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Abstract 
Phospholipidomics is a specialized branch of lipidomics that focuses on the characterization and quantification of phospho-
lipids. By using sensitive analytical techniques, phospholipidomics enables researchers to better understand the metabolism 
and activities of phospholipids in brain disorders such as Alzheimer’s and Parkinson’s diseases. In the brain, identifying 
specific phospholipid biomarkers can offer valuable insights into the underlying molecular features and biochemistry of these 
diseases through a variety of sensitive analytical techniques. Phospholipidomics has emerged as a promising tool in clinical 
studies, with immense potential to advance our knowledge of neurological diseases and enhance diagnosis and treatment 
options for patients. In the present review paper, we discussed numerous applications of phospholipidomics tools in clinical 
studies, with a particular focus on the neurological field. By exploring phospholipids’ functions in neurological diseases and 
the potential of phospholipidomics in clinical research, we provided valuable insights that could aid researchers and clini-
cians in harnessing the full prospective of this innovative practice and improve patient outcomes by providing more potent 
treatments for neurological diseases.
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Introduction

For decades, although the significance of lipids’ metab-
olism in biology and medicine was widely recognized, 
one of the main challenges was the lack of sensitive 
techniques for the identification and quantification of 

specific lipid species. It was not until the late 1980s that 
breakthroughs occurred, with individual lipid molecular 
species finally becoming identifiable and quantifiable 
through the use of soft ionization methods, including 
electrospray ionization (ESI) and matrix-assisted laser 
desorption/ionization (MALDI), respectively, by Nobel 
Laureates, John Fenn, and Koichi Tanaka [1, 2]. These 
soft ionization technologies laid the foundation for what 
was later known as the field of lipidomics. In the early 
1990s, a variety of strategic and innovative approaches 
(advancement of mass spectrometry, improvement of 
liquid and gas chromatography) allowed the growth of 
the lipidomics field [3]. In 1994, a quantitative analysis 
of phospholipids (PLs) using ESI in both positive- and 
negative-ion modes was conducted by Han and Gross [4] 
who investigated PLs’ profiles in lipids extracted from the 
human erythrocyte plasma membrane and documented 
the influence of the dipole in the PL’s head groups and 
electric field–induced charge separation on ionization of 
several cellular polar lipids. In the same year, Kim et al. 
[5] reported the analysis of phospholipids (PLs) using liq-
uid chromatography (LC) coupled with electrospray ion-
ization-mass spectrometry (ESI-MS). During this initial 
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period, the analysis and characterization of commercially 
available lipid classes, including PLs, were carried out as 
stated in several publications [6–9].

Later on, Kishimoto et al. [10] introduced the term 
“lipidome”, denoting the complete assembly of chemi-
cally diverse lipid molecular species in a cell, an organ, 
or a biological system. Following this, in 2003, the 
scope of research in lipidomics was defined by Han and 
Gross [11]. These researchers classified lipidomics as an 
emerging field greatly counting on equipment and ana-
lytical chemistry for the examination of lipid structures, 
abundance of isolated molecular classes, cell functions, 
and interfaces pinpointing the active variations of lipids 
throughout cellular perturbations. Therefore, lipidomics 
exhibited a vital role in understanding the biochemical 
mechanisms fundamental in lipid-connected disease pro-
cedures via the identification and quantification of vari-
ations in cellular lipid signaling, metabolism, trafficking, 
and homeostasis [11].

Over the past two decades, there has been significant 
advancement in lipidomics technologies, leading to the 
emergence of clinical lipidomics as a novel extension of 
this field. Clinical lipidomics aims to investigate metabolic 
pathways and networks by quantitation of the complete 
spectrum of lipidomes in cells, biopsies, and body fluids of 
patients. The results of lipidomics can be correlated with 
clinical proteomics, genomics, and phenomics in order to 
accurately identify human diseases [12, 13].

Indeed, dysregulation of lipid metabolism is meticu-
lously allied with the initiation and progression of several 
diseases including cardiovascular diseases and type 2 dia-
betes [14] as well as several central nervous system (CNS) 
disorders including Alzheimer’s disease (AD), Parkinson’s 
disease (PD), multiple sclerosis, schizophrenia and epi-
lepsy [15–20].

Several lipid biomarkers can be identified and quantified 
through clinical lipidomics. Through these lipids’ biomark-
ers, researchers can gain a better understanding of a dis-
ease, paving the way for the development of novel targeted 
therapies that can modify lipid metabolism and improve 
patient outcomes. Such innovative therapies hold immense 
promise in advancing the field of medicine and providing 
patients with more effective and personalized treatments.

In the present review, we focused only on clinical lipi-
domics mainly phospholipidomics applications in the 
context of CNS disorders. We discussed lipidomics in 
neurological diseases including lipid profiles in the brain 
and glycerophospholipids as biomarkers in brain disorders. 
Following this, we investigated the cerebral phospholip-
ids’ content in healthy and disease conditions through the 
application of numerous analytical approaches such as 
chromatographic and spectroscopic methods.

Lipidomics in Neurological Diseases

Lipids’ Profiles in the Brain

Lipids are essential components of the brain and play 
vital roles in maintaining cerebral structure and biological 
functions. The brain contains approximately 60% of fats 
[21]. To examine the lipid content in the brain, research-
ers investigated several model systems including rodents 
[22, 23], tissue cells [24, 25], or even post-mortem human 
brain tissues [26–29]. Among these lipids, Glycerophos-
pholipids (GPLs), the furthermost lipid class in the brain, 
serve as primary building blocks of a cell’s membrane 
[30]. The composition of a cell’s membrane is essential for 
various cellular functions including ion channels’ regula-
tion, neurotransmitter transport, and signal transduction 
[31]. Additionally, GPLs are involved in myelin formation 
in charge of insulating nerve fibers, allowing a fast and 
efficient transmission of electrical impulses [32].

As regards of GPLs’ chemical structure, GPLs have an 
amphiphilic structure with a hydrophilic polar head and a 
hydrophobic moiety “tail”. This specific structure provides 
to GPLs a key function in cell structure and metabolism. 
As summarized in Fig. 1, GPL classes differ according to 
polar head at sn-3 position forming different classes of 
GPLs such as phosphatidylcholine (PC), phosphatidyletha-
nolamine (PE), phosphatidylserine (PS), phosphatidylin-
ositol (PI), phosphatidylglycerol (PG), and phosphatidic 
acid (PA) [33]. In the brain, high content of omega-3 poly-
unsaturated fatty acids (PUFA) such as docosahexaenoic 
acid (DHA) and eicosapentaenoic acid (EPA) are primarily 
esterified in different GPLs such as PC, PE, and PS [34].

