Skip to main content

Advertisement

Log in

Role of Maternal Immune Factors in Neuroimmunology of Brain Development

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Inflammation during pregnancy may occur due to various factors. This condition, in which maternal immune system activation occurs, can affect fetal brain development and be related to neurodevelopmental diseases. MIA interacts with the fetus’s brain development through maternal antibodies, cytokines, chemokines, and microglial cells. Antibodies are associated with the development of the nervous system by two mechanisms: direct binding to brain inflammatory factors and binding to brain antigens. Cytokines and chemokines have an active presence in inflammatory processes. Additionally, glial cells, defenders of the nervous system, play an essential role in synaptic modulation and neurogenesis. Maternal infections during pregnancy are the most critical factors related to MIA; however, several studies show the relation between these infections and neurodevelopmental diseases. Infection with specific viruses, such as Zika, cytomegalovirus, influenza A, and SARS-CoV-2, has revealed effects on neurodevelopment and the onset of diseases such as schizophrenia and autism. We review the relationship between maternal infections during pregnancy and their impact on neurodevelopmental processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Bhalala US, Koehler RC, Kannan S (2014) Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front Pediatr 2:144. https://doi.org/10.3389/fped.2014.00144. (in eng)

    Article  PubMed  Google Scholar 

  2. Hickey WF (2001) Basic principles of immunological surveillance of the normal central nervous system. Glia 36(2):118–124. https://doi.org/10.1002/glia.1101. (in eng)

    Article  CAS  PubMed  Google Scholar 

  3. Parkhurst CN et al (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7):1596–1609. https://doi.org/10.1016/j.cell.2013.11.030. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Paolicelli RC et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333(6048):1456–1458. https://doi.org/10.1126/science.1202529. (in eng)

    Article  CAS  PubMed  Google Scholar 

  5. Schafer DP, Stevens B (2015) Microglia function in central nervous system development and plasticity. Cold Spring Harb Perspect Biol 7(10):a020545. https://doi.org/10.1101/cshperspect.a020545. (in eng)

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4(4):299–309. https://doi.org/10.1038/nrn1078. (in eng)

    Article  CAS  PubMed  Google Scholar 

  7. Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14(1):7–23. https://doi.org/10.1038/nrn3379. (in eng)

    Article  CAS  PubMed  Google Scholar 

  8. Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R (2014) Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci 8:430. https://doi.org/10.3389/fncel.2014.00430. (in eng)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sharon G, Sampson TR, Geschwind DH, Mazmanian SK (2016) The central nervous system and the gut microbiome. Cell 167(4):915–932. https://doi.org/10.1016/j.cell.2016.10.027. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712. https://doi.org/10.1038/nrn3346. (in eng)

    Article  CAS  PubMed  Google Scholar 

  11. Samami E, Aleebrahim-Dehkordi E, Mohebalizadeh M, Yaribash S, Saghazadeh A, Rezaei N (2023) Inosine, gut microbiota, and cancer immunometabolism. Am J Physiol Endocrinol Metab 324(1):E1-e8. https://doi.org/10.1152/ajpendo.00207.2022. (in eng)

    Article  CAS  PubMed  Google Scholar 

  12. Foster JA, McVey Neufeld KA (2013) Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36(5):305–12. https://doi.org/10.1016/j.tins.2013.01.005. (in eng)

    Article  CAS  PubMed  Google Scholar 

  13. Minakova E, Warner BB (2018) Maternal immune activation, central nervous system development and behavioral phenotypes. Birth Defects Res 110(20):1539–1550. https://doi.org/10.1002/bdr2.1416. (in eng)

    Article  CAS  PubMed  Google Scholar 

  14. Knuesel I et al (2014) Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 10(11):643–660. https://doi.org/10.1038/nrneurol.2014.187. (in eng)

