Skip to main content

Advertisement

Log in

Resveratrol Reduces Neuroinflammation and Hippocampal Microglia Activation and Protects Against Impairment of Memory and Anxiety-Like Behavior in Experimental Cerebral Palsy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cerebral palsy (CP) is a neurodevelopmental disorder characterized by motor and postural impairments. However, early brain injury can promote deleterious effects on the hippocampus, impairing memory. This study aims to investigate the effects of resveratrol treatment on memory, anxiety-like behavior, and neuroinflammation markers in rats with CP. Male Wistar rats were subjected to perinatal anoxia (P0-P1) and sensory-motor restriction (P2-P28). They were treated with resveratrol (10 mg/kg, 0.1 ml/100 g) or saline from P3-P21, being divided into four experimental groups: CS (n = 15), CR (n = 15), CPS (n = 15), and CPR (n = 15). They were evaluated in the tests of novel object recognition (NORT), T-Maze, Light–Dark Box (LDB), and Elevated Plus Maze (EPM). Compared to the CS group, the CPS group has demonstrated a reduced discrimination index on the NORT (p < 0.0001) and alternation on the T-Maze (p < 0.01). In addition, the CPS group showed an increase in permanence time on the dark side in LDB (p < 0.0001) and on the close arms of the EPM (p < 0.001). The CPR group demonstrated an increase in the object discrimination index (p < 0.001), on the alternation (p < 0.001), on the permanence time on the light side (p < 0.0001), and on the open arms (p < 0.001). The CPR group showed a reduction in gene expression of IL-6 (p = 0.0175) and TNF-α (p = 0.0007) and an increase in Creb-1 levels (p = 0.0020). The CPS group showed an increase in the activated microglia and a reduction in cell proliferation in the hippocampus, while CPR animals showed a reduction of activated microglia and an increase in cell proliferation. These results demonstrate promising effects of resveratrol in cerebral palsy behavior impairment through reduced neuroinflammation in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets analyzed during the study are available from the corresponding author on reasonable request.

References

  1. Rice D, Barone S (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect [Internet]. 108(suppl 3):511–33. Available from: https://ehp.niehs.nih.gov/doi/10.1289/ehp.00108s3511

  2. Ghalambor CK, Mckay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol [Internet]. 21(3):394–407. Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2435.2007.01283.x

  3. Suzuki K (2018) The developing world of DOHaD. J Dev Orig Health Dis [Internet]. 9(3):266–9. Available from: https://www.cambridge.org/core/product/identifier/S2040174417000691/type/journal_article

  4. Toscano AE, Manhães-de-Castro R, Canon F (2008) Effect of a low-protein diet during pregnancy on skeletal muscle mechanical properties of offspring rats. Nutrition [Internet]. 24(3):270–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0899900707003577

  5. Mcintyre S, Taitz D, Keogh J, Goldsmith S, Badawi N, Blair E (2013) A systematic review of risk factors for cerebral palsy in children born at term in developed countries. Dev Med Child Neurol [Internet]. 55(6):499–508. Available from: https://onlinelibrary.wiley.com/doi/10.1111/dmcn.12017

  6. Fragopoulou AF, Qian Y, Heijtz RD, Forssberg H. (2019) Can neonatal systemic inflammation and hypoxia yield a cerebral palsy-like phenotype in periadolescent mice? Mol Neurobiol [Internet]. 56(10):6883–900. Available from: http://link.springer.com/10.1007/s12035-019-1548-8

  7. Jacobsson B, Hagberg G (2004) Antenatal risk factors for cerebral palsy. Best Pract Res Clin Obstet Gynaecol [Internet]. 18(3):425–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1521693404000379

  8. Yeargin-Allsopp M, Van Naarden Braun K, Doernberg NS, Benedict RE, Kirby RS, Durkin MS (2008) Prevalence of cerebral palsy in 8-year-old children in three areas of the United States in 2002: a multisite collaboration. Pediatrics [Internet]. 121(3):547–54. Available from: https://publications.aap.org/pediatrics/article/121/3/547/72781/Prevalence-of-Cerebral-Palsy-in-8-Year-Old

  9. Himmelmann K (2013) Epidemiology of cerebral palsy. In: Handbook of clinical neurology [Internet]. 1st ed. Elsevier B.V. 163–7. Available from: https://doi.org/10.1016/B978-0-444-52891-9.00015-4

  10. Pereira S da C, Benoit B, de Aguiar Junior FCA, Chanon S, Vieille‐Marchiset A, Pesenti S, et al. (2021) Fibroblast growth factor 19 as a countermeasure to muscle and locomotion dysfunctions in experimental cerebral palsy. J Cachexia Sarcopenia Muscle [Internet]. 12(6):2122–33. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jcsm.12819

  11. Takada SH, Motta-Teixeira LC, Machado-Nils AV, Lee VY, Sampaio CA, Polli RS, et al. (2016) Impact of neonatal anoxia on adult rat hippocampal volume, neurogenesis and behavior. Behav Brain Res [Internet]. 296:331–8. Available from: https://doi.org/10.1016/j.bbr.2015.08.039