Additionally, bioactive lipids, such as lysophospholip-
ids (LysoPLs), are generated through the action of phos-
pholipase  A1  (PLA1) and/or phospholipase  A2  (PLA2) on 
GPLs [35] as illustrated in Fig. 1. LysoPLs are character-
ized by the presence of a single fatty acid (FA) at either 
sn-1 or sn-2 position and play vital roles in signaling cas-
cades and as mediators of FAs across cell membranes [36, 
37]. LysoPLs can act as signaling molecules regulating 
cell growth, differentiation, and apoptosis [33]. Addi-
tionally, they are involved in the regulation of synaptic 
plasticity and neuroinflammation in the brain [38]. In the 
brain, specific LysoPLs including lysophosphatidylcholine 
(LysoPC), lysophosphatidic acid (LysoPA), lysophosphati-
dylinositol (LysoPI), and lysophosphatidylserine (LysoPS) 
have been identified as important bioactive lipids [33]. 
More importantly, LysoPC acts as a carrier for DHA to 
the brain, where it is transported via a specific receptor/
transporter named  Mfsd2a (major facilitator superfamily 
domain containing 2A) located in the endothelial cells of 
BBB [39–41].
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In addition to GPLs and LysoPLs, the human brain con-
tains a complex mixture of essential lipids including sphin-
golipids and cholesterol [42, 43]. Indeed, sphingolipids are 
involved in cell signaling and regulation of specific enzymes’ 
activity in addition to other critical roles in CNS including 
dendritic development and aging [44–46]. Whereas choles-
terol, found in high concentrations in the brain, is funda-
mental for the membrane’s structure and function [47, 48].

In humans, during the aging process, changes in lipids 
composition of the post-mortem brain region were inves-
tigated [49, 50]. Several autopsied brains of middle-aged 
and elderly (40 to 80 years old) with 17 cases including 12 
healthy males and 7 females were examined. Lipids were 
isolated from various regions including the olive, upper 
vermis, substantia nigra, thalamus, hippocampus, puta-
men, caudate, occipital cortex, parietal cortex, entorhinal 
cortex, and frontal cortex. Extracted lipids were analyzed 
through gas chromatography with flame-ionization detection 

(GC-FID). Comparing the fatty acid (FAs) composition of 
the middle-aged brain to that of the elderly showed a well-
preserved lipid profile. Minor changes in FA chain length, 
high monounsaturated fatty acids (MUFAs) content, and 
PUFAs (omega-6 and omega-3) predominance in the infe-
rior temporal cortex and cingulate gyrus involved in memory 
were observed [49, 51].

Glycerophospholipids as Biomarkers of Brain 
Disorders

In the brain, when comparing the lipid profiles of healthy 
people to unhealthy, several alterations were observed 
[16]. Several researchers suggested that alterations in the 
composition of cerebral lipids have been linked to various 
neurological conditions [33, 52] including AD and PD [16, 
48, 50]. For example, researchers have identified alterations 
in the levels of PC, sphingomyelin, and ceramides in the 

Fig. 1  Overview of glycerophospholipids structures. Phospholipids 
contain two FAs esterified to a glycerol backbone at sn-1 and sn-
2 positions, whereas lysophospholipids have only one FA esterified 
at sn-1 or sn-2 position. For all glycerophospholipids species, the 

phosphate group is located at sn-3 position. The polar group differs 
according to the X group (X corresponds to one of the following: 
hydrogen, choline, ethanolamine, serine, glycerol, or inositol)
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brain as early biomarkers of AD [27]. Moreover, LysoPL 
dysregulation has been associated with the development 
and progression of several neurological disorders [38, 53]. 
Therefore, identifying potential therapeutic interventions 
that target LysoPLs became an active area of research.

Indeed, it is interesting to note that researches on post-
mortem brain biopsies of individuals with neurodegenerative 
diseases showed a significant variation in lipid composition, 
particularly with regard to unsaturated and saturated fatty 
acids [54]. In Particular, PD and AD diseases are associated 
with a significant increase in unsaturated fatty acids (USFA) 
compared to saturated fatty acids (SFA). Up to 80% of lipids 
in brains affected by PD and AD contained USFA, while 
only 20% enclosed SFA [36]. These results suggested that 
USFA may play a significant role in the pathology of these 
diseases, possibly by affecting the structure and/or function 
of cell membranes in the brain. This may also have implica-
tions for understanding the progression of these diseases and 
developing new treatments for individuals affected by them.

In fact, this predominance of USFA may be a conse-
quence of brain disease to prevent brain tissue destruction. 
PUFA, especially omega-3 fatty acids such as alpha-lino-
lenic acid (ALA), generally serves as a precursor for the 
synthesis of various anti-inflammatory molecules includ-
ing EPA and DHA, produced through a series of enzymatic 
reactions from ALA and is known to exhibit strong anti-
inflammatory effects in the body. Therefore, these biomol-
ecules potentially protect the brain from inflammation and 
degeneration in addition to their neuroprotective effects [37]. 
One of the specialized pro-resolving lipid mediators derived 
from DHA called neuroprotectin D1 (NPD1) showed the 
capability to limit the formation of amyloid plaques associ-
ated with the neurons’ degeneration in AD [55, 56]. Indeed, 
NPD1 exhibited potent anti-inflammatory and neuroprotec-
tive effects in several neurological conditions. Its mechanism 
of action involved promoting neuronal survival, reducing 
inflammation, and inhibiting apoptosis. Moreover, NPD1 
modulated various signaling pathways in the brain, including 
those involved in synaptic plasticity and neurogenesis [57].