    Article  CAS  PubMed  Google Scholar 

  15. Smith SE, Li J, Garbett K, Mirnics K, Patterson PH (2007) Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 27(40):10695–10702. https://doi.org/10.1523/jneurosci.2178-07.2007. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shi L, Tu N, Patterson PH (2005) Maternal influenza infection is likely to alter fetal brain development indirectly: the virus is not detected in the fetus. Int J Dev Neurosci 23(2–3):299–305. https://doi.org/10.1016/j.ijdevneu.2004.05.005. (in eng)

    Article  PubMed  Google Scholar 

  17. Mednick SA, Machon RA, Huttunen MO, Bonett D (1988) Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 45(2):189–192. https://doi.org/10.1001/archpsyc.1988.01800260109013. (in eng)

    Article  CAS  PubMed  Google Scholar 

  18. Li XJ et al (2015) Human cytomegalovirus infection dysregulates the localization and stability of NICD1 and Jag1 in neural progenitor cells. J Virol 89(13):6792–6804. https://doi.org/10.1128/jvi.00351-15. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ludwig RJ et al (2017) Mechanisms of autoantibody-induced pathology. Front Immunol 8:603. https://doi.org/10.3389/fimmu.2017.00603. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) “Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25. https://doi.org/10.1016/j.nbd.2009.07.030. (in eng)

    Article  CAS  PubMed  Google Scholar 

  21. Palmeira P, Quinello C, Silveira-Lessa AL, Zago CA, Carneiro-Sampaio M (2012) IgG placental transfer in healthy and pathological pregnancies. Clin Dev Immunol 2012:985646. https://doi.org/10.1155/2012/985646. (in eng)

    Article  CAS  PubMed  Google Scholar 

  22. Mader S, Brimberg L, Diamond B (2017) The role of brain-reactive autoantibodies in brain pathology and cognitive impairment. Front Immunol 8:1101. https://doi.org/10.3389/fimmu.2017.01101. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu XP, Liu WG, Xu QM, Zhu XQ, Chen J (2019) Evaluation of immune protection against Toxoplasma gondii infection in mice induced by a multi-antigenic DNA vaccine containing TgGRA24, TgGRA25 and TgMIC6. Parasite 26:58. https://doi.org/10.1051/parasite/2019050. (in eng) Évaluation de la protection immunitaire contre l’infection par Toxoplasma gondii chez la souris, induite par un vaccin à ADN multi-antigénique contenant TgGRA24, TgGRA25 et TgMIC6

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jones KL, Van de Water J (2019) Maternal autoantibody related autism: mechanisms and pathways. Mol Psychiatry 24(2):252–265. https://doi.org/10.1038/s41380-018-0099-0. (in eng)

    Article  CAS  PubMed  Google Scholar 

  25. Braunschweig D et al (2013) Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatry 3(7):e277. https://doi.org/10.1038/tp.2013.50. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martínez-Cerdeño V et al (2016) Prenatal exposure to autism-specific maternal autoantibodies alters proliferation of cortical neural precursor cells, enlarges brain, and increases neuronal size in adult animals. Cereb Cortex 26(1):374–383. https://doi.org/10.1093/cercor/bhu291. (in eng)

    Article  PubMed  Google Scholar 

  27. Zhang H et al (2016) Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun 7. https://doi.org/10.1038/ncomms11773 (in eng)

  28. Braunschweig D et al (2008) Autism: maternally derived antibodies specific for fetal brain proteins. Neurotoxicology 29(2):226–231. https://doi.org/10.1016/j.neuro.2007.10.010. (in eng)

    Article  CAS  PubMed  Google Scholar 

  29. Carter M, Casey S, O’Keeffe GW, Gibson L, Gallagher L, Murray DM (2022) Maternal immune activation and interleukin 17A in the pathogenesis of autistic spectrum disorder and why it matters in the COVID-19 era. Front Psychiatry 13:823096. https://doi.org/10.3389/fpsyt.2022.823096. (in eng)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bauman MD et al (2013) Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Transl Psychiatry 3(7):e278. https://doi.org/10.1038/tp.2013.47. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Singer HS, Morris C, Gause C, Pollard M, Zimmerman AW, Pletnikov M (2009) Prenatal exposure to antibodies from mothers of children with autism produces neurobehavioral alterations: a pregnant dam mouse model. J Neuroimmunol 211(1–2):39–48. https://doi.org/10.1016/j.jneuroim.2009.03.011. (in eng)

