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Abstract
Alzheimer’s disease (AD) is a globally prevalent form of dementia that impacts diverse populations and is characterized 
by progressive neurodegeneration and impairments in executive memory. Although the exact mechanisms underlying AD 
pathogenesis remain unclear, it is commonly accepted that the aggregation of misfolded proteins, such as amyloid plaques 
and neurofibrillary tau tangles, plays a critical role. Additionally, AD is a multifactorial condition influenced by various 
genetic factors and can manifest as either early-onset AD (EOAD) or late-onset AD (LOAD), each associated with specific 
gene variants. One gene of particular interest in both EOAD and LOAD is RIN3, a guanine nucleotide exchange factor. 
This gene plays a multifaceted role in AD pathogenesis. Firstly, upregulation of RIN3 can result in endosomal enlargement 
and dysfunction, thereby facilitating the accumulation of beta-amyloid (Aβ) peptides in the brain. Secondly, RIN3 has been 
shown to impact the PICLAM pathway, affecting transcytosis across the blood-brain barrier. Lastly, RIN3 has implications 
for immune-mediated responses, notably through its influence on the PTK2B gene. This review aims to provide a concise 
overview of AD and delve into the role of the RIN3 gene in its pathogenesis.
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Introduction

According to the latest updates from the World Health 
Organization (WHO), there are nearly 55 million dementia 
patients, with 10 million cases arising each year, and Alz-
heimer’s disease (AD) is the most prevalent type, affecting 
60–70% of total dementia cases [1]. AD is a multifactorial 
chronic neurodegenerative disease associated with genetic 
and environmental factors, but most cases are sporadic 
[2]. Neuropathological specimens of AD patients showed 
atrophic changes caused by aggregation of misfolded pro-
teins as amyloid plaques and neurofibrillary tau tangles 
(NFTs) [3], which were predominant in the hippocampus, 
frontotemporal cortical cells, the striatum, and the thalamus 
[4, 5]. AD patients often show cognitive disorders related to 
memory loss, inability to store new information, difficulty 
formulating thoughts and interpreting them into comprehen-
sive speech, and problems with reading or paying attention 
[6]. They also develop behavioral changes like agitation, 
impulsive actions, and inappropriate language [7]. The 
symptoms can later worsen and involve physical disabilities 

 * Eshak I. Bahbah 
 Isaacbahbah@gmail.com

1 Department of Neurology, Faculty of Medicine, Al-Azhar 
University, Cairo, Egypt

2 Faculty of Medicine, Al-Azhar University, Cairo, Egypt
3 Medical Administration, University of Sadat City, Sadat City, 

Egypt
4 Faculty of Medicine, Ain Shams University, Cairo, Egypt
5 Faculty of Medicine, The Hashemite University, Zarqa, 

Jordan
6 Faculty of Medicine, Assiut University, Assiut, Egypt
7 Department of Pharmaceutics, Faculty of Pharmacy, Zagazig 

University, Zagazig, Egypt
8 Faculty of Medicine, Zagazig University, Zagazig, Egypt
9 Department of Neurology, Faculty of Medicine, Ain Shams 

University, Cairo, Egypt
10 Faculty of Medicine, Al-Azhar University, Damietta, Egypt

/ Published online: 23 November 2023

Molecular Neurobiology (2024) 61:3528–3544

http://orcid.org/0000-0002-6168-9134
http://crossmark.crossref.org/dialog/?doi=10.1007/s12035-023-03802-0&domain=pdf


1 3

such as urinary and fecal incontinence, infection, dysphagia, 
involuntary movements, and loss of communication [8].

The complexity of AD causation is increasingly under-
stood, with over 20 genetic risk factors identified in addi-
tion to the previously known apolipoprotein E (APOE) 
[9–11]. Several newly discovered genes, such as Sortilin-
related receptor 1 (SORL1), Protein tyrosine kinase 2 beta 
(PTK2B), Myocyte Enhancer Factor 2C (MEF2C), Bridging 
integrator1 (BIN1), Phosphatidylinositol Binding Clathrin 
Assembly Protein (PICALM), and Ras and Rab Interactor 3 
(RIN3), are implicated in cellular processes like endocytic 
trafficking, underscoring the role of these pathways in AD 
pathogenesis [12]. For example, the amyloidogenic cleav-
age of amyloid precursor protein (APP) into toxic forms is 
regulated by endocytic mechanisms [13, 14]. Recent studies 
on RIN3, a guanidine nucleotide exchange factor, suggest 
its role in elevating the risk of AD, possibly by interact-
ing with Rab5 to disrupt cellular trafficking and signaling 
[15–17]. Variants and expression levels of RIN3 have shown 
significant associations with AD, yet the exact mechanisms 
remain unclear. In this review, we aimed to summarize the 
current literature regarding the association between RIN3 
expression and AD and possible mechanisms explaining this 
association.

Brief Overview of Protective and Risk Factors 
of AD

Risk Factors

Several factors, both modifiable and unmodifiable, play 
a role in the onset and progression of AD (Fig. 1). The 
major contributors are age, genetic predispositions, and 
family history [18]. Specifically, individuals over 65 are 
at a heightened risk for developing AD, but age alone 
is not a conclusive factor and often interacts with other 
variables [19, 20]. Although the elderly are more prone 
to AD, the incidence rates can vary by country [21, 22]. 
Women in their eighties are more likely to have AD, and 
some studies suggest that this increased risk may also 
apply to women above 65 [23]. The genetic landscape 
is complex; while numerous theories seek to identify 
specific genes contributing to AD, the APOE-e4 allele 
remains the most substantial genetic risk factor for late-
onset AD [18]. This allele is one of three forms of apoli-
poprotein inherited from each parent, and its expression 
may vary across ethnic groups, such as in African Ameri-
cans [18].

Fig. 1  Protective and risk factors of AD
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A strong family history of AD, particularly in first-
degree relatives, is another significant unmodifiable risk 
factor [24]. One large cohort study even indicated that hav-
ing a family history could increase AD risk independently 
of the APOE-e4 allele [25]. However, the lifestyle practices 
within a family could also be a hidden contributing factor, 
thus complicating the significance of family history in AD 
development [18].