  12. Cho J-W, Jung S-Y, Kim D-Y, Chung Y-R, Choi H-H, Jeon J-W, et al. (2018) PI3K-Akt-Wnt pathway is implicated in exercise-induced improvement of short-term memory in cerebral palsy rats. Int Neurourol J [Internet]. 22(Suppl 3):S156–164. Available from: http://einj.org/journal/view.php?doi=10.5213/inj.1836224.112

  13. Fan L-W, Tien L-T, Mitchell HJ, Rhodes PG, Cai Z (2008) α-Phenyl-n-tert-butyl-nitrone ameliorates hippocampal injury and improves learning and memory in juvenile rats following neonatal exposure to lipopolysaccharide. Eur J Neurosci [Internet]. 27(6):1475–84. Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2008.06121.x

  14. Graham HK, Rosenbaum P, Paneth N, Dan B, Lin J-P, Damiano DL, et al. (2016) Cerebral palsy. Nat Rev Dis Prim [Internet]. 2(1):15082. Available from: https://www.nature.com/articles/nrdp201582

  15. Visco DB, Manhães-de-Castro R, da Silva MM, Costa-de-Santana BJR, Pereira dos Santos Junior J, Saavedra LM, et al. (2022) Neonatal kaempferol exposure attenuates impact of cerebral palsy model on neuromotor development, cell proliferation, microglia activation, and antioxidant enzyme expression in the hippocampus of rats. Nutr Neurosci [Internet]. 1–22. Available from: https://doi.org/10.1080/1028415X.2022.2156034

  16. Granja MG, Alves LP, Leardini-Tristão M, Saul ME, Bortoni LC, de Moraes FM, et al. (2021) Inflammatory, synaptic, motor, and behavioral alterations induced by gestational sepsis on the offspring at different stages of life. J Neuroinflammation [Internet]. 18(1):60. Available from: https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-021-02106-1

  17. Herrera MI, Udovin LD, Toro-Urrego N, Kusnier CF, Luaces JP, Capani F (2018) Palmitoylethanolamide ameliorates hippocampal damage and behavioral dysfunction after perinatal asphyxia in the immature rat brain. Front Neurosci [Internet]. 12(MAR):1–13. Available from: http://journal.frontiersin.org/article/10.3389/fnins.2018.00145/full

  18. Calado CMS da S, Manhães-de-Castro R, Pereira S da C, da Silva Souza V, Visco DB, de Silveira BS, et al. (2023) Therapeutic advances for treating memory impairments in perinatal brain injuries with implications for cerebral palsy: a systematic review and meta-analysis of preclinical studies. Exp Neurol [Internet]. 365(April):114411. Available from: https://linkinghub.elsevier.com/retrieve/pii/S001448862300095X

  19. Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LRM, Izquierdo I, Medina JH (2007) Persistence of long-term memory storage requires a late protein synthesis- and BDNF-dependent phase in the hippocampus. Neuron [Internet]. 53(2):261–77. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0896627306010269

  20. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science (80- ) [Internet]. 294(5544):1030–8. Available from: https://www.science.org/doi/10.1126/science.1067020

  21. Chao OY, de Souza Silva MA, Yang Y-M, Huston JP (2020) The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev [Internet]. 113:373–407. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0149763419309030

  22. Josselyn SA, Köhler S, Frankland PW (2015) Finding the engram. Nat Rev Neurosci [Internet]. 16(9):521–34. Available from: https://doi.org/10.1038/nrn4000

  23. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science (80- ) [Internet]. [cited 2023 Jan 18];294(5544):1030–8. Available from: https://www.science.org/doi/10.1126/science.1067020

  24. Faria MA (2020) The neurobiology of learning and memory – as related in the memoirs of Eric R. Kandel. Surg Neurol Int [Internet]. 11(252):252. Available from: http://surgicalneurologyint.com/surgicalint-articles/the-neurobiology-of-learning-and-memory-as-related-in-the-memoirs-of-eric-r-kandel-2/

  25. Gonzalez MC, Radiske A, Cammarota M (2019) On the involvement of BDNF signaling in memory reconsolidation. Front Cell Neurosci [Internet]. 13(August):1–7. Available from: https://www.frontiersin.org/article/10.3389/fncel.2019.00383/full

  26. Bekinschtein P, Cammarota M, Izquierdo I, Medina JH. (2008) Reviews: BDNF and memory formation and storage. Neurosci [Internet]. 14(2):147–56. Available from: http://journals.sagepub.com/doi/10.1177/1073858407305850

  27. Hampel H, Mesulam M-M, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, et al. (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain [Internet]. 141(7):1917–33. Available from: https://academic.oup.com/brain/article/141/7/1917/5023826

  28. Lee R, Lee N-E, Choi S-H, Nam SM, Kim H-C, Rhim H, et al. (2021) Effects of gintonin-enriched fraction on hippocampal gene expressions. Integr Med Res [Internet]. 10(2):100475. Available from: https://doi.org/10.1016/j.imr.2020.100475

  29. Dudai Y, Eisenberg M (2004) Rites of passage of the engram. Neuron [Internet]. 44(1):93–100. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0896627304005720