    Article  CAS  PubMed  Google Scholar 

  32. Bünger I et al (2023) Maternal synapsin autoantibodies are associated with neurodevelopmental delay. Front Immunol 14:1101087. https://doi.org/10.3389/fimmu.2023.1101087. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Coutinho E et al (2017) CASPR2 autoantibodies are raised during pregnancy in mothers of children with mental retardation and disorders of psychological development but not autism. J Neurol Neurosurg Psychiatry 88(9):718–721. https://doi.org/10.1136/jnnp-2016-315251. (in eng)

    Article  PubMed  Google Scholar 

  34. Deverman BE, Patterson PH (2009) Cytokines and CNS development. Neuron 64(1):61–78. https://doi.org/10.1016/j.neuron.2009.09.002. (in eng)

    Article  CAS  PubMed  Google Scholar 

  35. Park S-Y, Kang M-J, Han J-S (2018) Interleukin-1 beta promotes neuronal differentiation through the Wnt5a/RhoA/JNK pathway in cortical neural precursor cells. Mol Brain 11(1):39. https://doi.org/10.1186/s13041-018-0383-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kummer KK, Zeidler M, Kalpachidou T, Kress M (2021) Role of IL-6 in the regulation of neuronal development, survival and function. Cytokine 144:155582. https://doi.org/10.1016/j.cyto.2021.155582

    Article  CAS  PubMed  Google Scholar 

  37. Krakowiak P et al (2017) Neonatal cytokine profiles associated with autism spectrum disorder. Biol Psychiatry 81(5):442–451. https://doi.org/10.1016/j.biopsych.2015.08.007. (in eng)

    Article  CAS  PubMed  Google Scholar 

  38. Maher GM et al (2018) Association of hypertensive disorders of pregnancy with risk of neurodevelopmental disorders in offspring: a systematic review and meta-analysis. JAMA Psychiat 75(8):809–819. https://doi.org/10.1001/jamapsychiatry.2018.0854. (in eng)

    Article  Google Scholar 

  39. Izvolskaia M, Sharova V, Zakharova L (2020) Perinatal inflammation reprograms neuroendocrine, immune, and reproductive functions: profile of cytokine biomarkers. Inflammation 43(4):1175–1183. https://doi.org/10.1007/s10753-020-01220-1. (in eng)

    Article  CAS  PubMed  Google Scholar 

  40. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413(6857):732–738. https://doi.org/10.1038/35099560. (in eng)

    Article  CAS  PubMed  Google Scholar 

  41. Arrode-Brusés G, Brusés JL (2012) Maternal immune activation by poly I: C induces expression of cytokines IL-1β and IL-13, chemokine MCP-1 and colony stimulating factor VEGF in fetal mouse brain. J Neuroinflammation 9:83. https://doi.org/10.1186/1742-2094-9-83. (in eng)

    Article  CAS  PubMed  Google Scholar 

  42. Choi GB et al (2016) The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351(6276):933–939. https://doi.org/10.1126/science.aad0314. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kebir H et al (2007) Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13(10):1173–1175. https://doi.org/10.1038/nm1651. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fossiez F et al (1996) T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 183(6):2593–2603. https://doi.org/10.1084/jem.183.6.2593. (in eng)

    Article  CAS  PubMed  Google Scholar 

  45. Quan N, Zhang Z, Emery M, Bonsall R, Weiss JM (1996) Detection of interleukin-1 bioactivity in various brain regions of normal healthy rats. Neuroimmunomodulation 3(1):47–55. https://doi.org/10.1159/000097226. (in eng)