On the other side of the spectrum are modifiable risk fac-
tors, which are estimated to account for roughly 30% of all 
AD cases, although the direct links are not fully established 
[26]. These include lifestyle-related factors such as poor die-
tary habits, sedentary behavior, smoking, poorly managed 
diabetes, hypertension, and additional social and economic 
factors like inadequate education and poor mental health 
[18]. Traumatic Brain Injury (TBI) is another modifiable 
risk factor; patients with a history of TBI are twice as likely 
to develop dementia [27, 28], and mild TBIs can accelerate 
the onset of AD, especially when injuries are repeated [29, 
30]. While the exact mechanisms remain unclear, chronic 
traumatic encephalopathy (CTE) resulting from repeated 
head injuries in activities like sports is suspected to affect 
cognitive and behavioral functions [31].

Protective Factors

Physical exercise and dietary habits are often cited as protec-
tive factors against the onset and progression of dementia 
[32, 33]. Physical activity is thought to enhance blood and 
oxygen flow to the brain, although research has yet to specify 
the ideal type, frequency, or duration of exercise for maximal 
benefit [34]. The diet also plays a role in reducing the risk of 
AD; a heart-healthy diet that includes poultry, seafood, and 
whole grains while limiting unhealthy fats, sugar, and red 
meat is considered beneficial [35, 36]. Education is another 
protective factor, believed to establish a “cognitive reserve” 
that enables individuals to maintain higher levels of cog-
nitive function despite brain pathology [37, 38]. Extended 
periods of education, particularly at a young age, coupled 
with other protective activities, have been shown to poten-
tially lower dementia risk—even in the presence of high-risk 
genetic markers like the APOE-e4 gene [39]. Lastly, consist-
ent social and mental engagement is recommended to foster 
cognitive reserve and enhance brain plasticity [40]. Multiple 
studies support the practice of daily social and mental activi-
ties as a way to fortify brain health and possibly delay the 
onset of dementia symptoms [33, 41].

Other Protective Factors

Several pathways exist by which APOE and APP mutations 
offer protection against AD. APOE is primarily produced 
by astrocytes in the central nervous system and carries 

cholesterol to neurons via APOE receptors, which are low-
density lipoprotein receptors (LDLRs) [42]. The APOE pro-
tein plays a significant role in the metabolism of Aβ since 
it exerts a pronounced influence on the deposition of Aβ, 
leading to the formation of senile plaques and the devel-
opment of cerebral amyloid angiopathy (CAA). These two 
pathological features are considered prominent indicators 
of amyloid pathology in the brains of individuals affected 
with AD [43].

The presence of the APOE ε4 allele is associated with a 
heightened susceptibility to developing AD [44]. The accu-
mulation of Aβ in the form of senile plaques is found to 
be more prevalent in individuals who carry the APOE ε4 
allele, as opposed to those who do not carry this allele [45]. 
However, the APOE 2 allele is still the strongest genetic 
protective factor against sporadic AD, and there are other 
APOE variants that offer protection as well [44]. In addi-
tion, it was observed that individuals who were homozygous 
for the APOE ε3 allele exhibited a protective effect against 
the development of AD. The traditional neuropathological 
manifestations associated with the APOE genotype include 
a greater accumulation of Aβ plaques and more pronounced 
cerebral amyloid angiopathy in individuals carrying the 
APOE ε4 allele. Conversely, those with the APOE ε2 allele 
exhibit a reduced burden of Aβ plaques compared to those 
who are APOE ε3 homozygotes [46].

Three decades of protection from AD have been dem-
onstrated in a homozygous carrier of the APOE3 R136S 
variant (APOE3 Christchurch, APOEch), who also has the 
PSEN1 E280A mutation [47]. Emerging data suggests that 
certain less common variations of the APOE gene, namely 
APOE3 V236E (Jacksonville) and APOE4 R251G, may 
be associated with a reduced chance of developing AD. 
The APOE3-Jacksonville variant exhibits a propensity to 
decrease the self-aggregation of APOE, hence promoting its 
interaction with lipids and subsequently lowering amyloid 
burden and toxicity [48]. On the other hand, the presence of 
the APP protective mutation (A673T) has been potentially 
associated with enhanced cognitive functioning and reduced 
Aβ peptide pathology [49]. Recently, a PSEN1 E280A car-
rier with a heterozygous mutation H3447R in the Reelin 
gene (RELN) and a significant protective allele (RELN-
COLBOS) was discovered [50]. No discernible mechanisms 
of protection in the RELN-COLBOS case were found to 
have altered the manifestation of pathology or the overall 
process of neurodegeneration. Nevertheless, it successfully 
retained the neural pathways essential for sustaining cogni-
tive function well above the anticipated level for an indi-
vidual in this particular group [50, 51].

Two remarkable examples of protection against AD demen-
tia were possible because of the large size of the cohort and 
the disease heterogeneity in the PSEN1 E280A. Similar recep-
tors (APOE Receptor 2 and VLDLR) and molecular pathways 
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connect the two altered proteins, APOE and Reelin, and they 
may have similar mechanistic consequences, such as modulat-
ing tau phosphorylation via GSK3 [52]. Nevertheless, APOE is 
a significantly more prevalent molecule that could potentially 
elucidate the resistance to AD pathology. This resistance is 
hypothesized to be influenced by the widespread overexpres-
sion of APOE in astrocytes and microglia [53]. In contrast, 
Reelin primarily manifests inside distinct cerebral regions 
and cellular subgroups, engendering a confined safeguarding 
impact and promoting the viability of crucial neural networks 
that culminate in the postponed emergence of dementia, irre-
spective of the degree of AD pathology. This observation 
implies the existence of a resilient phenotype [51].

AD Pathogenesis

The exact pathophysiology of AD is not well understood; 
however, the current popular hypothesis is the “amyloid 
cascade hypothesis,” which considers the accumulation of 
amyloid β-peptide (Aβ) plaques as the major player in AD 
pathogenesis [54]. The reported histopathological analysis 
of AD highlights two main characteristics of AD in the cen-
tral nervous system: extracellular aggregates of Aβ plaque 
along with intracellular aggregates of hyperphosphorylated 
tau, forming neurofibrillary tangles (NFTs) [55].

