Skip to main content
Log in

Neuroimaging Genomics a Predictor of Major Depressive Disorder (MDD)

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 11 December 2023

This article has been updated

Abstract

Depression is a complex psychiatric disorder influenced by various genetic and environmental factors. Strong evidence has established the contribution of genetic factors in depression through twin studies and the heritability rate for depression has been reported to be 37%. Genetic studies have identified genetic variations associated with an increased risk of developing depression. Imaging genetics is an integrated approach where imaging measures are combined with genetic information to explore how specific genetic variants contribute to brain abnormalities. Neuroimaging studies allow us to examine both structural and functional abnormalities in individuals with depression. This review has been designed to study the correlation of the significant genetic variants with different regions of neural activity, connectivity, and structural alteration in the brain as detected by imaging techniques to understand the scope of biomarkers in depression. This might help in developing novel therapeutic interventions targeting specific genetic pathways or brain circuits and the underlying pathophysiology of depression based on this integrated approach can be established at length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Change history

References

  1. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 392(10159):1789–1858

  2. Blazer DG (1994) The prevalence and distribution of major depression in a national community sample: the National Comorbidity Survey. Am J Psychiatry. 151(7):979–86

    Article  CAS  PubMed  Google Scholar 

  3. Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3(11)

  4. Nutt D, Wilson S, Paterson L (2008) Sleep disorders as core symptoms of depression. Dialogues Clin Neurosci. 10(3):329–36

    Article  PubMed  PubMed Central  Google Scholar 

  5. Edition F (2013) Diagnostic and statistical manual of mental disorders. Am Psychiatric Assoc 21(21):591–643

    Google Scholar 

  6. Fava M, Kendler KS (2000) Major depressive disorder. Neuron 28(2):335–341

    Article  CAS  PubMed  Google Scholar 

  7. Qin P (2011) The impact of psychiatric illness on suicide: differences by diagnosis of disorders and by sex and age of subjects. J Psychiatr Res 45(11):1445–1452

    Article  PubMed  Google Scholar 

  8. Glenn CR et al (2020) Annual research review: a meta-analytic review of worldwide suicide rates in adolescents. J Child Psychol Psychiatry 61(3):294–308

    Article  PubMed  Google Scholar 

  9. Rush AJ (2007) The varied clinical presentations of major depressive disorder. J Clin Psychiatry 68(8):4

    PubMed  Google Scholar 

  10. Klengel T, Binder EB (2015) Epigenetics of stress-related psychiatric disorders and gene× environment interactions. Neuron 86(6):1343–1357

    Article  CAS  PubMed  Google Scholar 

  11. Mazure CM (1998) Life stressors as risk factors in depression. Clin Psychol Sci Pract 5(3):291

    Article  Google Scholar 

  12. Lehtinen V, Joukamaa M (1994) Epidemiology of depression: prevalence, risk factors and treatment situation. Acta Psychiatr Scand 89:7–10

    Article  Google Scholar 

  13. Singh MM, Gupta M, Grover S (2017) Prevalence & factors associated with depression among schoolgoing adolescents in Chandigarh, north India. Indian J Med Res 146(2):205

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mohanraj R, Subbaiah K (2010) Prevalence of depressive symptoms among urban adolescents of south India. J Indian Assoc Child Adolesc Ment Health 6(2):33–43

    Google Scholar 

  15. Pilania M et al (2019) Prevalence of depression among the elderly (60 years and above) population in India, 1997–2016: a systematic review and meta-analysis. BMC Public Health 19(1):1–18

    Article  Google Scholar 

  16. Shadrina M, Bondarenko EA, Slominsky PA (2018) Genetics factors in major depression disease. Front Psych 9:334

    Article  Google Scholar 

  17. McGuffin P, Cohen S, Knight J (2007) Homing in on depression genes. Am Psychiatric Assoc 164:195

    Article  Google Scholar 

  18. Kendler KS et al (2001) Genetic risk factors for major depression in men and women: similar or different heritabilities and same or partly distinct genes? Psychol Med 31(4):605–616

    Article  CAS  PubMed  Google Scholar 

  19. Delgado PL (2000) Depression: the case for a monoamine deficiency. J Clin Psychiatry 61(Suppl 6):7–11

    CAS  PubMed  Google Scholar 

  20. Anderson G (2016) Editorial (Thematic Issue: the kynurenine and melatonergic pathways in psychiatric and CNS disorders). Curr Pharm Des 22(8):947–948