    Article  CAS  PubMed  Google Scholar 

  46. Wilson CJ, Finch CE, Cohen HJ (2002) Cytokines and cognition–the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc 50(12):2041–2056. https://doi.org/10.1046/j.1532-5415.2002.50619.x. (in eng)

    Article  PubMed  Google Scholar 

  47. Rousset CI et al (2006) Maternal exposure to LPS induces hypomyelination in the internal capsule and programmed cell death in the deep gray matter in newborn rats. Pediatr Res 59(3):428–433. https://doi.org/10.1203/01.pdr.0000199905.08848.55. (in eng)

    Article  CAS  PubMed  Google Scholar 

  48. Brown AS et al (2004) Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry 161(5):889–895. https://doi.org/10.1176/appi.ajp.161.5.889. (in eng)

    Article  PubMed  Google Scholar 

  49. Theoharides TC et al (2012) Mast cell activation and autism. Biochim Biophys Acta 1822(1):34–41. https://doi.org/10.1016/j.bbadis.2010.12.017. (in eng)

    Article  CAS  PubMed  Google Scholar 

  50. Meyer U, Murray PJ, Urwyler A, Yee BK, Schedlowski M, Feldon J (2008) Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol Psychiatry 13(2):208–221. https://doi.org/10.1038/sj.mp.4002042. (in eng)

    Article  CAS  PubMed  Google Scholar 

  51. Zhou Y, Tang H, Liu J, Dong J, Xiong H (2011) Chemokine CCL2 modulation of neuronal excitability and synaptic transmission in rat hippocampal slices. J Neurochem 116(3):406–414. https://doi.org/10.1111/j.1471-4159.2010.07121.x. (in eng)

    Article  CAS  PubMed  Google Scholar 

  52. Wittko IM et al (2009) VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo. J Neurosci 29(27):8704–8714. https://doi.org/10.1523/jneurosci.5527-08.2009. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lyu J, Xie D, Bhatia TN, Leak RK, Hu X, Jiang X (2021) Microglial/Macrophage polarization and function in brain injury and repair after stroke. CNS Neurosci Ther 27(5):515–527. https://doi.org/10.1111/cns.13620. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bilimoria PM, Stevens B (2015) Microglia function during brain development: new insights from animal models. Brain Res 1617:7–17. https://doi.org/10.1016/j.brainres.2014.11.032. (in eng)

    Article  CAS  PubMed  Google Scholar 

  55. Zhao Q et al (2019) Maternal immune activation-induced PPARγ-dependent dysfunction of microglia associated with neurogenic impairment and aberrant postnatal behaviors in offspring. Neurobiol Dis 125:1–13. https://doi.org/10.1016/j.nbd.2019.01.005. (in eng)

    Article  CAS  PubMed  Google Scholar 

  56. Pardo CA, Vargas DL, Zimmerman AW (2005) Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry 17(6):485–495. https://doi.org/10.1080/02646830500381930. (in eng)

    Article  PubMed  Google Scholar 

  57. Monji A, Kato T, Kanba S (2009) Cytokines and schizophrenia: microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci 63(3):257–265. https://doi.org/10.1111/j.1440-1819.2009.01945.x. (in eng)

    Article  CAS  PubMed  Google Scholar 

  58. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57(1):67–81. https://doi.org/10.1002/ana.20315. (in eng)

    Article  CAS  PubMed  Google Scholar 

  59. Williamson LL, Sholar PW, Mistry RS, Smith SH, Bilbo SD (2011) Microglia and memory: modulation by early-life infection. J Neurosci 31(43):15511–15521. https://doi.org/10.1523/jneurosci.3688-11.2011. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Harvey L, Boksa P (2012) Prenatal and postnatal animal models of immune activation: relevance to a range of neurodevelopmental disorders. Dev Neurobiol 72(10):1335–1348. https://doi.org/10.1002/dneu.22043. (in eng)

    Article  CAS  PubMed  Google Scholar 

  61. Spivak B, Radwan M, Elimelech D, Baruch Y, Avidan G, Tyano S (1989) A study of the complement system in psychiatric patients. Biol Psychiatry 26(6):640–642. https://doi.org/10.1016/0006-3223(89)90091-7. (in eng)