The origin of Amyloid pathogenesis is the altered cleav-
age of APP by β-secretases (BACE1) and γ-secretases, 
producing the insoluble Aβ fibrils, which then aggregate, 
spread, and impair synaptic signaling [56, 57]. APP is a 
type 1 transmembrane protein with extracellular domains; 
its physiological function is related to neuronal cell sur-
vival and growth by the normal cleavage of APP [58, 59]. 
In the normal state, APP undergoes sequential cleavage by 
α-secretase, releasing a large soluble ectodomain called 
APPsα and C-terminal fragment C83 [59]. C83 cleaved fur-
ther by γ- secretase forming soluble P3 peptide. Contrast-
ingly, in the diseased state, APP is cleaved by β-secretase 
(BACE-1), releasing extracellular APPsβ and C-terminal 
fragment C99 [60, 61]. Further processing of C99 by 
γ-secretase yields the pathogenic Aβ; this APP processing 
pathway is called “the amyloidogenic pathway” [58, 59, 62].

Although the amyloidogenic pathway’s detailed regu-
lation is not well explained, it is thought that excess pro-
duction of Aβ induces aggregation of Aβ oligomers into 
polymers and eventually into insoluble plaques. Two main 
variants of Aβ peptides have a significant role in neurotoxic-
ity: Aβ 40 and Aβ42; the latter is more likely to cause neu-
ronal damage and plaque formation [63]. It is believed that 
Aβ plaques provoke secondary effects on the cellular level, 
such as oxidative stress, microglial activation, local inflam-
mation, and hyperphosphorylation of tau protein, which fur-
ther cause cell death and impairment of synaptic signaling 

[56, 57, 62]. It is believed that these secondary events may 
produce damage independently from their initial trigger (Aβ 
plaques) [64].

One of the major pathologies in AD is impaired synaptic 
plasticity and loss of synapses, which is directly related to cog-
nitive impairment — the main clinical manifestation in the early 
stage of AD [65, 66]. Notably, massive loss of synapses and 
postsynaptic receptors occurs early in AD, and it is assumed 
that postsynaptic receptors are crucial for Aβ effects on syn-
apses [67–72]. AD is also defined by NFTs, which are straight, 
highly insoluble patches deposited in the dendrites of neurons 
and composed of tau protein. Normally, the Tau protein has a 
significant role in microtubule binding, synaptic signaling, and 
axonal transport [73]. Consequently, tau’s abnormal phospho-
rylation induces its polymerization and aggregation into NFTs, 
further disturbing signaling cascades, mitochondrial function, 
and neuronal communication [74, 75]. Fig. 2 summarizes the 
molecular and cellular pathogenesis of AD.

It should be noted that Aβ plaques control the phospho-
rylation of tau for NFT generation (Brien 2011). Patho-
logical tau protein appears first in the basal forebrain, the 
brainstem raphe system, and locus coeruleus [76]. The pro-
gressive regional spread of NFTs is well described in the 
Braak staging system; NFTs are first detected in the transen-
torhinal cortex (Braak stage I) and entorhinal cortex (Braak 
stage II). Then NFTs progress to the hippocampus (Braak 
stage III), the middle temporal convolution, and the superior 
temporal gyrus (Braak stage IV). Finally, NFTs extend into 
the remaining cortex (Braak stages V and VI) [76].

AD Genetic Background

AD is primarily categorized into two distinct forms: early-
onset AD (EOAD) and late-onset AD (LOAD). The genetic 
characteristics of each differ substantially [77]. EOAD is 
predominantly caused by highly penetrant mutations in 
genes such as APP, presenilin 1 (PSEN1), and presenilin 2 
(PSEN2) [78]. On the other hand, LOAD is more complex, 
involving multiple genetic risk factors. The apolipoprotein E 
ε4 (APOE ε4) allele is particularly notable for its significant 
association with the risk of developing LOAD [79]. Addi-
tionally, genome-wide association studies (GWAS) have 
identified various other genetic loci that contribute to the 
intricate genetic landscape of LOAD [79].

Genetics of EOAD

The discovery of the correlation between LOAD develop-
ment and genetic mutations in PSEN1, PSEN2, and APP 
provided important knowledge underlying the molecular 
mechanisms of AD pathogenesis.
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APP

APP is located at the 21q21 chromosome and encodes a trans-
membrane protein type 1 [80]. APP enzymatic cleavage can 

result in Aβ formation that consists of 38 to 43 amino acids. 
APP sequential cleavage by γ- and α-secretase can lead to non-
pathogenic peptide generation in a pathway called a constative 
or non-amyloidogenic pathway [81]. This pathway involves 

Fig. 2  Molecular and cellular mechanisms underlying the pathogen-
esis of AD. The production of Aβ occurs through the enzymatic break-
down of APP within acidic cellular structures like late endosomes. Once 
released from neurons, this Aβ progressively forms more complex struc-
tures, beginning with oligomer aggregates (oAβ), advancing to fibrils, 
and finally culminating in the formation of amyloid plaques. Amyloid-
beta oligomers (oAβ) impair synaptic function by weakening Long-Term 
Potentiation (LTP) and amplifying Long-Term Depression (LTD). Mul-
tiple neuronal receptors, including EphA4, PrPc, EphB2, NMDAR, and 
LiLRB2, have been identified as binding sites for Aβ, facilitating its toxic 
effects on synapses. Additionally, Fyn kinase serves as a key modulator 
for the neurotoxic effects mediated by NMDAR-bound oAβ. Furthermore, 
oAβ negatively impacts mitochondrial functions, triggering the activation 