    Article  CAS  PubMed  Google Scholar 

  21. Hamilton M (1986) The Hamilton rating scale for depression. Assessment of depression. Springer, pp 143–152

    Chapter  Google Scholar 

  22. MacQueen GM (2009) Magnetic resonance imaging and prediction of outcome in patients with major depressive disorder. J Psychiatry Neurosci 34(5):343–349

    PubMed  PubMed Central  Google Scholar 

  23. Beauregard M et al (1998) The functional neuroanatomy of major depression: an fMRI study using an emotional activation paradigm. NeuroReport 9(14):3253–3258

    Article  CAS  PubMed  Google Scholar 

  24. Harvey P-O et al (2005) Cognitive control and brain resources in major depression: an fMRI study using the n-back task. Neuroimage 26(3):860–869

    Article  PubMed  Google Scholar 

  25. Wu QZ et al (2011) Abnormal regional spontaneous neural activity in treatment-refractory depression revealed by resting-state fMRI. Hum Brain Mapp 32(8):1290–1299

    Article  PubMed  Google Scholar 

  26. Milne AM, MacQueen GM, Hall GB (2012) Abnormal hippocampal activation in patients with extensive history of major depression: an fMRI study. J Psychiatry Neurosci 37(1):28–36

    Article  PubMed  PubMed Central  Google Scholar 

  27. Han KM et al (2019) Differentiating between bipolar and unipolar depression in functional and structural MRI studies. Prog Neuropsychopharmacol Biol Psychiatry 91:20–27

    Article  PubMed  Google Scholar 

  28. Kendall KM et al (2021) The genetic basis of major depression. Psychol Med 51(13):2217–2230

    Article  CAS  PubMed  Google Scholar 

  29. Roceanu A et al (2012) Diffusion tensor imaging (DTI) - a new imaging technique applyed in multiple sclerosis. Maedica (Bucur) 7(4):355–357

    PubMed  Google Scholar 

  30. Zotev V, Bodurka J (2020) Effects of simultaneous real-time fMRI and EEG neurofeedback in major depressive disorder evaluated with brain electromagnetic tomography. Neuroimage Clin 28:102459

    Article  PubMed  PubMed Central  Google Scholar 

  31. Thomas F et al (2015) DNA methylation of the serotonin transporter gene (<em>SLC6A4</em>) is associated with brain function involved in processing emotional stimuli. J Psychiatry Neurosci 40(5):296

    Article  Google Scholar 

  32. Tao S et al (2018) TPH-2 gene polymorphism in major depressive disorder patients with early-wakening symptom. Front Neurosci 12:827

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kim GS et al (2014) TrkB agonist antibody pretreatment enhances neuronal survival and long-term sensory motor function following hypoxic ischemic injury in neonatal rats. PLoS ONE 9(2):e88962

    Article  PubMed  PubMed Central  Google Scholar 

  34. Andreska T et al (2014) High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons. Front Cell Neurosci 8:107

    Article  PubMed  PubMed Central  Google Scholar 

  35. Aliaga EE, Mendoza I, Tapia-Arancibia L (2009) Distinct subcellular localization of BDNF transcripts in cultured hypothalamic neurons and modification by neuronal activation. J Neural Transm 116:23–32

    Article  CAS  PubMed  Google Scholar 

  36. Bergami M et al (2008) Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proc Natl Acad Sci 105(40):15570–15575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pang PT et al (2016) Extracellular and intracellular cleavages of proBDNF required at two distinct stages of late-phase LTP. NPJ Sci Learn 1(1):1–10

    Article  Google Scholar 

  38. Kohara K et al (2003) Inhibitory but not excitatory cortical neurons require presynaptic brain-derived neurotrophic factor for dendritic development, as revealed by chimera cell culture. J Neurosci 23(14):6123–6131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Colino-Oliveira M et al (2016) BDNF-induced presynaptic facilitation of GABAergic transmission in the hippocampus of young adults is dependent of TrkB and adenosine A 2A receptors. Purinergic Signalling 12:283–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jaworski J et al (2005) Control of dendritic arborization by the phosphoinositide-3′-kinase–Akt–mammalian target of rapamycin pathway. J Neurosci 25(49):11300–11312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carballedo A et al (2013) Brain-derived neurotrophic factor Val66Met polymorphism and early life adversity affect hippocampal volume. Am J Med Genet B Neuropsychiatr Genet 162b(2):183–90