    Article  CAS  PubMed  Google Scholar 

  62. Schafer DP et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691–705. https://doi.org/10.1016/j.neuron.2012.03.026. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Derecki NC et al (2012) Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484(7392):105–109. https://doi.org/10.1038/nature10907. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen SK et al (2010) Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141(5):775–785. https://doi.org/10.1016/j.cell.2010.03.055. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Elgueta D, Murgas P, Riquelme E, Yang G, Cancino GI (2022) Consequences of viral infection and cytokine production during pregnancy on brain development in offspring. Front Immunol 13:816619. https://doi.org/10.3389/fimmu.2022.816619. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fatemi SH et al (2008) Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: implications for genesis of neurodevelopmental disorders. Schizophr Res 99(1–3):56–70. https://doi.org/10.1016/j.schres.2007.11.018. (in eng)

    Article  PubMed  PubMed Central  Google Scholar 

  67. Khandaker GM, Zimbron J, Lewis G, Jones PB (2013) Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol Med 43(2):239–257. https://doi.org/10.1017/s0033291712000736. (in eng)

    Article  CAS  PubMed  Google Scholar 

  68. Nielsen-Saines K et al (2019) Delayed childhood neurodevelopment and neurosensory alterations in the second year of life in a prospective cohort of ZIKV-exposed children. Nat Med 25(8):1213–1217. https://doi.org/10.1038/s41591-019-0496-1. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nandi S et al (2012) The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Dev Biol 367(2):100–113. https://doi.org/10.1016/j.ydbio.2012.03.026. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tabata T et al (2015) Human cytomegalovirus infection interferes with the maintenance and differentiation of trophoblast progenitor cells of the human placenta. J Virol 89(9):5134–5147. https://doi.org/10.1128/jvi.03674-14. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Quicke KM et al (2016) Zika virus infects human placental macrophages. Cell Host Microbe 20(1):83–90. https://doi.org/10.1016/j.chom.2016.05.015. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aarum J, Sandberg K, Haeberlein SL, Persson MA (2003) Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci U S A 100(26):15983–15988. https://doi.org/10.1073/pnas.2237050100. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ernst C (2016) Proliferation and differentiation deficits are a major convergence point for neurodevelopmental disorders. Trends Neurosci 39(5):290–299. https://doi.org/10.1016/j.tins.2016.03.001. (in eng)

    Article  CAS  PubMed  Google Scholar 

  74. Juric-Sekhar G, Hevner RF (2019) Malformations of cerebral cortex development: molecules and mechanisms. Annu Rev Pathol 14:293–318. https://doi.org/10.1146/annurev-pathmechdis-012418-012927. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cunningham CL, Martínez-Cerdeño V, Noctor SC (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 33(10):4216–4233. https://doi.org/10.1523/jneurosci.3441-12.2013. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yeo W, Gautier J (2004) Early neural cell death: dying to become neurons. Dev Biol 274(2):233–244. https://doi.org/10.1016/j.ydbio.2004.07.026. (in eng)

    Article  CAS  PubMed  Google Scholar 

  77. Sherer ML, Khanal P, Talham G, Brannick EM, Parcells MS, Schwarz JM (2019) Zika virus infection of pregnant rats and associated neurological consequences in the offspring. PLoS One 14(6):e0218539. https://doi.org/10.1371/journal.pone.0218539. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cugola FR et al (2016) The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534(7606):267–271. https://doi.org/10.1038/nature18296. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shao Q et al (2016) Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage. Development 143(22):4127–4136. https://doi.org/10.1242/dev.143768. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Souza BS et al (2016) Zika virus infection induces mitosis abnormalities and apoptotic cell death of human neural progenitor cells. Sci Rep 6:39775. https://doi.org/10.1038/srep39775. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Heerema-McKenney A (2018) Defense and infection of the human placenta. APMIS 126(7):570–588. https://doi.org/10.1111/apm.12847. (in eng)