Alzheimer’s Disease

AD is the furthermost prevalent neurodegenerative disease 
and cause of dementia [58]. In AD patients, the alterations in 
the lipidome and the way they relate to AD are poorly under-
stood. Nevertheless, changes in lipid metabolism have been 
stated to play a significant role in AD pathogenesis associ-
ated with the accumulation of β-amyloid (Aβ) plaques and 
neurofibrillary tangles in the brain [59, 60]. Furthermore, 
through lipidomics analysis, researchers identified changes 
in various lipid classes including FAs, PLs, and SPs in the 
brains of AD patients [61]. Additionally, in these patients, 
the levels of cerebral ceramides in the brain, involved in the 

formation of β-amyloid (Aβ) plaques, have increased [62]. 
Moreover, PC and PE levels, in the brain, were significantly 
declined and PLs deacylation products glycerophosphocho-
line were improved in the frontal, primary auditory, and 
parietal cortices [63]. A significant decrease in phosphati-
dylcholine-plasmalogen (PC-PL) was observed in the frontal 
cortex of the brain. Indeed, PC-PL influences γ-secretase 
activity responsible for amyloidogenic processing the cause 
of AD [51, 64].

Through lipidomics studies, in AD patients, specific and 
detailed lipid profiles characterized by the enrichment of 
SFA and PUFA in neutral lipids (DAG 28:0, TAG 58:10, and 
TAG 48:4), polar lipids including PLs (PE 36:1, PC 40:6, 
PS 36:3, PS 36:6) and sphingolipids in lipid rafts with a low 
level of LC-PUFA such as DHA were obtained [50, 65, 66]. 
These results are favorable for suggesting a new treatment 
targeting lipids’ metabolism as a complementary or alterna-
tive therapy for AD.

Parkinson’s Disease

PD is the second common neurodegenerative disease occur-
ring in people over 60 years of age [67]. Multiple studies 
applying lipidomic tools have demonstrated significant 
changes in the levels of various lipid classes in the brains of 
PD patients [26]. Alterations in GPLs, SPs, and cholesterol 
esters have been detected in PD patients, suggesting their 
potential role in the pathogenesis of the disease. More spe-
cifically, PLs and SPs were the most abundant lipids with 
saturated or unsaturated species including PC 36:3, PE 36:2, 
PI 34:2, PS 36:3, and SM 18:1 [68]. Furthermore, in the 
brains of PD patients, researchers have revealed an increase 
in lipid peroxidation, a process that leads to oxidative dam-
age of lipids [69–71], resulting in the production of reactive 
oxygen species (ROS). The latter is known to contribute to 
neuronal damage and degeneration in PD [72–74].

Lipidomics has emerged as a precious tool in PD research, 
offering crucial insights into the role of lipids in diseases’ 
pathogenesis. Through the identification of specific lipids 
altered in PD patients, lipidomics can provide new targets for 
developing novel therapeutic interventions. Thus, lipidom-
ics has the potential to open up new avenues for developing 
more effective PD treatments [68].

Neurotoxicity in the Brain

Furthermore, lipid profiling is supportive in investigating the 
brain neurotoxicity effect in case of disorders. As reported 
in anesthetic neurotoxicity cases as well as chronic alcohol, 
human brain alteration was observed through lipid biomark-
ers characterized by mass spectrometry [75, 76]. In neuro-
toxicity, LC-PUFAs were the main lipid biomarkers with a 
notable increase in the prefrontal cortex and striatum region. 
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In chronic alcohol cases, lipid alterations caused by alco-
hol could be due to the endoplasmic reticulum’s (ER) stress 
response to the cerebral lipids’ alteration [76].

Multiple Sclerosis

Multiple sclerosis is a chronic autoimmune disease affect-
ing the CNS. In multiple sclerosis patients, lipidomics has 
investigated the lipids’ profile and alterations in the brain 
of these patients compared to healthy individuals. Several 
modifications in the lipid metabolism of FA, ceramides, 
and PLs were observed in addition to lipid peroxidation 
products. Furthermore, a decrease in plasmalogens and 
an increase in the sphingolipids’ level in the cerebrospinal 
fluid of multiple sclerosis patients were observed [77, 78]. 
Moreover, lipidomics has revealed changes in GPLs, SPs, 
and cholesterol in the blood of these patients, suggesting that 
lipid metabolism is dysregulated in multiple sclerosis dis-
ease [79]. When researchers established a phospholipidome 
signature in the serum of these patients [80], significantly 
low levels of specific PLs including PE, PC, LysoPE, ether-
linked PE, and ether-linked PC species were detected [80]. 
Plasmalogens PC and PE, natural endogenous antioxidants 
as well as PC and PE with PUFA esterified classes in com-
parison to healthy controls PC 34:3, PC 36:6, PE 40:10, 
and PC 38:1 may be appropriate as biomarkers for medical 
applications in multiple sclerosis [80]. These findings may 
allow better understanding of the pathogenesis of multiple 
sclerosis and may lead to the development of new diagnostic 
and therapeutic strategies.

Psychosis

In addition to all previous diseases, in the context of psycho-
sis, a low proportion of EPA (29%), DHA (27%), and AA 
(16%) were observed in the patients’ brain in comparison 
to healthy people in addition to high concentrations of SM 
(16%) and lower concentration of PE (46%) compared to the 
control group [81]. These results suggested that a decrease 
of PUFA accretion to the brain, mainly omega-3 PUFA, can 
be either the consequence or cause of psychosis in subjects.

Schizophrenia

Lipidomics has also been used to investigate the potential role 
of lipids in Schizophrenia, a complex and severe mental dis-
order characterized by a range of cognitive, emotional, and 
behavioral symptoms. Several studies have revealed alterations 
of FA, PC, and ceramides in brain tissues mainly the prefron-
tal cortex, grey and white matter. Significant alterations of 
SFA and MUFA (16:0, 18:0, 18:1) and PUFA (22:5, 22:6) in 
total lipids, TGs or PLs were observed. Around 20 PC species 
with SFA and PUFA and only three ceramide species were 

observed with MUFA mostly [18, 82]. However, Taha et al. 
[83] in 2013 concluded that total lipid, phospholipid, plasm-
alogen, triglyceride, and cholesteryl ester concentrations did 
not differ significantly between schizophrenia and control sub-
jects. Only cholesteryl esters could be considered as a poten-
tial biomarker in the prefrontal cortex in schizophrenia. These 
findings propose that lipid metabolism may be dysregulated 
in schizophrenia and may contribute to the physiopathology 
of this disorder. However, further studies are needed to eluci-
date the underlying mechanisms and to determine the potential 
diagnostic and therapeutic implications of these results.