    Article  PubMed  Google Scholar 

  42. Emon M et al (2020) Reduced serum BDNF levels are associated with the increased risk for developing MDD: a case–control study with or without antidepressant therapy. BMC Res Notes 13(1):1–6

    Article  Google Scholar 

  43. Hwang J-P et al (2006) The Val66Met polymorphism of the brain-derived neurotrophic-factor gene is associated with geriatric depression. Neurobiol Aging 27(12):1834–1837

    Article  CAS  PubMed  Google Scholar 

  44. Verhagen M et al (2010) Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Mol Psychiatry 15(3):260–271

    Article  CAS  PubMed  Google Scholar 

  45. Ropret S et al (2015) Single nucleotide polymorphisms in the BDNF gene and suicide in the Slovenian sample. Neurosci Lett 602:12–16

    Article  CAS  PubMed  Google Scholar 

  46. Gratacos M et al (2008) A brain-derived neurotrophic factor (BDNF) haplotype is associated with antidepressant treatment outcome in mood disorders. Pharmacogenomics J 8(2):101–112

    Article  CAS  PubMed  Google Scholar 

  47. Honea RA et al (2013) Characterizing the role of brain derived neurotrophic factor genetic variation in Alzheimer’s disease neurodegeneration. PLoS ONE 8(9):e76001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ide S et al (2015) Relationship between a BDNF gene polymorphism and the brain volume in treatment-naive patients with major depressive disorder: a VBM analysis of brain MRI. Psychiatry Res 233(2):120–124

    Article  PubMed  Google Scholar 

  49. Zhao Y et al (2021) Alterations in gray matter volumes and intrinsic activity in the prefrontal cortex are associated with suicide attempts in patients with bipolar disorder. Psychiatry Res Neuroimaging 307:111229

    Article  PubMed  Google Scholar 

  50. Ide S et al (2015) Relationship between a BDNF gene polymorphism and the brain volume in treatment-naive patients with major depressive disorder: a VBM analysis of brain MRI. Psychiatry Research: Neuroimaging 233(2):120–124

    Article  Google Scholar 

  51. Orozco-Solis R et al (2015) SIRT1 relays nutritional inputs to the circadian clock through the Sf1 neurons of the ventromedial hypothalamus. Endocrinology 156(6):2174–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cai N et al (2015) Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 523(7562):588–591

    Article  CAS  Google Scholar 

  53. CONVERGE consortium. (2015) Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature. 523(7562):588–91

    Article  PubMed Central  Google Scholar 

  54. Nan D et al (2020) Association of a SIRT1 polymorphism with changes of gray matter volume in patients with first-episode medication-naïve major depression. Psychiatry Res Neuroimaging 301:111101

    Article  PubMed  Google Scholar 

  55. Oishi A et al (2018) Decreased Gray Matter Volume of Right Inferior Parietal Lobule Is Associated With Severity of Mental Disorientation in Patients With Mild Cognitive Impairment. Front Neurol. 9:1086

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kishi T et al (2010) SIRT1 gene is associated with major depressive disorder in the Japanese population. J Affect Disord 126(1–2):167–173

    Article  CAS  PubMed  Google Scholar 

  57. Luo X-J, Zhang C (2016) Down-regulation of SIRT1 gene expression in major depressive disorder. Am J Psychiatry 173(10):1046–1046

    Article  PubMed  Google Scholar 

  58. Asher G et al (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134(2):317–328

    Article  CAS  PubMed  Google Scholar 

  59. Lohoff FW et al (2014) Functional genetic variants in the vesicular monoamine transporter 1 modulate emotion processing. Mol Psychiatry 19(1):129–139

    Article  CAS  PubMed  Google Scholar 

  60. Won E et al (2017) Vesicular monoamine transporter 1 gene polymorphism and white matter integrity in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 77:138–145

    Article  CAS  PubMed  Google Scholar 

  61. Liu D et al (2020) Alterations of white matter integrity associated with cognitive deficits in patients with glioma. Brain Behav 10(7):e01639

    Article  PubMed  PubMed Central  Google Scholar 

  62. Inoue A et al (2015) Association of TMEM132D, COMT, and GABRA6 genotypes with cingulate, frontal cortex and hippocampal emotional processing in panic and major depressive disorder. Int J Psychiatry Clin Pract 19(3):192–200