  30. Izquierdo IA, Myskiw JDC, Benetti F, Furini CRG (2013) Memória: tipos e mecanismos – achados recentes. Rev USP [Internet]. 0(98):9–16. Available from: https://www.revistas.usp.br/revusp/article/view/69221

  31. Bevilaqua LR, Medina JH, Izquierdo I, Cammarota M (2008) Reconsolidation and the fate of consolidated memories. Neurotox Res [Internet]. 14(4):353–8. Available from: http://link.springer.com/10.1007/BF03033859

  32. Fesser EA, Gianatiempo O, Berardino BG, Ferroni NM, Cambiasso M, Fontana VA, et al. (2021) Limited contextual memory and transcriptional dysregulation in the medial prefrontal cortex of mice exposed to early protein malnutrition are intergenerationally transmitted. J Psychiatr Res [Internet]. 139(May):139–49. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022395621003101

  33. de Souza AS, Fernandes FS, Tavares do Carmo M das G (2011) Effects of maternal malnutrition and postnatal nutritional rehabilitation on brain fatty acids, learning, and memory. Nutr Rev [Internet]. 69(3):132–44. Available from: https://academic.oup.com/nutritionreviews/article-lookup/doi/10.1111/j.1753-4887.2011.00374.x

  34. Potter M, Rosenkrantz T, Fitch RH. (2018) Behavioral and neuroanatomical outcomes in a rat model of preterm hypoxic‐ischemic brain injury: effects of caffeine and hypothermia. Int J Dev Neurosci [Internet]. 70(1):46–55. Available from: https://doi.org/10.1016/j.ijdevneu.2018.02.001

  35. Chen X, Chen D, Li Q, Wu S, Pan J, Liao Y, et al. (2021) Dexmedetomidine alleviates hypoxia-induced synaptic loss and cognitive impairment via inhibition of microglial NOX2 activation in the hippocampus of neonatal rats. Morroni F, editor. Oxid Med Cell Longev [Internet]. 2021:1–18. Available from: https://www.hindawi.com/journals/omcl/2021/6643171/

  36. Huang W, Xiao F, Huang W, Wei Q, Li X (2021) RETRACTED: MicroRNA-29a-3p strengthens the effect of dexmedetomidine on improving neurologic damage in newborn rats with hypoxic-ischemic brain damage by inhibiting HDAC4. Brain Res Bull [Internet]. 167:71–9. Available from: https://doi.org/10.1016/j.brainresbull.2020.11.011

  37. Gouveia HJCB, Manhães-de-Castro R, Costa-de-Santana BJR, Vasconcelos EEM, Silva ER, Roque A, et al. (2023) Creatine supplementation increases postnatal growth and strength and prevents overexpression of pro-inflammatory interleukin 6 in the hippocampus in an experimental model of cerebral palsy. Nutr Neurosci [Internet]. (May):1–13. Available from: https://doi.org/10.1080/1028415X.2023.2206688

  38. Driscoll DJO, Felice VD, Kenny LC, Boylan GB, O’Keeffe GW (2018) Mild prenatal hypoxia-ischemia leads to social deficits and central and peripheral inflammation in exposed offspring. Brain Behav Immun [Internet]. 69:418–27. Available from: https://doi.org/10.1016/j.bbi.2018.01.001

  39. Lai JCY, Rocha-Ferreira E, Ek CJ, Wang X, Hagberg H, Mallard C (2017) Immune responses in perinatal brain injury. Brain Behav Immun [Internet]. 63:210–23. Available from: https://doi.org/10.1016/j.bbi.2016.10.022

  40. O’Shea TM, Shah B, Allred EN, Fichorova RN, Kuban KCK, Dammann O, et al. (2013) Inflammation-initiating illnesses, inflammation-related proteins, and cognitive impairment in extremely preterm infants. Brain Behav Immun [Internet]. 29:104–12. Available from: https://doi.org/10.1016/j.bbi.2012.12.012

  41. Khanna A, Anamika, Chakraborty S, Tripathi SJ, Acharjee A, BS SR, et al. (2020) SIRT1 activation by resveratrol reverses atrophy of apical dendrites of hippocampal CA1 pyramidal neurons and neurobehavioral impairments in moderate grade hepatic encephalopathy rats. J Chem Neuroanat [Internet]. 106(March):101797. Available from: https://doi.org/10.1016/j.jchemneu.2020.101797

  42. Gomez-Pinilla F, Nguyen TTJ (2012) Natural mood foods: the actions of polyphenols against psychiatric and cognitive disorders. Nutr Neurosci [Internet]. 15(3):127–33. Available from: http://www.tandfonline.com/doi/full/10.1179/1476830511Y.0000000035

  43. Vinson JA (2019) Intracellular polyphenols: how little we know. J Agric Food Chem [Internet]. 67(14):3865–70. Available from: https://pubs.acs.org/doi/10.1021/acs.jafc.8b07273

  44. Cory H, Passarelli S, Szeto J, Tamez M, Mattei J (2018) The role of polyphenols in human health and food systems: a mini-review. Front Nutr [Internet]. 5(September):1–9. Available from: https://www.frontiersin.org/article/10.3389/fnut.2018.00087/full

  45. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr [Internet]. 79(5):727–47. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002916522039144