Epilepsy

Cerebral lipids’ composition in patients with neurological 
disorders characterized by recurrent seizures as epilepsy, 
showed a specific profile in the temporal lobe (hippocampus), 
and alterations in PC and PE content were detected [84, 85]. 
These variations may be related to the primary mechanisms of 
epilepsy, including inflammation, oxidative stress, and changes 
in neuronal membrane function [86]. These lipids may play 
a role in the development and progression of epilepsy [84]. 
Finally, lipidomics may be helpful in understanding the patho-
physiology of epilepsy and may lead to the identification of 
novel therapeutic targets for this disorder.

Altogether, these findings highlight the importance 
of investigating the brain’s lipids as potential biomarkers 
for early diagnosis and treatment of neurological disor-
ders. Through the identification of changes in brain lipids, 
researchers could be potentially able to develop new diag-
nostic tools and treatments for neurodegenerative diseases. 
Along with genomics and metabolomics, these observations 
could serve as powerful tools to elucidate the brain’s func-
tions and tackle brain diseases by suggesting novel treat-
ments [87–89].

Finally, the profile of lipid species regarding their total 
chain length and number of double bonds in human brain 
disorders (Parkinson’s disease, Alzheimer’s disease, Schizo-
phrenia/bipolar disorder, multiple sclerosis, epilepsy) were 
summarized in Table 1. As illustrated, several lipid spe-
cies such as Bis(monoacylglycero)phosphate (BMP), PC, 
PE, PS, PI, PG, SM, diacylglycerol (DAG), triacylglycerol 
(TAG), ceramide (Cer), Lyso-PC with different FA chain 
lengths, and a number of unsaturated content are considered 
as biomarkers.

Phospholipidomics Approaches in Clinical 
Trials

Phospholipidomics is a subclass of lipidomics focusing on 
the characterization and quantification of various PLs. Phos-
pholipidomics studies have been carried out in clinical trials 
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to identify potential biomarkers and therapeutic targets for 
various diseases [91, 92]. These studies have involved the 
analysis of PLs, including their structure, composition, loca-
tion, concentration, and function in biological samples.

Several analytical approaches were developed to detect 
and quantify PL classes in clinical trials. Indeed, researchers 
emphasized the importance of chromatographic techniques 
in phospholipidomics for investigating clinical trials includ-
ing Thin-Layer Chromatography (TLC), high-performance 
liquid chromatography (HPLC), and gas chromatography 
(GC) [93]. TLC, GC, and HPLC are commonly employed 
in phospholipidomics. These techniques allow the separation 
and quantification of complex lipid mixtures. In addition 
to chromatography, spectroscopic methods such as nuclear 
magnetic resonance (NMR) spectroscopy, Raman spectros-
copy, Fourier-transform infrared spectroscopy (FT-IR) as 
well as mass spectrometry (MS) approaches like electro-
spray ionization (ESI-MS), matrix-assisted laser desorption/
ionization (MALDI), and isotope-ratio mass spectrometry 
(IRMS) were also effective for lipids analysis within this 
context [93]. These techniques offer unique strengths, such 
as the ability to probe molecular structures and detect sub-
tle changes in lipid conformation. Each of these analytical 
approaches has its own advantages and limitations, making 
them useful for different applications. Table 2 represents 
the summary of different chromatographic and spectroscopic 
techniques commonly used in phospholipidomics.

By combining several techniques, researchers can obtain 
a comprehensive analysis of LysoPLs and PLs and their roles 
in neurological diseases’ underlying mechanisms of disease, 
and inform about the development of new treatments. In this 
section, we will discuss each analytical technique highlight-
ing their principles, applications, and recent advancements 
in phospholipidomics.

Chromatographic Techniques in Phospholipidomics

Thin‑Layer Chromatography (TLC)

Thin-layer chromatography (TLC) has been a widely used 
and cost-effective technique for separating phospholipids 
(PLs). Over the years, various methods have been developed 
to optimize the separation of different species of PLs and 
LysoPLs from biological matrices [93].

Automated high-performance thin layer chromatography 
(HPTLC) has been considered an improved version of TLC 
offering high elution of molecules and generating less back-
ground noise than classical TLC due to the silica particle 
size of the stationary phase [96]. However, eluting highly 
polar LysoPLs from silica gel requires organic solvents with 
high polarity.

Although TLC has been suitable for separating PLs and 
LysoPLs, its preparative applications have been limited. In 

specific cases of PUFAs, long-term storage of TLC plates 
resulted in lipid oxidation. On the other hand, TLC became 
an unusual approach for PLs and LysoPLs quantification in 
case it is combined with other chromatographic techniques 
such as GC (TLC-GC) [98]. Also, TLC can be coupled to 
mass spectrometry as an emerging lipidomics approach for 
analyzing detailed patterns of PLs’ and Lyso-PLs’ molecular 
species such as TLC-blot-matrix-assisted laser desorption/
ionization imaging mass spectrometry method (HPTLC-
MALDI-MS) [101, 102]. This approach has separated PL 
mixtures directly from the HPTLC plate. Furthermore, it 
has allowed easy visualization of all PLs with a linear range 
of around one order of magnitude and precision, making it 
useful for differential analysis of lipids [101, 102].

Gas

Gas Chromatography (GC)

In lipid profiling, GC has been ideally suitable for FA analy-
sis. Indeed, volatile fatty acid methyl esters (FAMEs) have 
been produced through derivatization [152]. GC with flame 
ionization detection (GC-FID) has been the common GC in 
lipidomics based on FAMEs’ retention time. Organic com-
pounds have been combusted into a hydrogen flame and mol-
ecules became thermally ionized for detection.

FA regioisomerization cis/trans separation has been also 
possible through GC-FID although several drawbacks [52, 
153]. Some of these have been related to the limitations of 
sensitivity for the detection of lower concentrations of FA 
and that FID has been unspecific to FA but for all hydrocar-
bons. Consequently, the non-specificity of FID has increased 
the background generated from hydrocarbon contamination 
hence decreasing the technique’s sensitivity. Recently, short-
chain SFAs such as 10:0 and 13:0 were not detected [152]. 
Thus, in the context of lipid profiling, GC-FID had a limita-
tion to the detection of long-chain FAs principally.