of caspase-3, reducing ATP levels, and increasing Reactive Oxygen Spe-
cies (ROS), which collectively exacerbate synaptic dysfunction. oAβ can 
stimulate microglia by binding to various potential receptors like TREM2, 
LRP1, RAGE, TLR4, and CD36. In particular, when Aβ interacts with 
TREM2, it activates the SYK signaling pathway via DAP12, a TREM2 
adaptor protein, facilitating Aβ degradation. Microglial activation also 
results in the release of proinflammatory cytokines such as TNF-α, IL-1β, 
IL-6, and IL-8, which in turn can activate astrocytes. Additionally, oAβ 
may directly stimulate astrocytes via specific receptors like α7-nAchR, 
CaSR, CD36, CD47, and AQP4. Once activated, astrocytes could pose a 
threat to neurons through mechanisms such as altered extracellular gluta-
mate homeostasis (also known as excitotoxicity) and the release of inflam-
matory molecules like TNF-α, IL-1β, and IL-6
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APP proteolysis by γ- and β-secretase, leading to sAPPα, Aβ, 
and c-terminal fragments formation. Dominant APP mutations 
represent about 14% of early-onset cases of AD, with about 35 
mutations outlined that have been associated with the patho-
genesis of AD [82]. These mutations involve duplications of 
the APP locus and various point mutations in the APP gene 
coding, which lead to the substitution of amino acids. Gene 
locus duplication can result in high levels of Aβ and APP and 
lead to an increase of Aβ1–42/Aβ1–40 ratio. Depending on the 
position of missense mutations, they can have variant effects 
[79]. If the amino acid is substituted by these mutations near the 
N-terminal of Aβ (the site of β-proteolytic cleavage), they result 
in increased production of Aβ, increased cleavage of β-secretase, 
and elevated aggregation and formation of the fibril [83]. If these 
mutations are close to Aβ’s C-terminal, the Aβ1–42 relative pro-
duction will increase as compared to Aβ1–40. Also, in the Aβ 
domain, the Arctic mutation (E693G) occurs [84]. While the 
Arctic mutation fails to alter the Aβ42/Aβ40 ratio or elevate the 
Aβ levels, it likely elevates the mutant peptide aggregation rate 
[85]. All these APP mutations can provide further substantial 
evidence that the aggregation of Aβ is a crucial process in AD 
pathology. Furthermore, changes in the genetics that result in 
the APP alternation process and Aβ accumulation may lead to 
different neurovascular and neurological phenotypes [86].

PSEN‑1 and PSEN‑2

PSEN1 and PSEN2 are considered two homologous proteins 
located at 14q24.3 and 1q31-q42 chromosomes, respectively 
[87]. Also, they represent the crucial core of the γ-secretase 
complex, which has a critical role in the cleavage of APP 
into Aβ fragments. In addition to APP, they are also involved 
in some other protein cleavage, such as ErbB4, Notch-1, and 
proteins related to low-density lipoprotein receptors (LDLR) 
[88–90]. At the level of the cell, presenilins are localized in 
the Golgi apparatus, endoplasmic reticulum, and the nuclear 
membrane. It has been reported that mutations in presenilin 
genes are the most widely known cause of early-onset famil-
ial AD, particularly mutations in the PSEN1 gene, which 
accounts for about 80% of cases with early-onset AD [82]. 
Mutations in PSEN1 and PSEN2 proteins usually result in 
impairment in the activity of γ-secretase, which results in 
underproduction of Aβ1–40 and overproduction of Aβ1–42, 
and as a consequence of this, the Aβ42/Aβ40 ratio would be 
increased [91]. Mutations in PSEN1 protein have been cor-
related with the earlier ages of the disease onset (between 35 
and 65 age), with an average of about 43 years [92].

Genetics of LOAD

According to GWAS and multiple genetic studies, the major-
ity of genes have been detected to be correlated with LOAD, 

such as clusterin (CLU), SORL1, CD33 antigen, APOE gene 
coding, and BIP1. However, there are other studies involving 
emerging genes, such as RIN3, whose function with AD is 
not completely understood and defined [93–96].

Apolipoprotein E

One of the main risk genes for LOAD is the APOE ε4 pro-
tein, which is considered to be the CNS main apolipoprotein. 
This protein has a pivotal role in lipid transport and has a 
crucial role in the growth, maintenance, and reorganization 
of neurons. APOE ε4 allele carriers have an earlier age of 
AD onset. Moreover, they tend to have more marked amyloid 
plaque accumulation [97]. At the same time, the ε2 allele of 
APOE is correlated with a diminished risk of AD develop-
ment, with decreased amyloid plaque accumulation [98, 99].

CLU

CLU, a glycoprotein activated under stress conditions, 
engages in various physiological activities, including lipid 
transport, cell death regulation, inflammation, and mem-
brane protection [100]. With respect to AD, CLU is believed 
to be implicated in its pathogenesis [101]. Studies indicate 
that CLU can form complexes with Aβ in the cerebrospinal 
fluid (CSF), which are capable of crossing the blood-brain 
barrier (BBB) [102]. GWAS has identified CLU as a poten-
tial biomarker for AD [9, 103]. Additionally, single nucleo-
tide polymorphisms in the CLU gene have been suggested 
to influence AD pathology by affecting alternative splicing 
of the CLU gene [104].

SORL1

SORL1, a member of the low-density lipoprotein recep-
tor (LDLR) family, plays a critical role in the processing 
and trafficking of APP. Specifically, SORL1 is involved in 
directing Aβ toward lysosomal degradation [105]. Initially 
suggested as a potential biomarker for AD by Rogaeva et al. 
[106], this proposition has since gained validation through 
additional comprehensive research studies [95, 107].

RIN3 Gene

RIN3, a protein-coding gene, is a member of the RIN fam-
ily. The gene product is a newly identified binding pro-
tein that functions as Rab5 guanine nucleotide exchange 
factor (Rab5-GEF) [16, 108]. Rab5 is a member of the 
small GTPase Rab family that is localized usually to early 
endosomes [109, 110] and is implicated in homotypic fusion 
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reaction of early endosomes and in clathrin-coated vesicle 
budding [111, 112]. RIN family is characterized by contain-
ing Ras-associating (RA) domain in their C termini, a region 
interacting with H-Ras [113, 114]. Also contains the SH2 
domain in their N-terminal; thus, receptor-associated tyros-
ine kinases may adjust the functions of RINs through their 
interaction with tyrosine-phosphorylated receptors [115].