    Article  CAS  PubMed  Google Scholar 

  63. Seok J-H et al (2013) Effect of the COMT val158met polymorphism on white matter connectivity in patients with major depressive disorder. Neurosci Lett 545:35–39

    Article  CAS  PubMed  Google Scholar 

  64. Na K-S et al (2018) Differential effect of COMT gene methylation on the prefrontal connectivity in subjects with depression versus healthy subjects. Neuropharmacology 137:59–70

    Article  CAS  PubMed  Google Scholar 

  65. Wang M et al (2016) Meta-analysis of the COMT Val158Met polymorphism in major depressive disorder: effect of ethnicity. J Neuroimmune Pharmacol 11:434–445

    Article  CAS  PubMed  Google Scholar 

  66. Kohli MA et al (2011) The neuronal transporter gene SLC6A15 confers risk to major depression. Neuron 70(2):252–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Choi S et al (2016) Effects of a polymorphism of the neuronal amino acid transporter SLC6A15 gene on structural integrity of white matter tracts in major depressive disorder. PLoS ONE 11(10):e0164301

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chandra R et al (2017) Reduced Slc6a15 in nucleus accumbens D2-neurons underlies stress susceptibility. J Neurosci 37(27):6527–6538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schraut KG et al (2021) Loss of the psychiatric risk factor SLC6A15 is associated with increased metabolic functions in primary hippocampal neurons. Eur J Neurosci 53(2):390–401

    Article  CAS  PubMed  Google Scholar 

  70. Dfarhud D, Malmir M, Khanahmadi M (2014) Happiness & Health: The biological factors- systematic review article. Iran J Public Health 43(11):1468–1477

    PubMed  PubMed Central  Google Scholar 

  71. Risch N et al (2009) Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA 301(23):2462–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Igata N et al (2017) Voxel-based morphometric brain comparison between healthy subjects and major depressive disorder patients in Japanese with the s/s genotype of 5-HTTLPR. Sci Rep 7(1):3931

    Article  PubMed  PubMed Central  Google Scholar 

  73. Piel JH et al (2018) The effect of 5-HTTLPR and a serotonergic multi-marker score on amygdala, prefrontal and anterior cingulate cortex reactivity and habituation in a large, healthy fMRI cohort. Eur Neuropsychopharmacol 28(3):415–427

    Article  CAS  PubMed  Google Scholar 

  74. Costafreda SG et al (2013) Modulation of amygdala response and connectivity in depression by serotonin transporter polymorphism and diagnosis. J Affect Disord 150(1):96–103

    Article  CAS  PubMed  Google Scholar 

  75. Nichols DE, Nichols CD (2008) Serotonin receptors. Chem Rev. 108(5):1614–41

    Article  CAS  PubMed  Google Scholar 

  76. Pillai RLI et al (2018) Relations between cortical thickness, serotonin 1A receptor binding, and structural connectivity: a multimodal imaging study. Hum Brain Mapp 39(2):1043–1055

    Article  PubMed  Google Scholar 

  77. Yang J et al (2019) The interaction of TPH2 and 5-HT2A polymorphisms on major depressive disorder susceptibility in a Chinese Han population: a case-control study. Front Psych 10:172

    Article  CAS  Google Scholar 

  78. Li Z, et al. (2017) Association study on interaction effects of 5-HT receptor related genes and suicidal behavior in major depressive disorder. Chinese Journal of Behavioral Medicine and Brain Science. 610–614 

  79. Zhang R et al (2016) Association study of 5-HT1A, 5-HT2A polymorphisms with schizophrenia and major depressive disorder in the Han Chinese population. Neurosci Lett 635:39–43

    Article  CAS  PubMed  Google Scholar 

  80. Zhao X et al (2014) Association of HTR2A T102C and A-1438G polymorphisms with susceptibility to major depressive disorder: a meta-analysis. Neurol Sci 35:1857–1866

    Article  PubMed  Google Scholar 

  81. Sun Y et al (2021) Serotonin 2A receptor polymorphism rs3803189 mediated by dynamics of default mode network: a potential biomarker for antidepressant early response. J Affect Disord 283:130–138

    Article  CAS  PubMed  Google Scholar 

  82. Lee BT et al (2009) Impact of the tryptophan hydroxylase 1 gene A218C polymorphism on amygdala activity in response to affective facial stimuli in patients with major depressive disorder. Genes Brain Behav 8(5):512–518