To overcome GC-FID’s limitations, GC coupled to MS 
(GC-MS) has been considered as a valuable technique 
increasing the sensitivity of detection and ionization com-
pared to a single MS [154]. In GC-MS, electron ionization 
(EI) has been the ionization source frequently used where an 
electron beam ionized sample molecules resulting in elec-
tron loss. Indeed, to ensure high fragmentation of lipids, a 
high-energy ionization pathway was needed. This ionization 
procedure has been destructive for charged molecules and 
qualified as a “hard” source of ionization. Contrarily, elec-
trospray ionization (ESI) or atmospheric pressure chemical 
ionization (APCI) have been “soft” sources and are only 
compatible with HPLC. Nevertheless, GC-MS has offered 
information about isotope enrichment by identifying the iso-
tope pattern of FAs and tracer/ratio [155].
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For stable isotopic analysis, gas chromatography combus-
tion isotope ratio mass spectrometry (GC-C-IRMS) has been 
the common approach. For optimal separation of labeled 
FAMEs, GC-C-IRMS has been more suitable for quanti-
fication of labeled lipids with isotopes such as 13C and 2H. 
GC-C-IRMS has remained the best approach in clinical tri-
als based on supplementation of lipids labeled with stable 
isotopes [156].

Indeed, clinical lipidomics can benefit greatly from GC-
C-IRMS to detect and quantify lipids in biological samples 
such as blood, serum, and plasma. GC-C-IRMS has been 
recognized for its high sensitivity and specificity, making it 
effective in detecting changes in lipid levels that may indi-
cate certain diseases.

The potential of GC-C-IRMS in revolutionizing clinical 
lipidomics lies in its ability to provide accurate and detailed 
analysis of lipid profiles in patient samples. This capability 
can help in the diagnosis and management of various dis-
eases by providing a full understanding of the patient’s lipid 
profile [157–159].

Furthermore, this method can offer researchers precise 
and dependable data to explore the metabolism of labeled 
lipids in vivo, which could explain the mechanisms involved 
in lipid metabolism and develop new therapeutic inter-
ventions. Despite GC-IRMS’s promising results, further 
research is required to validate its application in clinical 
lipidomics and establish standardized protocols for sample 
preparation and analysis. Nevertheless, considering its accu-
racy and reliability, GC-IRMS is crucial for investigating the 
role of lipids in metabolic processes and developing innova-
tive strategies to improve brain health.

High‑Performance Liquid Chromatography (HPLC)

HPLC has been a highly reliable, efficient, and selective sep-
aration method widely used in lipidomics. Different HPLC 
systems can be distinguished based on columns’ character-
istics including the particles’ size, the column’s length, as 
well as the composition of the mobile phase.

Reversed-phase liquid chromatography (RP-LC) has 
been frequently chosen for complex lipid separation because 
hydrophilic lipids are highly retained and their separation 
depends on carbon chain length and degree of FA unsatura-
tion [160, 161].

Moreover, hydrophilic interaction liquid chromatogra-
phy (HILIC) mode has been developed to retain polar com-
pounds like sugars, amino acids, and glycerophospholipids. 
HILIC is an interface method between RP-LC and NP-LC 
with a stationary phase identical to that of NP-LC (Si,  NH2, 
amide, diol…) and a mobile phase similar to that of RP-LC 
with organic solvents immiscible with water like acetoni-
trile. More recently, researchers could separate LysoPLs 

isomers by using a normal phase column by HILIC-ESI-
MS/MS [159].

Furthermore, a versatile method to separate LysoPL iso-
mers (1-acyl-2 LPLs and 2-acyl-1 LPLs) and prevent acyl 
migration reaction in LysoPLs was implemented through 
a simple procedure involving specific pH and temperature 
conditions. In this study, pH and temperature effects on the 
enzymatic reaction with a phospholipase A1 (PLA1) from 
Rhizomucor miehei lipase were investigated. This newly 
developed method is of great importance to the lipidomics 
field since LysoPLs play a crucial role in various physiologi-
cal processes, such as inflammation and neurodegeneration. 
The ability to selectively separate and analyze different iso-
mers of LysoPLs with HPLC-MS/MS can provide research-
ers with valuable insights into the underlying mechanisms 
of these processes [162].

Regarding the choice of detector with HPLC for efficient 
lipids separation and identification, ultraviolet (UV) detector 
or evaporative light scattering detector (ELSD) are com-
mon detectors. Indeed, LC-ELSD is one of the most suitable 
applications to quantify PLs in different food matrices [157, 
158]. LC-UV is frequently used for lipids analysis and is rec-
ommended for PLs and LysoPLs separation and quantitation. 
Researchers developed a method to isolate LysoPLs from 
PLs in one single run and used a balance study approach 
[163–166]. The robust interpretation of altered PLs levels 
observed in pathologic states requires the ability to assess 
recovery by lipid phosphate balance, identify LysoPLs, 
quantify unexpected organic phosphorous-containing com-
pounds, and consider alterations in acyl-group content or 
composition via the acyl/organic phosphate ratio [167–169].

Furthermore, for more complex lipids, two-dimensional 
liquid chromatography (2D-LC) is suitable to separate lipids 
following independent parameters such as electrostatic force, 
hydrophobic character, size exclusion, ion charge, and affin-
ity [170]. The first dimension separates lipid classes by 
NP-LC or HILIC and the second dimension is analyzed by 
RP-LC. Conversely, this system is time-consuming and not 
easy to calibrate [171]. More recently, for TAG identification 
in adults’ and infants’ formula analysis, three-dimensional 
liquid chromatography (3D-LC) was applied. High-quality 
separation and TAG identification were achieved through 
coupling 3D-LC with MS [162].