  46. Gouveia HJCB, Urquiza-Martínez M V., Manhães-de-Castro R, Costa-de-Santana BJR, Villarreal JP, Mercado-Camargo R, et al. (2022) Effects of the treatment with flavonoids on metabolic syndrome components in humans: a systematic review focusing on mechanisms of action. Int J Mol Sci [Internet]. 23(15):8344. Available from: https://www.mdpi.com/1422-0067/23/15/8344

  47. Chu A (2014) Antagonism by bioactive polyphenols against inflammation: a systematic view. Inflamm Allergy-Drug Targets [Internet]. 13(1):34–64. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1871-5281&volume=13&issue=1&spage=34

  48. Rebas E, Rzajew J, Radzik T, Zylinska L (2020) Neuroprotective polyphenols: a modulatory action on neurotransmitter pathways. Curr Neuropharmacol [Internet]. 18(5):431–45. Available from: https://www.eurekaselect.com/178126/article

  49. Zhang L-X, Li C-X, Kakar MU, Khan MS, Wu P-F, Amir RM, et al. (2021) Resveratrol (RV): a pharmacological review and call for further research. Biomed Pharmacother [Internet]. 143(October):112164. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0753332221009483

  50. Broderick TL, Rasool S, Li R, Zhang Y, Anderson M, Al-Nakkash L, et al. (2020) Neuroprotective effects of chronic resveratrol treatment and exercise training in the 3xTg-AD mouse model of Alzheimer’s disease. Int J Mol Sci [Internet]. 21(19):7337. Available from: https://www.mdpi.com/1422-0067/21/19/7337

  51. Yang AJT, Bagit A, MacPherson REK (2021) Resveratrol, metabolic dysregulation, and Alzheimer’s disease: considerations for neurogenerative disease. Int J Mol Sci [Internet]. 22(9):4628. Available from: https://www.mdpi.com/1422-0067/22/9/4628

  52. Yu P, Wang L, Tang F, Guo S, Liao H, Fan C, et al. (2021) Resveratrol-mediated neurorestoration after cerebral ischemic injury - Sonic Hedgehog signaling pathway. Life Sci [Internet]. 280(December 2020):119715. Available from: https://doi.org/10.1016/j.lfs.2021.119715

  53. Ma X, Sun Z, Han X, Li S, Jiang X, Chen S, et al. (2020) Neuroprotective effect of resveratrol via activation of Sirt1 signaling in a rat model of combined diabetes and Alzheimer’s disease. Front Neurosci [Internet]. 13(January):1–11. Available from: https://www.frontiersin.org/article/10.3389/fnins.2019.01400/full

  54. Coq J-O, Strata F, Russier M, Safadi FF, Merzenich MM, Byl NN, et al. (2008) Impact of neonatal asphyxia and hind limb immobilization on musculoskeletal tissues and S1 map organization: implications for cerebral palsy. Exp Neurol [Internet]. 210(1):95–108. Available from: https://doi.org/10.1016/j.expneurol.2007.10.006

  55. Strata F, Coq J-O, Byl N, Merzenich MM (2004) Effects of sensorimotor restriction and anoxia on gait and motor cortex organization: implications for a rodent model of cerebral palsy. Neuroscience [Internet]. 129(1):141–56. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0306452204005822

  56. Marcuzzo S, Dutra MF, Stigger F, do Nascimento PS, Ilha J, Kalil-Gaspar PI, et al. (2010) Different effects of anoxia and hind-limb immobilization on sensorimotor development and cell numbers in the somatosensory cortex in rats. Brain Dev [Internet]. 32(4):323–31. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0387760409001557

  57. Johnston M V., Hagberg H (2006) Sex and the pathogenesis of cerebral palsy. Dev Med Child Neurol [Internet]. 49(1):74–8. Available from: http://doi.wiley.com/10.1017/S0012162207000199.x

  58. Girbovan C, Plamondon H (2015) Resveratrol downregulates type-1 glutamate transporter expression and microglia activation in the hippocampus following cerebral ischemia reperfusion in rats. Brain Res [Internet]. 1608:203–14. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006899315001389

  59. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process [Internet]. 13(2):93–110. Available from: http://link.springer.com/10.1007/s10339-011-0430-z

  60. Wu CYC, Lerner FM, Couto e Silva A, Possoit HE, Hsieh T-H, Neumann JT, et al. (2018) Utilizing the modified T-Maze to assess functional memory outcomes after cardiac arrest. J Vis Exp [Internet]. 2018(131):1–7. Available from: https://www.jove.com/t/56694/utilizing-modified-t-maze-to-assess-functional-memory-outcomes-after

  61. Shoji H, Hagihara H, Takao K, Hattori S, Miyakawa T. (2012) T-maze forced alternation and left-right discrimination tasks for assessing working and reference memory in mice. J Vis Exp [Internet]. (60):3–9. Available from: http://www.jove.com/video/3300/

  62. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem [Internet]. 162(1):156–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/0003269787900212

  63. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics [Internet]. 13(1):134. Available from: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-13-134

  64. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods [Internet]. 25(4):402–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1046202301912629