    Article  CAS  PubMed  Google Scholar 

  83. Zhang X et al (2005) Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45(1):11–16

    Article  CAS  PubMed  Google Scholar 

  84. Lamont EW et al (2007) The role of circadian clock genes in mental disorders. Dialogues Clin Neurosci. 9(3):333–42

    Article  PubMed  Google Scholar 

  85. Liu AC et al (2008) Redundant function of REV-ERBα and β and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet 4(2):e1000023

    Article  PubMed  PubMed Central  Google Scholar 

  86. Maglione JE et al (2015) Associations of PER3 and RORA circadian gene polymorphisms and depressive symptoms in older adults. Am J Geriatr Psychiatry 23(10):1075–1087

    Article  PubMed  PubMed Central  Google Scholar 

  87. Patke A, Young MW, Axelrod S (2020) Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 21(2):67–84

    Article  CAS  PubMed  Google Scholar 

  88. Hou S-J et al (2020) An association study in the Taiwan Biobank reveals RORA as a novel locus for sleep duration in the Taiwanese Population. Sleep Med 73:70–75

    Article  PubMed  Google Scholar 

  89. Fuying Z et al (2019) Novel susceptibility genes were found in a targeted sequencing of stroke patients with or without depression in the Chinese Han population. J Affect Disord 255:1–9

    Article  CAS  PubMed  Google Scholar 

  90. Miyatsuka T et al (2011) Neurogenin3 inhibits proliferation in endocrine progenitors by inducing Cdkn1a. Proc Natl Acad Sci 108(1):185–190

    Article  PubMed  Google Scholar 

  91. Mattis KK, Gloyn AL (2020) From genetic association to molecular mechanisms for islet-cell dysfunction in type 2 diabetes. J Mol Biol 432(5):1551–1578

    Article  CAS  PubMed  Google Scholar 

  92. Hanson RL et al (2014) A genome-wide association study in American Indians implicates DNER as a susceptibility locus for type 2 diabetes. Diabetes 63(1):369–376

    Article  CAS  PubMed  Google Scholar 

  93. Mahajan A et al (2018) Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet 50(11):1505–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hou Z et al (2021) Effect of NEUROG3 polymorphism rs144643855 on regional spontaneous brain activity in major depressive disorder. Behav Brain Res 409:113310

    Article  CAS  PubMed  Google Scholar 

  95. Murtas G et al (2022) Biochemical properties and physiological functions of pLG72: twenty years of investigations. Biomolecules 12(6):858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang Z et al (2019) Allelic frequency differences of DAOA variants between Caucasians and Asians and their association with major mood disorders. Signal Transduct Target Ther 4(1):39

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lin C-H et al (2014) NMDA neurotransmission dysfunction in mild cognitive impairment and Alzheimer’s disease. Curr Pharm Des 20(32):5169–5179

    Article  CAS  PubMed  Google Scholar 

  98. Chen J et al (2012) Genotypic association of the DAOA gene with resting-state brain activity in major depression. Mol Neurobiol 46(2):361–373

    Article  CAS  PubMed  Google Scholar 

  99. McFarquhar M et al (2014) TOMM40 rs2075650 may represent a new candidate gene for vulnerability to major depressive disorder. Neuropsychopharmacology 39(7):1743–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pang Y et al (2016) Extraversion and neuroticism related to the resting-state effective connectivity of amygdala. Sci Rep 6:35484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jylhä P et al (2009) Neuroticism, introversion, and major depressive disorder–traits, states, or scars? Depress Anxiety 26(4):325–334

    Article  PubMed  Google Scholar 

  102. Backes H et al (2014) Genetic variation in CACNA1C affects neural processing in major depression. J Psychiatr Res 53:38–46

    Article  PubMed  Google Scholar 

  103. Rao S et al (2016) Common variants in CACNA1C and MDD susceptibility: a comprehensive meta-analysis. Am J Med Genet B Neuropsychiatr Genet 171(6):896–903

    Article  CAS  PubMed  Google Scholar 

  104. Liu X et al (2020) CACNA1C Gene rs11832738 Polymorphism influences depression severity by modulating spontaneous activity in the right middle frontal gyrus in patients with major depressive disorder. Front Psychiatry 11:73