RIN3 has a sequence resembling RIN1 and RIN2. It 
includes SH2, proline-rich, RH, Vps9, and RA domains 
[115]. The same structure is preserved in RIN1 [116] 
and RIN2 [108]. RIN3 catalyzes a reaction of nucleotide 
exchange on Rab5 and prefers to react with the GTP-bound 
form of Rab5 [115]. The same interactions occur with RIN1 
and RIN2 except for the special binding of RIN1 to the 
GDP-bound form of Rab5 [108, 117]. In addition to RIN2, 
RIN3 is considered to be an important factor for the stimu-
lation and stabilization of Rab5 in the endocytic transport 
pathway [115]. Despite the wide expression of the RIN fam-
ily, they are different in the distribution of their mRNAs, as 
RIN1, RIN2, and RIN3 mRNAs are widely distributed in the 
brain [116], heart, kidney, and lung [108], and in peripheral 
blood cells [115], respectively. RIN3 and RIN2 are restricted 
to endocytic vesicles with Rab5, especially when they are 
expressed in the cells, while RIN1 shows cytoplasmic dis-
tribution [115].

It has been found that RIN3 functions as a guanine 
nucleotide exchange not only for Rab5 but also for Rab31 
[16]. It induces Rab31-bound GTPγS in the cell-free sys-
tem and the formation of GTP-bound Rab31. In addition, 
RIN3 expression forms tubulovesicular structures that con-
tain Rab31 in intact cells [16]. Additionally, RIN3 shows 
interaction with amphiphysin II as the N terminus of RIN3 
that contains a proline-rich domain (PRD) linked directly 
with the SH3 domain of amphiphysin II. Such an important 
link is attributed to the class-II PRD included in both RIN3 
and RIN2 but not in RIN1 [115]. Amphiphysin II interacts 
with amphiphysin I and forms heterodimers with it [118], 
and they are included in endocytosis, especially in synaptic 
vesicle recycling [119].

A number of novel loci, including RIN3, have been found to 
be involved in endocytic trafficking and signaling [17]. A meta-
analysis of GWAS revealed that 14 genomic loci have been 
associated with AD. Nine of them have been formerly reported 
by GWAS, and Five of them (HLA-DRB5–HLA-DRB1, 
PTK2B, SORL1, SLC24A4-RIN3 and DSG2) were identified 
as novel loci. Findings showed that the BIN1 gene product, a 
protein involved in modulating tau pathology, interacts with the 
RIN3 gene and its encoding product [17]. Other GWAS studies 
marked the locus (rs10498633, G/T) upstream of the RIN3 cod-
ing sequences within its enhancer region. It is considered that 
such single nucleotide polymorphism (SNP) probably leads to 
increased expression of RIN3 in AD [17, 120].

RIN3 in EOAD and LOAD

The cumulative evidence suggests the fundamental role of 
the RIN3-controlled endolysosomal pathway in AD [12, 17, 
121]. A 2017 GWAS found a missense mutation in RIN3 
(W63C) in sporadic EOAD [121]. Other genome-wide meth-
ylation studies indicated a group-wide hypo-methylation in 
RIN3, which was significant among the AD group compared 
to normal control [122]. Further, a recent experimental study 
proved the elevated expression of RIN3 in the hippocampus 
and cortex of AD animal models and even in the cultured 
cholinergic neurons of the basal forebrain. In addition, RIN3 
was found to interact with both BIN1 and CD2-associated 
protein (CD2AP) to regulate APP trafficking and cleavage, 
which is associated with increased tau hyperphosphoryla-
tion. It is believed that RIN3 induces these effects by hyper-
activation of Rab5 [17]. Taken together, little is known about 
the detailed pathogenesis of RIN in EOAD and LOAD; thus, 
further studies are required to improve our understanding of 
the complex nature of AD pathogenesis.

RIN3 and AD Pathogenesis

Endocytosis is critical for the usual processes of APP forma-
tion and is considered an element of AD pathogenesis [123]. 
Significant numbers of multiple specific genes, including the 
RIN3 gene, have been identified. Such genes are encoded for 
endocytosis and their trafficking signals [12]. Initial discov-
ery of the association of RIN3 with LOAD in GWAS in 2011 
[10]. However, this association also can influence EOAD 
pathogenesis [17]. Nowadays, it is thought that RIN3 has 
contributed to AD pathogenesis (rather EOAD or LOAD) 
through different mechanisms that were discussed in mul-
tiple studies.

Up‑Regulation of RIN3 Causes Endosomal Enlargement 
and Dysfunction in AD

RIN3 stimulates and stabilizes the Rab5 group-specific 
members (Rab5, 21, 22, 24, and 31) [16]. Rabex-5, which 
is (a GEF for Rab5) and Rabaptin-5 are needed for Rab5 
activation. The overexpression of them is sufficient to cause 
early endosome enlargement [124]. Rab5 is a main organizer 
of endosomal incorporation and cellular transit [125, 126]. 
Excessive RIN3 expression enhances Tau phosphorylation. 
The increased RIN3 expression affects both the production 
of β-cleavage C-terminal fragment (βCTF) and the increase 
in pTau, and this is likely mediated by the Rab5 activation 
[17]. Early neuronal endosomal morphology seems to be 
important for controlling Aβ levels in neurons [127]. Nor-
mally, Rab5-marked early endosomes are the place where 
the processes of amyloidogenesis of the APP happen to 
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produce Aβ, which occurs via the action of BACE1 and 
gives the βCTF. The late endosomes/trans-Golgi network 
(TGN) treats βCTF and produces Aβ, which is considered 
a toxic substance [13, 128]. The enlarged early endosomes 
showed a reactive immune response to different markers 
of early endosomes, including Rab4, Aβ, and EEA1. Thus 
resulting in the pilling up of Aβ in earlier stages of AD. 
Animal studies done by Grbovic et al. explained that early 
endosome enlargement could occur as a result of Rab5 over-
expression, producing excess deposition of Aβ peptides in 
the cerebral blood vessels and brain tissue [128]. Studies of 
donated human tissues carried out via Cataldo et al. dem-
onstrated that at the prodromal stages of AD, abundant neu-
rons have a raised Aβ peptide deposition and show early 
Rab-5 positive endosomal enlargement [129, 130]. A recent 
animal module study by Shen et al. has explained that the 
upregulation of RIN3 and its increased expression in earlier 
periods of AD pathogenesis may result in Rab5 endosome 
enlargement (early endosome). Also, RIN3 interacted with 
BIN1/CD2AP to adjust the processing and trafficking of 
APP. Therefore, a considerable increase in RIN3 will affect 
APP endosomal trafficking and cleavage. This will induce 
degeneration of the neurons in earlier phases of AD [17].