  65. Saavedra LM, Hernández-Velázquez MG, Madrigal S, Ochoa-Zarzosa A, Torner L (2021) Long-term activation of hippocampal glial cells and altered emotional behavior in male and female adult rats after different neonatal stressors. Psychoneuroendocrinology [Internet]. 126(September 2020):105164. Available from: https://linkinghub.elsevier.com/retrieve/pii/S030645302100038X

  66. Roque A, Ochoa-Zarzosa A, Torner L (2016) Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels. Brain Behav Immun [Internet]. 55:39–48. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0889159115300246

  67. da Silva Souza V, Manhães-de-Castro R, Pereira S da C, Calado CMS da S, Souza de Silveira B, Araújo ER da S, et al. (2023) Neonatal treatment with resveratrol decreases postural and strength impairments and improves mitochondrial function in the somatosensory cortex rats submitted to cerebral palsy. Neurochem Int [Internet]. 168(June):105568. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0197018623000967

  68. Visco DB, Manhães de Castro R, da Silva MM, Costa de Santana BJR, Bezerra Gouveia HJC, de Moura Ferraz MLR, et al. (2023) Neonatal kaempferol exposure attenuates gait and strength deficits and prevents altered muscle phenotype in a rat model of cerebral palsy. Int J Dev Neurosci [Internet]. 83(1):80–97. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jdn.10239

  69. Delcour M, Russier M, Amin M, Baud O, Paban V, Barbe MF, et al. (2012) Impact of prenatal ischemia on behavior, cognitive abilities and neuroanatomy in adult rats with white matter damage. Behav Brain Res [Internet]. 232(1):233–44. Available from: https://doi.org/10.1016/j.bbr.2012.03.029

  70. da Conceição Pereira S, Manhães-de-Castro R, Visco DB, de Albuquerque GL, da Silva Calado CMS, da Silva Souza V, et al. (2021) Locomotion is impacted differently according to the perinatal brain injury model: meta-analysis of preclinical studies with implications for cerebral palsy. J Neurosci Methods [Internet]. 360(March):109250. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0165027021001850

  71. Sampath D, Lam PM, Laoprasert M, Diaz MJ, Busquet N, White AM, et al. (2020) Effects of a potassium channel opener on brain injury and neurologic outcomes in an animal model of neonatal hypoxic–ischemic injury. Pediatr Res [Internet]. 88(2):202–8. Available from: https://doi.org/10.1038/s41390-019-0734-8

  72. Roumes H, Dumont U, Sanchez S, Mazuel L, Blanc J, Raffard G, et al. (2021) Neuroprotective role of lactate in rat neonatal hypoxia-ischemia. J Cereb Blood Flow Metab [Internet]. 41(2):342–58. Available from: http://journals.sagepub.com/doi/10.1177/0271678X20908355

  73. Sun J, Qu Y, He H, Fan X, Qin Y, Mao W, et al. (2014) Protective effect of polydatin on learning and memory impairments in neonatal rats with hypoxic-ischemic brain injury by up-regulating brain-derived neurotrophic factor. Mol Med Rep [Internet]. 10(6):3047–51. Available from: https://www.spandidos-publications.com/10.3892/mmr.2014.2577

  74. Trollmann R, Gassmann M (2009) The role of hypoxia-inducible transcription factors in the hypoxic neonatal brain. Brain Dev [Internet]. 31(7):503–9. Available from: https://doi.org/10.1016/j.braindev.2009.03.007

  75. Orso R, Creutzberg KC, Lumertz FS, Wearick-Silva LE, Sanches EF, Mestriner RG, et al. (2021) Early environmental enrichment rescues memory impairments provoked by mild neonatal hypoxia-ischemia in adolescent mice. Behav Brain Res [Internet]. 407(March):113237. Available from: https://doi.org/10.1016/j.bbr.2021.113237

  76. Visco DB, Toscano AE, Juárez PAR, Gouveia HJCB, Guzman-Quevedo O, Torner L, et al. (2021) A systematic review of neurogenesis in animal models of early brain damage: implications for cerebral palsy. Exp Neurol [Internet]. 340(October 2020):113643. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0014488621000480

  77. Almli CR, Levy TJ, Han BH, Shah AR, Gidday JM, Holtzman DM. (2000) BDNF protects against spatial memory deficits following neonatal hypoxia-ischemia. Exp Neurol [Internet]. 166(1):99–114. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0014488600974922

  78. Spahic H, Parmar P, Miller S, Emerson PC, Lechner C, St. Pierre M, et al. (2022) Dysregulation of ErbB4 signaling pathway in the dorsal hippocampus after neonatal hypoxia-ischemia and late deficits in PV+ interneurons, synaptic plasticity and working memory. Int J Mol Sci [Internet]. 24(1):508. Available from: https://www.mdpi.com/1422-0067/24/1/508

  79. Azevedo PN, Zanirati G, Venturin GT, Schu GG, Durán–Carabali LE, Odorcyk FK, et al. (2020) Long-term changes in metabolic brain network drive memory impairments in rats following neonatal hypoxia-ischemia. Neurobiol Learn Mem [Internet]. 171(March):107207. Available from: https://doi.org/10.1016/j.nlm.2020.107207