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wang Y et al (2019) Protein tyrosine phosphatase receptor type R (PTPRR) antagonizes the Wnt signaling pathway in ovarian cancer by dephosphorylating and inactivating β-catenin. J Biol Chem 294(48):18306–18323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Malki K et al (2015) Identification of genes and gene pathways associated with major depressive disorder by integrative brain analysis of rat and human prefrontal cortex transcriptomes. Transl Psychiatry 5(3):e519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li X et al (2016) PTPRR regulates ERK dephosphorylation in depression mice model. J Affect Disord 193:233–241

    Article  CAS  PubMed  Google Scholar 

  108. Wang Y et al (2017) Polymorphism of ERK/PTPRR genes in major depressive disorder at resting-state brain function. Dev Neuropsychol 42(3):231–240

    Article  CAS  PubMed  Google Scholar 

  109. Davidson S et al (2016) Analysis of the effects of depression associated polymorphisms on the activity of the BICC1 promoter in amygdala neurones. Pharmacogenomics J 16(4):366–374

    Article  CAS  PubMed  Google Scholar 

  110. Bermingham R et al (2012) Effect of genetic variant in BICC1 on functional and structural brain changes in depression. Neuropsychopharmacology 37(13):2855–2862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gohla A (2019) Do metabolic HAD phosphatases moonlight as protein phosphatases? Biochim Biophys Acta (BBA)-Molec Cell Res 1866(1): 153–166

  112. Lin D et al (2023) LHPP, a risk factor for major depressive disorder, regulates stress-induced depression-like behaviors through its histidine phosphatase activity. Mol Psychiatry 28(2):908–918

    Article  CAS  PubMed  Google Scholar 

  113. Neff CD et al (2009) Evidence for HTR1A and LHPP as interacting genetic risk factors in major depression. Mol Psychiatry 14(6):621–630

    Article  CAS  PubMed  Google Scholar 

  114. Cui L et al (2016) Relationship between the LHPP gene polymorphism and resting-state brain activity in major depressive disorder. Neural Plast 2016:9162590

    Article  PubMed  PubMed Central  Google Scholar 

  115. Cui L et al (2020) Effects of the LHPP gene polymorphism on the functional and structural changes of gray matter in major depressive disorder. Quant Imaging Med Surg 10(1):257

    Article  PubMed  PubMed Central  Google Scholar 

  116. de Lange AG et al (2016) White matter integrity as a marker for cognitive plasticity in aging. Neurobiol Aging 47:74–82

    Article  PubMed  PubMed Central  Google Scholar 

  117. Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 15(2):85–93

    Article  PubMed  Google Scholar 

  118. Hamilton JP, Chen MC, Gotlib IH (2013) Neural systems approaches to understanding major depressive disorder: an intrinsic functional organization perspective. Neurobiol Dis 52:4–11

    Article  PubMed  Google Scholar 

  119. Sewell MDE et al (2021) Associations between major psychiatric disorder polygenic risk scores and blood-based markers in UK Biobank. Brain Behav Immun 97:32–41

    Article  CAS  PubMed  Google Scholar 

  120. Albert PR, Vahid-Ansari F (2019) The 5-HT1A receptor: Signaling to behavior. Biochimie 161:34–45

    Article  CAS  PubMed  Google Scholar 

  121. Chandley MJ, Ordway GA (2012) Frontiers in Neuroscience noradrenergic dysfunction in depression and suicide. In: Y. Dwivedi, (Eds) The neurobiological basis of suicide. CRC Press/Taylor & Francis© 2012 by Taylor & Francis Group, LLC.: Boca Raton

  122. Fan J et al (2023) transferase in astrocytes modulates depression-related stress susceptibility through glutamatergic synaptic transmission. J Clin Invest. 133(7)

Download references

Acknowledgements

The authors would like to acknowledge and thank the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, for their financial support.

Funding

This work was supported by the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India (Grant Number, SRG/2022/001306; Dated, 07/11/2022).

Author information

Authors and Affiliations

Authors

Contributions

This study has been conceptualized and designed by AM, PS, and SP. MJ, AC, AT, and RS have contributed to performing the literature survey. The manuscript has been written and edited by MJ and AC. The entire manuscript has been compiled and edited by MJ.

Corresponding author

Correspondence to Anjana Munshi.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jindal, M., Chhetri, A., Ludhiadch, A. et al. Neuroimaging Genomics a Predictor of Major Depressive Disorder (MDD). Mol Neurobiol 61, 3427–3440 (2024). https://doi.org/10.1007/s12035-023-03775-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03775-0

Keywords

Navigation