Spectroscopic Methods in Phospholipidomics

NMR, Raman Spectroscopy, and FTIR

Spectroscopy aims to study the interaction of electromag-
netic radiation with substances. Several spectroscopic meth-
ods have been applied in lipidomics including nuclear mag-
netic resonance (NMR) spectroscopy, Raman spectroscopy, 
and Fourier-transform infrared spectroscopy (FT-IR).
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NMR has been a useful method in lipidomics investi-
gating lipid structural features through natural isotopes 
such as 31P, 1H, or 13C pre-enriched lipids. In vivo, lipids’ 
metabolism in the liver has been investigated through NMR 
analysis [125]. As reported in numerous studies, NMR has 
many applications in determining lipids’ metabolism in 
pathogenesis as well as lipids’ interaction with proteins, 
drugs, or antibiotics [172, 173]. Through NMR, the interac-
tion between polyphenols, salivary proteins, lipids in food, 
and oral membrane taste receptors during wine tasting has 
been identified [174]. To surpass the abundant drawbacks 
of spectral overcrowding when recording 1D NMR spec-
tra on such samples, the acquisition of two-dimensional 2D 
NMR spectra has permitted an enhanced separation among 
coincided resonances while yielding precise quantitative 
information [175]. In lipidomics, NMR had several advan-
tages over other spectroscopic techniques such as qualita-
tive results and a vast range of applications. NMR can study 
the lipids’ structure and their derivatives’ structure as well. 
The interaction of lipids within proteins in cell membranes 
has also been reported [93]. Moreover, NMR has been an 
interesting technique to illustrate the structure of complex 
mixtures of lipids in the food technology and nutrition field 
[176]. In phospholipidomics, 31P NMR spectroscopy has 
provided a quantitative and fast approach to characterize 
lipids in cell membranes with highly predictable and repro-
ducible results [177, 178]. Recently, a simple method to 
quantify LysoPLs in food emulsions by 31P NMR, a sensi-
tive and precise method of quantification of LysoPLs has 
been suggested [179]. Moreover, in lipidomics, NMR has 
been mostly combined with mass spectrometry approaches 
to reach a complete and robust PL profile [180–183].

Another spectroscopic approach applied in phospholipi-
domics has been Raman spectroscopy, a molecular spec-
troscopic system founded on the interaction of light with 
matter or a light scattering process to provide data about 
a material’s characteristics. This spectroscopic technique 
has provided information about intra- and inter-molecular 
vibrations and an additional understanding of a reaction. For 
lipids’ analysis, Raman spectroscopy has offered qualitative 
information, considered as a specific fingerprint for each 
lipid, including the degree of unsaturation, cis/transposition, 
and chain length. Researchers have suggested lipids profiling 
using multimodal approaches by combining Raman spec-
troscopy and mass spectrometry to improve the analysis of 
brain pathologies. During analysis, mass spectrometry has 
been reported to be more sensitive in detecting cholesterol 
ester than Raman spectroscopy. However, the use of single-
cell laser trapping combined with Raman spectroscopy has 
remained a suitable option to optimize qualitative results 
on the level of unsaturation and transition temperatures of 
lipid species [129]. Thus, it has been reported that this spec-
troscopic technique is suitable for analyzing FA degree of 

unsaturation in storage lipids of lipid droplets in algae and 
liver disease [130–132].

Additional spectroscopic approaches included Fourier-
transform infrared spectroscopy (FT-IR) based on light’s 
interaction with matter to gain insight into matter’s func-
tions relying on the absorption of light. In lipid profiling, 
FT-IR has characterized the acyl chain length of FAs as 
described by Stoll et  al. [136]. These researchers have 
observed with FT-IR that short-chain FAs in PC affected 
the confirmation of the red blood cell membranes, unlike 
long-chain FAs [136].

Mass spectrometry, High‑Sensitivity Techniques 
in Phospholipidomics

Mass spectrometry (MS) is a state-of-art analytical approach, 
which allows fast and reliable identification and quantifica-
tion of lipids in lipidomics for biomedical and biochemical 
research applications [184].

MS-based phospholipidomics has offered several advan-
tages over traditional methods such as TLC and HPLC. 
This technique has afforded higher sensitivity, specificity, 
and accuracy in lipid detection and quantification. With MS, 
even low-abundance lipids in complex biological matrices 
can be identified and characterized with high precision and 
resolution. These features are essential for novel lipid spe-
cies discovery and the elucidation of their roles in biological 
processes [185].

MS became the analytical technique of choice for sev-
eral omics branches and phospholipidomics is one of these 
[186]. All MS-based omics approaches have followed the 
same steps from sample preparation to MS spectra analysis. 
The first step is the sample separation followed by sample 
analysis using a separation technic such as LC, GC or capil-
lary electrophoresis (CE), or supercritical fluid chromatog-
raphy (SFC). Mass spectrometric measurements have been 
achieved through diverse ionization methods such as electro-
spray (ESI), electron ionization (EI), desorption electrospray 
ionization (DESI) for “matrix-assisted laser desorption and 
ionization” (MALDI). Different ions have been separated 
and detected depending on their m/z values in the mass ana-
lyzer. The final stage consisted of MS spectra storage. Signal 
intensities have been proportional to the molecular species’ 
abundance [186].

To accurately quantify lipids using MS, internal stand-
ards (IS) have been utilized to account for variable recovery 
from biological matrices and other factors that may affect 
ion yield. Generally, IS had similar structural, ionization, 
and fragmentation properties as the lipid classes being 
analyzed [187]. Synthetic non-endogenous PLs have been 
commonly used as internal standards to quantify PLs in 
biological samples and estimate extraction yield. For addi-
tional validation and quantification of a specified molecule 
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in targeted lipidomics, particular precursor m/z values and 
select probable fragment m/z values have been traced via 
vigorous triple quadrupole MS tools in selective reaction 
monitoring (SRM) mode allowing lipid identification and 
quantitation on the class level.

In targeted lipidomics, to accomplish a deeper MS frag-
ment analysis and allow species and subspecies identifica-
tion, orbitrap-type or time-of-flight (TOF) MS instruments 
with advanced mass resolution can achieve a full-scan 
acquisition in parallel reaction monitoring (PRM) mode for 
particular precursors, evaluating all fragment ions instanta-
neously [188].

To investigate lipids’ structure, tandem mass spectro-
metric tests (MS-MS) have been applied in lipidomics 
and numerous fragmentation procedures such as collision-
induced dissociation (CID) have recorded precursor precise 
fragment spectra [189].

Furthermore, in MS lipids analysis, to identify molecules, 
a special software has compared the generated MS-MS spec-
tra with theoretical fragment spectra or with reference spec-
tra from a database [188].

Higher-level fragmentation for lipids’ identification and 
quantification has been also relevant where a mass spec-
trometer picks MS2 fragment ions for additional fragmen-
tation (MSn) producing MSn spectra. All collected data 
with chromatographic retention time, drift time, collisional 
cross-section, scan polarity, collision energies, and relevant 
metadata have been stored in specific database [188].