  80. Bollinger WL, St. Germain EJ, Maki SL, Sial NK, Lepore SD, Dawson-Scully K (2019) Resveratrol-inspired bridged bicyclic compounds: a new compound class for the protection of synaptic function from acute oxidative stress. ACS Chem Neurosci [Internet]. 10(1):221–5. Available from: https://pubs.acs.org/doi/10.1021/acschemneuro.8b00577

  81. da Silva Souza V, Manhães-de-Castro R, Pereira S da C, Calado CMS da S, Souza de Silveira B, Araújo ER da S, et al. (2023) Neonatal treatment with resveratrol decreases postural and strength impairments and improves mitochondrial function in the somatosensory cortex rats submitted to cerebral palsy. Neurochem Int [Internet]. 168:105568. Available from: https://doi.org/10.1016/j.neuint.2023.105568

  82. Peng X, Wang J, Peng J, Jiang H, Le K (2022) Resveratrol improves synaptic plasticity in hypoxic-ischemic brain injury in neonatal mice via alleviating SIRT1/NF-κB signaling–mediated neuroinflammation. J Mol Neurosci [Internet]. 72(1):113–25. Available from: https://doi.org/10.1007/s12031-021-01908-5

  83. Soares LM, Schiavon AP, Milani H, de Oliveira RMW (2013) Cognitive impairment and persistent anxiety-related responses following bilateral common carotid artery occlusion in mice. Behav Brain Res [Internet]. 249:28–37. Available from: https://doi.org/10.1016/j.bbr.2013.04.010

  84. Fanselow MS, Dong H-W (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron [Internet]. 65(1):7–19. Available from: https://doi.org/10.1016/j.neuron.2009.11.031

  85. Kjelstrup KG, Tuvnes FA, Steffenach H-A, Murison R, Moser EI, Moser M-B (2002) Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci [Internet]. 99(16):10825–30. Available from: https://pnas.org/doi/full/10.1073/pnas.152112399

  86. Juacy Rodrigues Costa-de-Santana B, Manhães-de-Castro R, José Cavalcanti Bezerra Gouveia H, Roberto Silva E, Antônio da Silva Araújo M, Cabral Lacerda D, et al. (2023) Motor deficits are associated with increased glial cell activation in the hypothalamus and cerebellum of young rats subjected to cerebral palsy. Brain Res [Internet]. 1814:148447. Available from: https://doi.org/10.1016/j.brainres.2023.148447

  87. Muntsant A, Shrivastava K, Recasens M, Giménez-Llort L (2019) Severe perinatal hypoxic-ischemic brain injury induces long-term sensorimotor deficits, anxiety-like behaviors and cognitive impairment in a sex-, age- and task-selective manner in C57BL/6 mice but can be modulated by neonatal handling. Front Behav Neurosci [Internet]. 13(February):1–19. Available from: https://www.frontiersin.org/article/10.3389/fnbeh.2019.00007/full

  88. Shayganfard M (2020) Molecular and biological functions of resveratrol in psychiatric disorders: a review of recent evidence. Cell Biosci [Internet]. 10(1):128. Available from: https://doi.org/10.1186/s13578-020-00491-3

  89. Li G, Wang G, Shi J, Xie X, Fei N, Chen L, et al. (2018) trans-Resveratrol ameliorates anxiety-like behaviors and fear memory deficits in a rat model of post-traumatic stress disorder. Neuropharmacology [Internet]. 133:181–8. Available from: https://doi.org/10.1016/j.neuropharm.2017.12.035

  90. Fan J, Guang H, Zhang H, Chen D, Ding L, Fan X, et al. (2018) SIRT1 mediates Apelin-13 in ameliorating chronic normobaric hypoxia-induced anxiety-like behavior by suppressing NF-κB pathway in mice hippocampus. Neuroscience [Internet]. 381(April):22–34. Available from: https://doi.org/10.1016/j.neuroscience.2018.04.013

  91. Lacerda DC, Ferraz-Pereira KN, Visco DB, Pontes PB, Chaves WF, Guzman-Quevedo O, et al. (2017) Perinatal undernutrition associated to experimental model of cerebral palsy increases adverse effects on chewing in young rats. Physiol Behav [Internet]. 173:69–78. Available from: https://doi.org/10.1016/j.physbeh.2017.01.043

  92. Lacerda DC, Ferraz-Pereira KN, Visco DB, Pontes PB, Chaves WF, Guzman-Quevedo O, et al. (2017) Perinatal undernutrition associated to experimental model of cerebral palsy increases adverse effects on chewing in young rats. Physiol Behav [Internet]. 173(October):69–78. Available from: https://doi.org/10.1016/j.physbeh.2017.01.043

  93. Tabrizi R, Tamtaji OR, Lankarani KB, Akbari M, Dadgostar E, Dabbaghmanesh MH, et al. (2020) The effects of resveratrol intake on weight loss: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr [Internet]. 60(3):375–90. Available from: https://doi.org/10.1080/10408398.2018.1529654

  94. Imamura H, Nagayama D, Ishihara N, Tanaka S, Watanabe R, Watanabe Y, et al. (2017) Resveratrol attenuates triglyceride accumulation associated with upregulation of Sirt1 and lipoprotein lipase in 3T3-L1 adipocytes. Mol Genet Metab Reports [Internet]. 12(February):44–50. Available from: https://doi.org/10.1016/j.ymgmr.2017.05.003