The changes in the RIN3 gene can be due to DNA meth-
ylation, which has been associated with environmental 
stressors [131] and correlated with altered gene expression 
[132]. AS adding a methyl group to the gene at 3′ UTR has 
shown as a significant epigenetic sign that affects various 
genetic processes, including expression, transcriptional elon-
gation, and splicing [133]. A proposal of irregular epigenetic 
framework participates in this procedure for many people. 
Poorly controlled different genetic functional processes can 
cause degeneration of nervous tissues. Thus, it is reason-
able that odd variant genetic regulatory processes might 
trigger establishing disease pathology [134]. The AD brain 
enhances RIN3 manufacturing as a result of the co-existing 
amyloid medium by removing the methyl group from the 
3′UTR genetic area. However, raised 3′UTRs methylation 
correlates to decreased RIN3 gene activity [133]. It was dis-
cussed before in a previous study done by Kirsty A. and his 
colleagues. They hypothesized and proved that RIN3 meth-
ylation is linked to abnormal gene function and increased 
risk and association in AD patients (mainly sporadic early 
onset AD), and there was relative hypomethylation noticed 
in the AD brain relative to blood [122]. In addition to that, 
multiple different genes of RIN3 were recognized in a pre-
vious survey, which was performed on 74,754 persons with 
BIN1 and CD2AP to be linked to the rising risk of variant 
causes of dementias, including AD [135]. The increasing 
evidence of RIN3 role has shown that RIN3 represents a 
significant part of AD pathogenesis. Genomic surveys had 
recognized a genetic site (rs10498633, G/T) upstream of 
the RIN3 coding sequences within its enhancer region. It is 

suspected that this single nucleotide polymorphism (SNP) 
is likely to result in overexpression of RIN3 in AD [120]. 
Also, a recent study showed a significant increase in the 
effect size of cognitively healthy centenarians compared to 
an age-matched group. The results were considerable for 
RIN3 (4.5-fold), but for APOE- ε2 were (2.2-fold) and for 
APOE-ε4 were (2.0-fold) [136].

RIN3 Impact on Transcytosis of Amyloid‑β Through 
BBB β Transcytosis (PICALM Protein Pathway Affection) 
and Increase AD Risk

PICALM adjusts amyloid-BBB transcytosis and salvage 
via starting endocytosis, which is done by clathrin action 
through its interference with LRP1 (low-density lipopro-
tein receptor-related protein-1). LRP1 is a key amyloid-β 
clearance acceptor that also binds to APOE [137]. The 
PICALM pathway function in Alzheimer’s dementia 
confirms that clathrin-mediated endocytosis is a signifi-
cant technique in amyloid-β salvage through the BBB 
[138]. This can be explained by the linking of amyloid-β 
to LRP1, promoting the PICALM binding. This started 
respectively PICALM/clathrin-dependent endocytosis of 
the amyloid-β-LRP1 combination and later transcytosis 
involving GTPases Rab5 and Rab11 controlling. Also 
leads to form early endosomes and exocytotic vesicles 
[139–141]. This BBB amyloid-β transcytosis required the 
integration of multiple genes, including PICALM, BIN1, 
CD2AP, and RIN3 genes [135]. Thus, it may be reason-
able that biological effects that occur as a result of variant 
genetic disorders in the involved genes in the transcytosis 
processing pathway could increase AD risk because of 
amyloid-β aggregation in brain tissue [142–144]. Hence, 
increased RIN3 expression will affect the PICLAM path-
way and lead to increased AD risk.

Likewise, the PICLAM pathway is linked to regulating the 
function of the PTK2B gene (a cytoplasmic protein tyrosine 
kinase gene), which is an important gene contributing to AD 
risk through immune-mediated responses [145]. PTK2B plays 
a key role in the signaling cascade involved in the modula-
tion of microglial and infiltrating macrophage cell activation 
[145, 146]. Therefore, RIN3 genetic affection will affect the 
PICLAM pathway and subsequently affect the PTK2B gene 
and increase the risk for AD. Figure 3 summarizes the cellular 
and molecular interaction of RIN3 with AD pathogenesis.

RIN3 as a Biomarker for AD

Research findings have indicated that the expression of 
the RIN3 gene is significantly elevated in individuals 
with AD [17]. Furthermore, it has been observed that the 
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abovementioned gene exhibits a state of hypomethylation 
within all peripheral blood samples obtained from individu-
als diagnosed with EOAD [122]. Hence, RIN3 could be a 
possible blood biomarker for detecting early AD.

The development of cognitive impairment was anticipated 
to be influenced by an abnormal expression of the RIN3 
gene, according to a recent study. They explored the link 
between RIN3 gene methylation and early cognitive deficits 
post-transient ischemic attack (TIA) or mild ischemic stroke 
(MIS), assessing 84 patients within a week of the event using 
cognitive scales and comparing their RIN3 methylation sta-
tus to 28 healthy individuals. Results indicated that TIA/
MIS patients exhibited lower levels of RIN3 methylation 
compared to controls, with those experiencing early cogni-
tive decline showing even more significant hypomethylation. 
These findings imply a potential predictive role for RIN3 
methylation levels in identifying early cognitive impair-
ment post-TIA/MIS, suggesting that modifying methylation 
through lifestyle or clinical means may alter the disease tra-
jectory [147]. Thus, based on this data, the RIN3 could be a 
good indicator for early AD.