Several lipidomics databases have been available. Among 
these, LIPID MAPS is a relational database for structures 
and annotations of biologically related lipids comprising 
lipid classification, experimentally determined structures, 
in-silico combinatorial structures, and other lipid resources 
[190]. LipidHome and Swiss Lipids are also databases in 
lipidomics providing respectively the in-silico generated 
theoretical lipid structures and curated database of lipid 
structures with experimental evidence and integration with 
biological knowledge and models [191, 192].

A number of advanced dedicated software for lipid 
identification from mass spectrometry are also accessible. 
Hoffman et al. [188] reviewed a total of 31 available soft-
ware tools for lipidomics data processing and identification 
published between 2006 and 2021. Several software such as 
LIMSA, LipidomeDB, LipiDex, LipidHunter, LipidMatch, 
Greazy, LipidMS, LipoStar, LipoStarMSI, LPPTiger, and 
Lipidview were included. Some software including Lipid-
Hunter and Greazy supports phospholipids only whereas 
others support oxidized phospholipids only (LPPTiger).

As previously mentioned, several ionization modes have 
been developed for lipids’ analysis in biological samples. 
Among these, ESI is the common ionization source for 
lipids’ identification in plasma [192]. To identify plasma 
lipoprotein-linked phospholipids, Dashti et  al. [193] 

applied three approaches including LC-ESI/MS, LC-ESI-
MS/MS, and HPTLC analysis of diverse lipoprotein por-
tions collected from pooled plasma. PE, PI, and SM were 
only found on lipoproteins whereas PC and LysoPC were 
associated with both lipoproteins and plasma lipoprotein 
free fraction (PLFF). Authors have suggested that LC-ESI-
MS/MS has been the greatest approach for evaluating the 
lipids’ content of biological samples such as the PL com-
position of plasma lipoproteins [193]. Khedr et al. [194] 
who investigated serum PL profiles of healthy volunteers 
and patients with newly diagnosed dengue fever (DF), 
hepatitis B (HBV), and hepatitis C (HCV) have suggested 
the same conclusion. The research team has followed an 
approach for the characterization and quantification of 
potential PLs biomarkers in human serum by means of 
LC-ESI-MS/MS and a non-endogenous PL mixture as 
an internal standard [194]. For the characterization and 
quantification of PLs, two ESI-MS-MS have been utilized. 
respectively: ion trap mass spectrometer (IT-MS) and tri-
ple quad mass spectrometer (TQ-MS). Each MS system 
has been linked to an HPLC system. PC, PI, PE, and PS 
have been characterized in human serum using LC-IT-MS. 
Lyso-PCs have been also identified. Through the analysis 
of major serum PLs in healthy volunteers and three groups 
of viral infection cases, different lipid profiles have been 
identified in patients with viral infectious diseases in com-
parison to healthy subjects reflecting the disrupted lipid 
metabolism in diseases [194].

Other than ESI, desorption electrospray ionization 
(DESI), an ambient system functional in mass spectrometry 
(MS), has permitted for an in situ analysis of PLs with few to 
no sample pretreatment [195]. One more advantage of DESI-
MS has been the direct surface sample analysis in phospho-
lipidomics [196]. More recently, phospholipidomics analysis 
(LysoPE, LysoPC, SM, PA, and PC) of blood samples has 
been achieved through PARAFILM-based dried plasma spot 
(DPS) sampling and DESI-MS method [197]. Additionally, 
matrix-assisted laser desorption ionization (MALDI) has 
been convenient for lipids profiling of neutral lipids.

Despite the high sensitivity of MS, it had some limitations 
compromising the interpretation of data. One of these limi-
tations has been linked to the complex mixture’s resolution 
containing isobaric and isomeric lipid species and requiring 
caution for automatic data processing from online databases. 
This limitation can be overcome by implementing three 
approaches. The first one consisted of using highly efficient 
chromatography such as the HILIC-based method [198]. The 
second approach has been established on the use of a shotgun-
like with differential mobility spectrometry (DMS) allowing 
a good separation of the lipids’ classes in the gas phase before 
analysis by MS [184, 199]. The last option has been considered 
using high-resolution accurate mass spectrometry (HRAMS) 
capable of high accuracy (2 ppm) and can typically identify 
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molecules at the sum composition level depending on instru-
ment type [162, 200].

Indeed, hydrophilic interaction chromatography coupled 
with electrospray ionization mass spectrometry (HILIC-ESI-
MS) has been implemented for phospholipidomics [198, 201]. 
HILIC-ESI-MS has been an operational method employing 
the hydrophilic stationary phase with reversed-phase eluent 
to isolate and analyze numerous lipid molecules. When cou-
pled with MS, the HILIC mode has gained significant sen-
sitivity improvement. For the polar molecules’ acid charges 
such as Lyso-PS and Lyso-PA, the HILIC system has been 
recommended [202]. This system has been designed for the 
separation and purification of polar compounds such as PLs 
based on hydrophilic interaction hydrogen bonding and weak 
electrostatic interactions [115, 159, 203].

In addition to HILIC-ESI-MS, Hydrophilic Interaction 
Chromatography coupled with quadrupole ion trap mass spec-
trometry (HILIC-QTRAP-MS) has been used to phospholipi-
domically examine swimming crabs, Portunus trituberculatus, 
cultivated with formulated feed, frozen trash fish, and mixed 
feed. Four PL classes involving 81 molecular types with numer-
ous PUFA have been identified. Results showed that the for-
mulated feed group retained the utmost concentration of PL 
(332.91 μg·mg−1), afterwards frozen trash fish group (294.74 
μg·mg−1) and mixed feed group (279.74 μg·mg−1). Phospholip-
idomics outcomes showed that formulated feed might substitute 
frozen trash fish for the cultivation of P. trituberculatus [204].

Finally, mass spectrometry imaging (MSI) technics have 
emerged in lipidomics providing complementary results about 
lipids’ composition and distribution in the brain. In terms of 
techniques, innovative lipidomics approaches, such as mass 
spectrometry imaging (MSI), can offer insight into the role of 
lipids in brain function and disease response [205–207]. More 
recently, atomistic simulations have compared lipid bilayers 
with complex and varied human brain compositions, leading 
to the discovery of precise ranges for lipids’ head groups, tail 
lengths, saturation, symmetry, and asymmetry [208]. These 
findings have the potential to further explore the fundamental 
role of the lipid bilayer in the permeability and transport of 
small molecules across the blood-brain barrier (BBB).