    Article  PubMed  Google Scholar 

  82. Costa ML, de MoraesNobrega G, Antolini-Tavares A (2020) Key infections in the placenta. Obstet Gynecol Clin North Am 47(1):133–146. https://doi.org/10.1016/j.ogc.2019.10.003

    Article  PubMed  Google Scholar 

  83. Xu P et al (2020) Role of microglia in the dissemination of Zika virus from mother to fetal brain. PLoS Negl Trop Dis 14(7):e0008413. https://doi.org/10.1371/journal.pntd.0008413. (in eng)

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wang J et al (2018) Zika virus infected primary microglia impairs NPCs proliferation and differentiation. Biochem Biophys Res Commun 497(2):619–625. https://doi.org/10.1016/j.bbrc.2018.02.118. (in eng)

    Article  CAS  PubMed  Google Scholar 

  85. Diop F et al (2018) Zika virus infection modulates the metabolomic profile of microglial cells. PLoS One 13(10):e0206093. https://doi.org/10.1371/journal.pone.0206093. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lum FM et al (2017) Zika Virus Infects Human Fetal Brain Microglia and Induces Inflammation. Clin Infect Dis 64(7):914–920. https://doi.org/10.1093/cid/ciw878. (in eng)

    Article  CAS  PubMed  Google Scholar 

  87. Maidji E, Percivalle E, Gerna G, Fisher S, Pereira L (2002) Transmission of human cytomegalovirus from infected uterine microvascular endothelial cells to differentiating/invasive placental cytotrophoblasts. Virology 304(1):53–69. https://doi.org/10.1006/viro.2002.1661. (in eng)

    Article  CAS  PubMed  Google Scholar 

  88. Cloarec R et al (2016) Cytomegalovirus infection of the rat developing brain in utero prominently targets immune cells and promotes early microglial activation. PLoS One 11(7):e0160176. https://doi.org/10.1371/journal.pone.0160176. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mutnal MB, Cheeran MC, Hu S, Lokensgard JR (2011) Murine cytomegalovirus infection of neural stem cells alters neurogenesis in the developing brain. PLoS One 6(1):e16211. https://doi.org/10.1371/journal.pone.0016211. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liong S et al (2020) Influenza A virus causes maternal and fetal pathology via innate and adaptive vascular inflammation in mice. Proc Natl Acad Sci U S A 117(40):24964–24973. https://doi.org/10.1073/pnas.2006905117. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cordeiro CN, Tsimis M, Burd I (2015) Infections and brain development. Obstet Gynecol Surv 70(10):644–655. https://doi.org/10.1097/ogx.0000000000000236. (in eng)

    Article  PubMed  PubMed Central  Google Scholar 

  92. Brown AS et al (2004) Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 61(8):774–780. https://doi.org/10.1001/archpsyc.61.8.774. (in eng)

    Article  PubMed  Google Scholar 

  93. Fruntes V, Limosin F (2008) Schizophrenia and viral infection during neurodevelopment: a pathogenesis model? Med Sci Monit 14(6):Ra71-77 (in eng)

    PubMed  Google Scholar 

  94. Helding L, Carroll TL, Nix J, Johns MM, LeBorgne WD, Meyer D (2022) COVID-19 after effects: concerns for singers. J Voice 36(4):586.e7-586.e14. https://doi.org/10.1016/j.jvoice.2020.07.032. (in eng)

    Article  PubMed  Google Scholar 

  95. McGonagle D, Sharif K, O’Regan A, Bridgewood C (2020) The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev 19(6):102537. https://doi.org/10.1016/j.autrev.2020.102537. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Giamarellos-Bourboulis EJ et al (2020) Complex immune dysregulation in covid-19 patients with severe respiratory failure. Cell Host Microbe 27(6):992-1000.e3. https://doi.org/10.1016/j.chom.2020.04.009. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. De Biasi S et al (2020) Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun 11(1):3434. https://doi.org/10.1038/s41467-020-17292-4. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tartaglione AM et al (2022) Maternal immune activation induces autism-like changes in behavior, neuroinflammatory profile and gut microbiota in mouse offspring of both sexes. Transl Psychiatr 12(1):384. https://doi.org/10.1038/s41398-022-02149-9

