological states can 
be directly degraded through the autophagy-lysosome system 
[215]. As a further step, excess tau remains on the surface of 
the lysosomal membrane, which makes it possible for tau to 
oligomerize at or near the organelle surface [102, 216]. The 
accumulation of aggregated proteins could result in lysosomal 
dysfunction in multiple ways, including membrane rip and lys-
osomal cleavage, which can promote tau aggregation to form a 
vicious cycle. It is probable that lysosomal dysfunction results 
in the compensatory release of extracellular vesicles/exosomes 
in neurodegenerative diseases [217, 218]. As tau lacks conven-
tional signal sequences, there are four possible unconventional 
protein secretion mechanisms leading to tau secretion [219]: 
(1) direct export across the plasma membrane; (2) secretion 
via ectosomes that are shed from the plasma membrane, or 
microvesicle shedding; (3) formation of intraluminal vesicles 
(ILVs) through late endosome membrane’s inward budding, 
free tau in cytosol can be sequestered in ILVs which could 
form endosomes of multivesicular vesicles (MVBs), and sub-
sequently, tau can be packaged into exosomes and secreted 
extracellularly upon fusion of the MVB with the plasma mem-
brane; and (4) direct release into the extracellular space in a 
vesicle-free manner via the organelle hitchhiking pathway.

To be inclusive, tau can enter extracellularly via ecto-
some, exosome, or without vesicles [220]. Tau-containing 
exosomes are derived from MVB and in AD patients, where 
exosomes have significantly higher levels of tau protein 
than normal exosomes [221]. Exosomal tau from neurons 
is hyperphosphorylated, and the release of tau-containing 
exosomes could be promoted through depolarization of 
neurons. These exosomes complete the transmission of tau 
between neurons through synaptic connection [222]. In 
human-induced multifunctional neurons derived from stem 
cell, the exosomes contain mutant tau (mTau) and contain 
the P301L and V337M mutations. In Podvin’s study, mTau 
is a dynamic regulator of exosome biosynthesis, leading to 
the acquisition, deletion, upregulation, or downregulation of 
protein cargo, resulting in pathological mTau exosomes that 
can cause p-tau neuropathology in the brain of mice intra-
cellularly [223]. Microglia could also release tau-contained 
exosomes and cause the spread of abnormal tau. This kind 
of immune cell engulfs neurons containing pathological tau 

proteins, which are subsequently transmitted to exosomes 
involved in the pathological transmission of tau in the brain. 
This transmission can lead to tau propagation from the olfac-
tory cortex to the dentate gyrus region. However, clearing 
microglia and inhibiting exosome synthesis with GW4869 is 
able to limit tau propagation in patient brains [224]. P2RX7 
is an ATP-gated cation channel that triggers exosome secre-
tion, and oral administration of a P2RX7 inhibitor to P301S 
tau transgenic mice inhibited exosome secretion; thus, 
MC1 + and Alz50 + tau proteins were significantly reduced 
in the hippocampus, and significant improvements in work-
ing and situational memory of mice were discovered [225]. 
Truncated tau species which lack MBD that is essential for 
seeding have been reported to undergo active secretion.

Both tau fragments or full-length tau could be secreted. 
The PRD of tau could contribute as a membrane-binding site 
when full-length tau was secreted [226]. However, extracellular 
species are predominantly composed of N-terminal fragments 
of tau, while there is no evidence that C-terminal tau fragments 
are involved [210]. The effect of expressing constructed 
N-terminal and full-length tau in transfected neuronal lines is 
examined, and secreted tau shows a cleavage pattern which is 
similar to tau in CSF from AD patients [227]. Htau was secreted 
by neuronal and non-neuronal cells when htau was upregulated. 
In HeLa cells, phosphorylation and cleavage of tau favored its 
secretion. A mutant form of tauΔD421, where caspase-3 prefer 
to cleave, was secreted more than wild-type tau, which could 
contribute to the pathological tau propagation in brain and its 
accumulation in the CSF [228].

The transcription factor EB (TFEB), a master of regulat-
ing lysosomal biogenesis, regulates the secretion of trun-
cated mutant tau lacking MBD. Since lysosomal exocyto-
sis mediated by TFEB could promote cellular clearance, it 
has been proved that reduced interstitial fluid tau without 
TFEB’s occurrence have something to do with enhanced 
cell-to-cell pathology and accelerated spreading; thus, exo-
cytosis could act as a clearance mechanism, reducing intra-
cellular tau on pathological conditions [229]. VAMP8, a late 
endosomal R-SNARE, increased tau secretion, which was 
cleaved at the C-terminal. Upon VAMP8 overexpression, an 
increase of caspase-3-cleaved tau in the cell lysate and medium 
was observed. However, this intracellular cleaving may not 
be necessary, since extracellular tau cleavage by caspase-3 
could occur resulting from released active caspase-3, which 
reached the most when VAMP8 was upregulated [230]. This 
could explain why full-length tau could be secreted, but most 
of extracellular tau are C-terminal cleaved. Tau cleavage medi-
ated by AEP is a physiological event occurring during secreted 
neuronal proteins are degraded in microglia [131]. N-224 tau 
fragment is specifically processed in neurons, discovered in 
NFT, secreted in CSF, and overexpressed in AD [231].

Few articles have discussed tau-containing ectosomes, but 
in principle, similar biogenesis mechanisms can be activated 
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in distinctive regions of the cell to produce ectosomes and 
exosomes. For example, the endosomal sorting complex required 
for transport (ESCRT) mechanism participated in the biosynthe-
sis of both exosomes and ectosomes, and the situation is similar 
for both exosomal and endosomal sorting mechanisms [232].

Conclusion

Tau protein is widely distributed within the neurons and has 
multiple functions, from modulating the cellular structure to 
regulating the expression of DNA or RNA, from connecting 
the transported organisms and the microtubules to controlling 
the transportation between nucleus and plasma. Tau is one of 
the most crucial molecules in tauopathies like AD, PSP, and 
CBD. Numerous studies proved tau structural abnormalities 
were often induced by post-translational modifications and 
abnormal protease cleavage, where they contribute to induce 
pathological lesions in the nervous system. The special role 
and pathological mechanism of tau abnormalities in these dis-
eases are very complex and unclear till now. In fact, the precise 
understanding of whether tau is the causative factor underlying 
these diseases or a consequence of other pathogenic agents 
also remains elusive. Nevertheless, more in-depth investigation 
is still worthy of attention and expectation because that tau and 
its fragments can serve as fundamental basis for tauopathies 
diagnosis, novel biomarkers for assessing disease progression, 
and a potential target for therapeutic interventions.
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