This approach has provided complementary data about 
the diversity and dynamics of lipids in the brain and other 
organs to extend the understanding of biochemical changes 
in an organism’s function [209].

Next‑Generation Tools for Lipidomics 
and Future Directions

Next-generation lipidomics is the future of cutting-edge 
research, enabling in-depth quantitative and qualitative anal-
ysis of lipid samples while minimizing the impact of sam-
ple matrix, all within a shorter timeframe, and with higher 

sensitivity and accuracy. Sophisticated bioinformatics tools 
and databases are necessary for processing a large volume of 
lipidomics data, enabling the identification and automation 
of the quantification system for the discovery of meaningful 
lipid biomarkers.

Over the last two decades, the development of bench-
top, user-friendly mass spectrometers has expanded our 
knowledge of biochemistry and lipidomics analysis [210]. 
The combination of HPLC or UPLC with electron spray 
ionization (ESI) made comprehensive lipidomics analysis 
accessible to new generations of researchers. This combina-
tion offers high selectivity, specificity, and accuracy that was 
previously out of imagination. LIPID MAPS, which stands 
for the lipid metabolites and pathways strategy, facilitated 
the development of resources and methods, serving the next 
generation of lipid researches with tools, resources, data, and 
training [210]. The uses of LIPID MAPS started during the 
development of MS methods, generating internal standards 
labeled with isotopes, analyzing macrophases, and sharing 
data for global research communities [211]. Recently, sci-
entists are investigating in a very different way. Younger 
scientists are examining lipids in a holistic manner rather 
than identifying and quantifying individual lipid classes or 
species, which is in agreement with the concept of devel-
oping system biology [210]. However, a basic understand-
ing of lipid biology and biochemistry is always required, if 
we want to decipher new data and investigate the power of 
lipidomics.

Another revolutionary force in lipidomics is imaging 
mass spectrometry (IMS), which offers high molecular 
specificity, sensitivity, and the spatial distribution of small 
molecules in tissues [212, 213]. Advanced techniques such 
as matrix-assisted laser desorption/ionization imaging mass 
spectrometry (MALDI-IMS) and secondary ion mass spec-
trometry (SIMS) facilitate to researchers the visualization 
of lipid distributions within tissues and individual cells 
[214, 215]. Emerging techniques in single-cell lipidomics 
and imaging have introduced infinite opportunities for the 
analysis of lipid heterogeneity [216]. The latest advancement 
in lipidomics analysis is the adoption of high-throughput 
techniques, significantly expediting the speed of lipidom-
ics research. These techniques enable the efficient and reli-
able analysis of extensive sample sets. Robotic platforms 
and automation systems have simplified sample preparation 
and analysis, making lipidomics data more accessible to the 
broader research community. In clinical research, advanced 
lipidomics tools are reported for the identification of spe-
cific lipid biomarker profiles, which helps the diagnosis and 
management of a wide range of diseases including PD, AD, 
schizophrenia, and various cardiovascular conditions, as 
mentioned earlier in Table 1. Lipidomics could also help in 
drug development and personalized medicine by tailoring 
treatments to individual lipid profiles [36]. However, there 
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are several challenges, including data acquisition, integra-
tion, standardization, and the overall development of lipid 
identification algorithms, in lipidomics research. Future 
directions in lipidomics research could be the integration of 
multi-omics approaches, which will help to understand the 
role of lipids in biological samples.

Overall, next-generation lipidomics technologies have a 
greater impact on healthcare and enhance our knowledge on 
understanding neurodegenerative diseases. Researchers can 
predict much more profound understandings of lipid-related 
illnesses based on the distribution of lipid biomarkers. Further-
more, next-generation lipidomics techniques help to create inno-
vative treatment approaches with the development of numerous 
technologies including mass spectrometry, liquid chromatogra-
phy, bioinformatics, imaging, and single-cell methods, making 
it a crucial and dynamic area of biomedical research.

Conclusion

In the human brain, lipids play fundamental roles, and their 
composition could be altered with age and in various neuro-
logical diseases. Lipidomics, an essential tool highlighting 
the mechanisms involving lipids in health and diseases, could 
identify lipid biomarkers for diagnosis and therapy. More spe-
cifically, in the brain, the identification of specific lipid species 
as biomarkers for different brain disorders, such as AD, PD, 
schizophrenia, bipolar disorder, and epilepsy could support the 
medical sector in the development of targeted therapies. Indeed, 
phospholipidomics is a cutting-edge analytical technique that 
holds immense potential for investigating the mechanisms 
and potential therapeutic targets of neurological diseases. By 
comprehensively analyzing PLs’ profile of patients with neu-
rological disorders, researchers can gain valuable insights into 
cerebral molecular alterations, potentially leading to the devel-
opment of more effective treatments. Furthermore, combining 
phospholipidomics with other analytical techniques, such as 
proteomics and genomics, might offer a more comprehensive 
understanding of the complex molecular pathways involved in 
neurological diseases. This integrated approach can assist in the 
identification of novel biomarkers and therapeutic targets that 
have been overlooked via a single analytical method. Combin-
ing multiple analytical approaches for lipidomics analysis, the 
complexity of lipids’ metabolism in the brain, and the lack of 
systematic lipid databases have made the interpretation of lipi-
domics data challenging. Therefore, further research is needed 
to fully elucidate the role of lipids in neurological diseases and 
establish the clinical utility of lipidomics analysis. In addition, 
the standardization of sample collection, processing, and analy-
sis is critical to ensure the reproducibility and comparability 
of lipidomics data across studies. Despite these challenges, 
lipidomics has already yielded important discoveries, such 
as the role of specific lipid species in neuroinflammation and 

neuronal cell death. Additionally, the integration of lipidomics 
with other omics approaches, such as genomics and proteomics, 
can provide a full understanding of the molecular mechanisms 
underlying neurological disease biomarkers in affected brain 
areas and suggest therapeutic mechanisms to transport vital 
lipids to the brain.

Finally, this review serves as a valuable resource for 
researchers and clinicians alike, providing a concise sum-
mary of the current knowledge on phospholipidomics in 
neurological diseases and highlighting areas that require fur-
ther investigation. By promoting collaboration and knowl-
edge sharing across different disciplines, we can accelerate 
the pace of discovery and ultimately improve the lives of 
patients suffering from neurological disorders.
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