    Article  CAS  Google Scholar 

  99. Owen MJ, Sawa A, Mortensen PB (2016) Schizophrenia. Lancet 388(10039):86–97. https://doi.org/10.1016/s0140-6736(15)01121-6. (in eng)

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yarlagadda A, Alfson E, Clayton AH (2009) The blood brain barrier and the role of cytokines in neuropsychiatry. Psychiatry (Edgmont) 6(11):18–22 (in eng)

    PubMed  Google Scholar 

  101. Meehan C et al (2017) Effects of immune activation during early or late gestation on schizophrenia-related behaviour in adult rat offspring. Brain Behav Immun 63:8–20. https://doi.org/10.1016/j.bbi.2016.07.144. (in eng)

    Article  CAS  PubMed  Google Scholar 

  102. Rahman T et al (2020) Effect of immune activation during early gestation or late gestation on inhibitory markers in adult male rats. Sci Rep 10(1):1982. https://doi.org/10.1038/s41598-020-58449-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ray S, Maunsell JH (2011) Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol 9(4):e1000610. https://doi.org/10.1371/journal.pbio.1000610. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Choudhury Z, Lennox B (2021) Maternal immune activation and schizophrenia-evidence for an immune priming disorder. Front Psychiatry 12:585742. https://doi.org/10.3389/fpsyt.2021.585742. (in eng)

    Article  PubMed  PubMed Central  Google Scholar 

  105. Brown AS, Derkits EJ (2010) Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 167(3):261–280. https://doi.org/10.1176/appi.ajp.2009.09030361. (in eng)

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gaskell EA, Smith JE, Pinney JW, Westhead DR, McConkey GA (2009) A unique dual activity amino acid hydroxylase in Toxoplasma gondii. PLoS One 4(3):e4801. https://doi.org/10.1371/journal.pone.0004801. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Brown AS, Schaefer CA, Quesenberry CP Jr, Liu L, Babulas VP, Susser ES (2005) Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring. Am J Psychiatry 162(4):767–773. https://doi.org/10.1176/appi.ajp.162.4.767. (in eng)

    Article  PubMed  Google Scholar 

  108. Torrey EF, Bartko JJ, Yolken RH (2012) Toxoplasma gondii and other risk factors for schizophrenia: an update. Schizophr Bull 38(3):642–647. https://doi.org/10.1093/schbul/sbs043. (in eng)

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lyall K et al (2017) The changing epidemiology of autism spectrum disorders. Annu Rev Public Health 38:81–102. https://doi.org/10.1146/annurev-publhealth-031816-044318. (in eng)

    Article  PubMed  Google Scholar 

  110. Majerczyk D, Ayad EG, Brewton KL, Saing P, Hart PC (2022) Systemic maternal inflammation promotes ASD via IL-6 and IFN-γ. Biosci Rep 42(11). https://doi.org/10.1042/bsr20220713

  111. Nazeer A, Ghaziuddin M (2012) Autism spectrum disorders: clinical features and diagnosis. Pediatr Clin North Am 59(1):19–25. https://doi.org/10.1016/j.pcl.2011.10.007. (in eng)

    Article  PubMed  Google Scholar 

  112. Kern JK, Geier DA, Sykes LK, Geier MR (2015) Relevance of neuroinflammation and encephalitis in autism. Front Cell Neurosci 9:519. https://doi.org/10.3389/fncel.2015.00519. (in eng)

    Article  CAS  PubMed  Google Scholar 

  113. Careaga M, Murai T, Bauman MD (2017) Maternal immune activation and autism spectrum disorder: from rodents to nonhuman and human primates. Biol Psychiatry 81(5):391–401. https://doi.org/10.1016/j.biopsych.2016.10.020. (in eng)