RIN3 as a prognostic biomarker for AD

To improve patient treatment, genetic risk factors might be 
integrated into a diagnostic or predictive test for AD, allow-
ing for more precise medical intervention (i.e., “genetic pro-
filing”). This would not only provide light on the mecha-
nisms involved in the etiology of the illness. The current 
feasibility of genetic risk profiling for AD diagnosis and 
prognosis is limited because the currently identified genes 
only explain a small proportion of the heritability of AD, and 
the level of discriminative accuracy considered acceptable 
is clearly dependent on the invasive nature of the treatment 
[82, 148]. Animal research has provided evidence to sup-
port the assertion that Aβ (amyloid-beta) plays a crucial role 
in both causing and being essential for neurodegeneration 
associated with AD [149, 150]. The regulation of APP traf-
ficking and cleavage by RIN3 has been found to be linked 
to the occurrence of elevated tau hyperphosphorylation. The 
effects attributed to RIN3 are hypothesized to be a result of 
the hyperactivation of Rab5 [17]. Thus, RIN3 could be used 
as a probable prognostic agent for AD.

Fig. 3  Molecular and cellular interaction between RIN3 and AD 
pathogenesis. When receptor tyrosine kinase (RTK) or tyrosine 
kinase (TK) is activated, it triggers the Ras/MAP kinase signaling 
pathway. Concurrently, RIN3's SH2 domain attaches to the phosphor-
tyrosine residue (pY). This binding inhibits RIN3's GEF activity, 
keeping Rab5 in its GDP-bound state. On the other hand, when phos-
photyrosine phosphatase (PPtase) deactivates RTK/TK, the Ras/MAP 
kinase signaling is dampened. Simultaneously, RIN3 detaches from 
RTK/TK, reactivating its GEF function. This promotes the transfor-

mation of Rab5 from a GDP-bound to a GTP-bound form. RIN3 col-
laborates with BIN1 and CD2AP to form a complex. Elevated RIN3 
activity boosts Rab5 activation and subsequently triggers the assem-
bly of the RIN3-BIN1-CD2AP complex on early endosomes. This 
leads to disruptions in endocytic trafficking. As a result, the RIN3-
BIN1 complex activates GSK3β, contributing to tau phosphorylation. 
Concurrently, this disruption in trafficking promotes the cleavage of 
APP by BACE1 within early endosomes

3536 Molecular Neurobiology  (2024) 61:3528–3544



1 3

Future Therapeutics Targeting RIN3

Several potential gene therapy targets exist for treating AD 
due to its complex genetic and environmental origins. These 
include the neurotrophic growth factors nerve growth fac-
tor and brain-derived neurotrophic factor; the amyloid beta-
degrading enzymes neprilysin, endothelin-converting enzyme, 
and cathepsin B; and the AD-associated APOE [151]. Gene 
therapy for AD represents a valuable approach in the hope of 
an effective treatment that specifically addresses the funda-
mental causes of the disease. For several decades, the primary 
causative factors in AD and PD have been attributed to the 
presence of insoluble clumps of amyloid proteins [152]. In 
the same way, the majority of therapy strategies for AD are 
centered around the elimination of amyloid plaque [153].

The primary focus of the current research and development 
endeavors in the field of AD has been directed toward com-
mon approaches. (i) The main components implicated in the 
pathogenesis of AD include amyloid-beta and p-tau, as well 
as amyloidogenic proteases and other proteins that bind to 
amyloid-beta or tau, such as the receptor for advanced glyca-
tion endproducts (RAGE); (ii) The elements that are linked 
to pathology and are anticipated to play a role in the mani-
festation of symptoms include neuroinflammation, oxidative 
stress, and mitochondrial dysfunction; and (iii) Pharmaceutical 
interventions targeting cognitive and behavioral symptoms of 
AD encompass neuronal function modulators and neurotrans-
mitters. However, it is important to note that these medications 
mostly provide palliative relief and do not directly address the 
underlying pathological reasons or offer a definitive cure [154].

Inhibitors targeting the b- and c-secretase enzymes involved 
in the processing of APP have progressed to phase II and III clin-
ical trials; however, none have achieved regulatory approval as a 
pharmaceutical agent. Brain-permeable small molecule inhibi-
tors of beta-site amyloid precursor protein cleaving enzyme 1 
(BACE1), namely verubecestat, lanabecestat, and LY3202626, 
have demonstrated considerable efficacy in reducing the produc-
tion of amyloid-beta (Ab) in individuals with healthy cognitive 
function as well as those with prodromal, mild, or moderate AD. 
However, these inhibitors were discontinued during phase II/III 
clinical trials due to their inability to effectively mitigate cog-
nitive decline and the occurrence of adverse events, including 
weight loss, hair discoloration, psychiatric complications, and 
brain atrophy [155–157]. Given the important function of RIN3 
in the generation of APP, it is reasonable to consider RIN3 as 
a promising candidate for future genetic therapy targeting AD.

Post‑Translational Modifications (PTMs) 
in RIN3 and AD Pathogenesis

Recent studies demonstrate the involvement of post-translational 
modifications (PTMs) in the pathogenesis and advancement 
of AD. Phosphorylation, glycation, acetylation, sumoylation, 

ubiquitination, methylation, nitration, and truncation are among 
the PTMs that have been shown in association with the patho-
genic functions of proteins related to AD. Notably, these PTMs 
have been identified in relation to Aβ, BACE1, and tau protein, 
which are key players in the development and progression of AD 
[158, 159]. Disrupting PTMs, including phosphorylation, acety-
lation, glycosylation, and ubiquitination, will result in abnormal 
pathology during AD development and progression [160].