  95. Zhao Y, Chen B, Shen J, Wan L, Zhu Y, Yi T, et al. (2017) The beneficial effects of quercetin, curcumin, and resveratrol in obesity. Oxid Med Cell Longev [Internet]. 2017:1–8. Available from: https://www.hindawi.com/journals/omcl/2017/1459497/

  96. Gong L, Guo S, Zou Z (2020) Resveratrol ameliorates metabolic disorders and insulin resistance in high-fat diet-fed mice. Life Sci [Internet]. 242(December 2019):117212. Available from: https://doi.org/10.1016/j.lfs.2019.117212

  97. Girard S, Kadhim H, Roy M, Lavoie K, Brochu M-E, Larouche A, et al. (2009) Role of perinatal inflammation in cerebral palsy. Pediatr Neurol [Internet]. 40(3):168–74. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0887899408004773

  98. Erta M, Giralt M, Esposito FL, Fernandez-Gayol O, Hidalgo J (2015) Astrocytic IL-6 mediates locomotor activity, exploration, anxiety, learning and social behavior. Horm Behav [Internet]. 73:64–74. Available from: https://doi.org/10.1016/j.yhbeh.2015.06.016

  99. Erta M, Quintana A, Hidalgo J (2012) Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci [Internet]. 8(9):1254–66. Available from: http://www.ijbs.com/v08p1254.htm

  100. Sanchis P, Fernández‐Gayol O, Vizueta J, Comes G, Canal C, Escrig A, et al. (2020) Microglial cell‐derived interleukin‐6 influences behavior and inflammatory response in the brain following traumatic brain injury. Glia [Internet]. 68(5):999–1016. Available from: https://onlinelibrary.wiley.com/doi/10.1002/glia.23758

  101. Brambilla R (2019) Neuroinflammation, the thread connecting neurological disease. Acta Neuropathol [Internet]. 137(5):689–91. Available from: https://doi.org/10.1007/s00401-019-02009-9

  102. Jiang NM, Cowan M, Moonah SN, Petri WA (2018) The impact of systemic inflammation on neurodevelopment. Trends Mol Med [Internet]. 24(9):794–804. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1471491418301357

  103. Northington FJ, Chavez-Valdez R, Martin LJ (2011) Neuronal cell death in neonatal hypoxia-ischemia. Ann Neurol [Internet]. 69(5):743–58. Available from: https://onlinelibrary.wiley.com/doi/10.1002/ana.22419

  104. Chen Y-M, He X-Z, Wang S-M, Xia Y (2020) δ-Opioid receptors, microRNAs, and neuroinflammation in cerebral ischemia/hypoxia. Front Immunol [Internet]. 11(March):1–11. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2020.00421/full

  105. Deb P, Sharma S, Hassan KM (2010)Pathophysiologic mechanisms of acute ischemic stroke: an overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology [Internet]. 17(3):197–218. Available from: https://doi.org/10.1016/j.pathophys.2009.12.001

  106. Wu X, Gong L, Xie L, Gu W, Wang X, Liu Z, et al. (2021) NLRP3 deficiency protects against intermittent hypoxia-induced neuroinflammation and mitochondrial ROS by promoting the PINK1-Parkin pathway of mitophagy in a murine model of sleep apnea. Front Immunol [Internet]. 12(February):1–16. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2021.628168/full

  107. Meng T, Xiao D, Muhammed A, Deng J, Chen L, He J (2021) Anti-inflammatory action and mechanisms of resveratrol. Molecules [Internet]. 26(1):229. Available from: https://www.mdpi.com/1420-3049/26/1/229

  108. Zhao H, Mei X, Yang D, Tu G (2021) Resveratrol inhibits inflammation after spinal cord injury via SIRT-1/NF-κB signaling pathway. Neurosci Lett [Internet]. 762(August):136151. Available from: https://doi.org/10.1016/j.neulet.2021.136151

  109. Cong L, Lei M, Liu Z-Q, Liu Z-F, Ma Z, Liu K, et al. (2021) Resveratrol attenuates manganese-induced oxidative stress and neuroinflammation through SIRT1 signaling in mice. Food Chem Toxicol [Internet]. 153(April):112283. Available from: https://doi.org/10.1016/j.fct.2021.112283

  110. Ma S, Fan L, Li J, Zhang B, Yan Z (2020) Resveratrol promoted the M2 polarization of microglia and reduced neuroinflammation after cerebral ischemia by inhibiting miR-155. Int J Neurosci [Internet]. 130(8):817–25. Available from: https://doi.org/10.1080/00207454.2019.1707817

  111. Zhang Y, Gao Q, Wu Z, Xue H, Zhao P (2021) Sevoflurane postconditioning ameliorates neuronal migration disorder through Reelin/Dab1 and improves long-term cognition in neonatal rats after hypoxic-ischemic injury. Neurotox Res [Internet]. 39(5):1524–42. Available from: https://doi.org/10.1007/s12640-021-00377-3