    Article  CAS  PubMed  Google Scholar 

  114. Zawadzka A, Cieślik M, Adamczyk A (2021) The role of maternal immune activation in the pathogenesis of autism: a review of the evidence, proposed mechanisms and implications for treatment. Int J Mol Sci 22(21). https://doi.org/10.3390/ijms222111516 (in eng)

  115. Chess S (1977) Follow-up report on autism in congenital rubella. J Autism Child Schizophr 7(1):69–81. https://doi.org/10.1007/bf01531116. (in eng)

    Article  CAS  PubMed  Google Scholar 

  116. Yamashita Y, Fujimoto C, Nakajima E, Isagai T, Matsuishi T (2003) Possible association between congenital cytomegalovirus infection and autistic disorder. J Autism Dev Disord 33(4):455–459. https://doi.org/10.1023/a:1025023131029. (in eng)

    Article  PubMed  Google Scholar 

  117. Severance EG et al (2016) Toxoplasma gondii-a gastrointestinal pathogen associated with human brain diseases. Int Rev Neurobiol 131:143–163. https://doi.org/10.1016/bs.irn.2016.08.008. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mawson AR, Croft AM (2019) Rubella virus infection, the congenital rubella syndrome, and the link to autism. Int J Environ Res Public Health 16(19). https://doi.org/10.3390/ijerph16193543 (in eng)

  119. Jiang HY et al (2016) Maternal infection during pregnancy and risk of autism spectrum disorders: a systematic review and meta-analysis. Brain Behav Immun 58:165–172. https://doi.org/10.1016/j.bbi.2016.06.005. (in eng)

    Article  PubMed  Google Scholar 

  120. Hornig M et al (2018) Prenatal fever and autism risk. Mol Psychiatry 23(3):759–766. https://doi.org/10.1038/mp.2017.119. (in eng)

    Article  CAS  PubMed  Google Scholar 

  121. Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF (2014) Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med 20(9):509–518. https://doi.org/10.1016/j.molmed.2014.05.002. (in eng)

    Article  PubMed  Google Scholar 

  122. Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG (2017) Cross talk: the microbiota and neurodevelopmental disorders. Front Neurosci Rev 11. https://doi.org/10.3389/fnins.2017.00490 (in English)

  123. Lee GA et al (2021) Maternal immune activation causes social behavior deficits and hypomyelination in male rat offspring with an autism-like microbiota profile. Brain Sci 11(8)1085. [Online]. Available: https://www.mdpi.com/2076-3425/11/8/1085

  124. Lin T-L et al (2022) Amelioration of maternal immune activation-induced autism relevant behaviors by gut commensal Parabacteroides goldsteinii. Int J Mol Sci 23(21):13070. [Online]. Available: https://www.mdpi.com/1422-0067/23/21/13070.

  125. Estes ML, McAllister AK (2016) Maternal immune activation: Implications for neuropsychiatric disorders. Science 353(6301):772–777. https://doi.org/10.1126/science.aag3194. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sunwoo JS et al (2018) Maternal immune activation alters brain microRNA expression in mouse offspring. Ann Clin Transl Neurol 5(10):1264–1276. https://doi.org/10.1002/acn3.652. (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran and Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran for supporting this project.

Author information

Authors and Affiliations

Authors

Contributions

M.M, B.G, MA.M, M.T, J.R, and S-I.V prepared the initial draft; M.M study design, supervised the project, writing (final draft); M.T review and editing of the manuscript; S-I.V supervised the project, review and editing of the manuscript.

Corresponding author

Correspondence to Vahid Shafiei-Irannejad.

Ethics declarations

Ethics Approval

Ethical issues (including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, redundancy) have been completely observed by the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebalizadeh, M., Babapour, G., Maleki Aghdam, M. et al. Role of Maternal Immune Factors in Neuroimmunology of Brain Development. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03749-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03749-2

Keywords

Navigation