The expression of RIN3 is markedly increased and has a 
positive correlation with endosomal dysfunction in the APP/
PS1 animal model. The modulation of RIN3 expression leads 
to modifications in axonal trafficking and processing of APP 
by means of its interaction with BIN1 and CD2AP [17]. Two 
separate research studies conducted on patients with AD have 
reached the conclusion that there exists a state of hypomethyla-
tion in the RIN3 gene, as well as three more genes. Further-
more, this research has postulated the potentiality that aug-
mented manifestation of the wildtype RIN3 or manifestation of 
the RIN3 variation (W63C) could potentially play a role in the 
development of Alzheimer’s disease [122, 161]. In addition, it 
has been observed that upregulation of RIN3 leads to height-
ened activation of Rab5, which subsequently hampers the pro-
cess of endocytic trafficking and signaling. Consequently, there 
is an elevation in the creation and storage of toxic APP-derived 
CTFs and an increase in the phosphorylation of tau protein. 
These processes collectively contribute to the degeneration of 
neurons in AD [17]. The alterations seen in the RIN3 gene may 
arise as a consequence of DNA methylation, a process that has 
been linked to the influence of environmental stressors [131] 
and correlated with altered gene expression [132].

Can Coronavirus Disease 2019 (COVID‑19) 
Play a Role in RIN3 Expression and AD 
Progression?

In an observational study, researchers tried to identify spe-
cific biomarkers associated with early-stage sepsis-induced 
acute respiratory distress syndrome (ARDS). They assessed 
the genetic profile and their expressed biomarkers in blood 
samples of severely ill patients on mechanical ventilators. 
They found about forty-one abnormally expressed genes 
specific to ARDS or sepsis, and RIN3 was one of the hub 
genes detected [162]. Several studies investigated the rela-
tionship between Severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) infection and sepsis, and many sug-
gested a strong correlation between the virus pathogenesis 
and the clinical manifestations or biochemical changes of 
sepsis in critically ill patients [163, 164].

Since hypomethylation is the suggested mechanism 
behind the abnormal expression of the RIN3 gene in 
sepsis-induced ARDS [162] and SARS-CoV-2 is asso-
ciated with Angiotensin-converting enzyme 2 (ACE2) 
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hypomethylation [165], we may suggest a new genetic 
association between SARS-CoV-2 induced sepsis and AD. 
Our suggestion focuses on the severely infected popula-
tion, but other studies are exploring the viral mechanism 
affecting the brain and the common mild inflammatory 
or immunogenic changes between viral pathogenesis and 
AD pathogenesis [166]. The proposed correlation involves 
retrograde transport of the virus from the olfactory bulb to 
areas with ACE2 receptors in the brain, such as the brain-
stem and capillary endothelium, damage to the BBB with 
inflammation [167], and exacerbating hypoxia injuring the 
hippocampus among other structures [166]. Anosmia in 
COVID-19 patients suggests a less severe course of the 
disease, but its presentation as a hallmark for both AD 
and COVID-19 is a warning sign of the potential risk of 
developing AD even in mild COVID-19 cases [168, 169].

Challenges and Limitations in RIN3 and AD 
Research

However, research into developing medications or nonphar-
macological treatments to prevent, stop, or slow down AD 
has remained unproductive despite breakthroughs in under-
standing the molecular basis of the illness. Both successful 
and unsuccessful clinical trials and rigorous pharmaceuti-
cal investigations are crucial because they either uncover 
prospective medications or exclude others, thereby pointing 
to the appropriate road to victory against AD [170, 171]. 
Factors that impede recruitment have been identified in stud-
ies on participation in Alzheimer’s disease research. Sev-
eral factors contribute to the challenges faced in conduct-
ing research on Alzheimer’s disease. One such factor is the 
limited capacity and resources of primary care physicians 
to evaluate cognitive function and make appropriate refer-
rals to research studies. Additionally, there are barriers that 
hinder the participation of under-represented communities, 
such as a lack of cultural sensitivity in the research process. 
Another obstacle is the necessity of having a study partner 
who can provide information on cognitive changes, which 
is a requirement for most Alzheimer’s trials. Furthermore, 
invasive procedures like lumbar punctures or brain imaging 
with injected tracer agents are utilized, further complicating 
the research process [172].

Primary care physicians are the first medical professionals 
most persons with cognitive impairment or memory issues 
will visit. According to studies, some of the challenges doc-
tors face when referring patients for Alzheimer’s clinical 
trials are personal schedules, an absence of appropriate diag-
nostic clinical tools, worries about the safety of experimental 
protocols, patients’ multiple medical conditions, and their 
own geographical distance from a research facility [173].

The current attempts in drug development aimed at dealing 
with AD have encountered significant challenges in producing 
efficacious agents that modify the progression of the disease. 
These challenges arise from various factors, such as the consid-
erable neuronal damage occurring prior to the onset of symp-
toms due to the buildup of the Aβ peptide and abnormalities 
in the tau protein. Additionally, adverse effects associated with 
drug candidates have proven to be detrimental, and the design 
of clinical trials has been insufficient in meeting the desired 
outcomes [174]. The anti-AD group should utilize nonphar-
macological techniques based on modern technologies, such as 
noninvasive or less invasive surgical procedures. Neurogenesis 
is one mechanism by which a healthy lifestyle (including nutri-
tion, sleep, and exercise) can delay the onset of AD [175].

Future Directions

The current study establishes a foundational understanding 
of the role of RIN3 in AD, particularly in relation to Rab5 
activation, tau phosphorylation, and amyloidogenic processing 
of APP. However, there are several gaps for future research. 
Although the study outlines the RIN3-BIN1-CD2AP com-
plex formation, the precise molecular mechanisms through 
which RIN3 regulates Rab5 activity require further eluci-
dation. Given the impact of RIN3 on endocytic trafficking, 
studies that explore the potential for therapeutic intervention 
targeting RIN3 or its associated complexes may prove valu-
able. Research involving patient cohorts is needed to validate 
the clinical relevance of RIN3 and its associated pathways 
in AD. Investigating how RIN3 interacts with other signal-
ing pathways implicated in AD could provide a more holistic 
understanding of its role. Employing animal models could be 
beneficial to validate the biochemical changes observed and to 
assess the overall impact of modulating RIN3 activity.

Conclusions

This review significantly advances our understanding of the 
role played by RIN3 in AD pathogenesis. We demonstrate 
that RIN3 not only activates Rab5 but also forms a complex 
with BIN1 and CD2AP, affecting both tau phosphorylation 
and APP processing. These findings underscore the potential 
of RIN3 as a key regulator in AD, opening new doors for 
future research and therapeutic interventions.
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