  112. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron [Internet]. 74(4):691–705. Available from: https://doi.org/10.1016/j.neuron.2012.03.026

  113. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. (2011) Synaptic pruning by microglia is necessary for normal brain development. Science (80- ) [Internet]. 333(6048):1456–8. Available from: https://www.science.org/doi/10.1126/science.1202529

  114. Wang C, Yue H, Hu Z, Shen Y, Ma J, Li J, et al. (2020) Microglia mediate forgetting via complement-dependent synaptic elimination. Science (80- ) [Internet]. 367(6478):688–94. Available from: https://www.science.org/doi/10.1126/science.aaz2288

  115. Toni N, Teng EM, Bushong EA, Aimone JB, Zhao C, Consiglio A, et al. (2007) Synapse formation on neurons born in the adult hippocampus. Nat Neurosci [Internet]. 10(6):727–34. Available from: https://www.nature.com/articles/nn1908

  116. Fan P, Wang S, Chu S, Chen N (2023) Time-dependent dual effect of microglia in ischemic stroke. Neurochem Int [Internet]. 169(July):105584. Available from: https://doi.org/10.1016/j.neuint.2023.105584

  117. Zhang W, Tian T, Gong S-X, Huang W-Q, Zhou Q-Y, Wang A-P, et al. (2021) Microglia-associated neuroinflammation is a potential therapeutic target for ischemic stroke. Neural Regen Res [Internet]. 16(1):6. Available from: https://journals.lww.com/10.4103/1673-5374.286954

  118. Guruswamy R, ElAli A (2017) Complex roles of microglial cells in ischemic stroke pathobiology: new insights and future directions. Int J Mol Sci [Internet]. 18(3):496. Available from: http://www.mdpi.com/1422-0067/18/3/496

  119. Haukedal H, Syshøj Lorenzen S, Winther Westi E, Corsi GI, Gadekar VP, McQuade A, et al. (2023) Alteration of microglial metabolism and inflammatory profile contributes to neurotoxicity in a hiPSC-derived microglia model of frontotemporal dementia 3. Brain Behav Immun [Internet]. 113(December 2022):353–73. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0889159123002179

  120. Carmichael O, Lockhart S (2012) Neurotrophins and. Brain Imaging Behav Neurosci [Internet]. (November 2011):289–320. Available from: http://link.springer.com/chapter/10.1007/7854_2011_176

  121. Funahashi S (2006) Prefrontal cortex and working memory processes. Neuroscience [Internet]. 139(1):251–61. Available from: https://linkinghub.elsevier.com/retrieve/pii/S030645220500744X

  122. Diamond A, Ling DS (2016) Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Dev Cogn Neurosci [Internet]. 18:34–48. Available from: https://doi.org/10.1016/j.dcn.2015.11.005

  123. Diamond A (2013) Executive functions. Annu Rev Psychol [Internet]. 64(1):135–68. Available from: https://www.annualreviews.org/doi/10.1146/annurev-psych-113011-143750

  124. Bayne K (1996) Revised Guide for the Care and Use of Laboratory Animals available. Ame Physiol Soc. Physiologist [Internet]. 39(4):199, 208–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8854724

Download references

Acknowledgements

The authors are grateful to Sharing English for the language review of this study.

Funding

This study was funded in part by the ‘Fundação de Amparo à Ciência e Tecnologia de Pernambuco’ (FACEPE, #0989–4.05/22 and #1471–4.05/22) – Brazil, ‘Conselho Nacional de Desenvolvimento Científico e Tecnológico’ (CNPq) (#402426/2021–5 and #131234/2022–6) – Brazil, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES)—(Finance Code 001 and 1238/2022/88881.707895/2022–01) and Instituto Mexicano del Seguro Social (Grant: FIS/IMSS/PROT/19/109).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. C.M.S.S.C: conceptualization, data collection, analysis of result and decided on the manuscript’s structure. R.M.C: intellectual supervision and analysis of results. S.C.P, V.S.S, and L.N.F.B: data collection, results analysis, and writing. O.H.S.J and C.J.L: conducting the gene expression experiments and analysis of results. P.A.R.J, O.G.Q, and L.T: conducting the immunohistochemistry procedure and intellectual supervision. A.E.T: supervision, conceptualization, formal analysis, and decided on the manuscript’s structure.

Corresponding author

Correspondence to Ana Elisa Toscano.

Ethics declarations

Ethics Approval

The present study was conducted in accordance with the recommendations of the National Council for Animal Control and Experimentation (CONCEA-Brazil) and was not initiated until approval had been obtained from the Ethics Committee on Animal Use (process number CEUA- 0082/2022) of the Federal University of Pernambuco (UFPE). All animal experiments were conducted in accordance with the “National Institute of Health Guide for Care and Use of Laboratory Animals” [124].

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calado, C.M.S.d., Manhães-de-Castro, R., da Conceição Pereira, S. et al. Resveratrol Reduces Neuroinflammation and Hippocampal Microglia Activation and Protects Against Impairment of Memory and Anxiety-Like Behavior in Experimental Cerebral Palsy. Mol Neurobiol 61, 3619–3640 (2024). https://doi.org/10.1007/s12035-023-03772-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03772-3

Keywords

Navigation