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Abstract
The neurological injury and repair mechanisms after ischemic stroke are complex. The inflammatory response is present 
throughout stroke onset and functional recovery, in which CD4 + T helper(Th) cells play a non-negligible role. Th17 cells, 
differentiated from CD4 + Th cells, are regulated by various extracellular signals, transcription factors, RNA, and post-
translational modifications. Th17 cells specifically produce interleukin-17A(IL-17A), which has been reported to have 
pro-inflammatory effects in many studies. Recently, experimental researches showed that Th17 cells and IL-17A play an 
important role in promoting stroke pathogenesis (atherosclerosis), inducing secondary damage after stroke, and regulating 
post-stroke repair. This makes Th17 and IL-17A a possible target for the treatment of stroke. In this paper, we review the 
mechanism of action of Th17 cells and IL-17A in ischemic stroke and the progress of research on targeted therapy.
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Introduction

Ischemic stroke (IS) is one of the leading causes of death 
and disability worldwide. It is increasing in prevalence with 
increasing aging and the growing prevalence of diabetes, 
hypertension, and obesity. The blocked blood flow leads to 
a series of cascade responses that gradually expand from 
the ischemic core to the peripheral penumbra, including 
excitotoxicity, calcium overload, mitochondrial damage, 
oxidative stress, apoptosis, autophagy, neuroinflammation, 
and blood–brain barrier damage [1, 2]. Among them, the 
inflammatory response is a significant link in a highly com-
plex cascade of reactions throughout stroke onset and repair. 
A growing body of evidence suggests that intense neuroin-
flammation is the primary mechanism of secondary brain 
injury in the early stages of stroke. In contrast, in the later 

stages, the inflammatory response promotes neurogenesis, 
angiogenesis, and neuronal plasticity, thereby facilitating 
neurofunctional recovery [3].

T cells play an important role in post-stroke neuroinflam-
mation. Th17 cells are a subset of CD4 + T cells, and their 
most important cytokine is IL-17A [4]. In recent years, with 
the advancement of research, it has been gradually recog-
nized that Th17 and IL-17A play a key role in the patho-
genesis of inflammation and autoimmune diseases [5–7]. 
A growing number of studies have shown that IL-17A acts 
on multiple resident cells in the central nervous system, 
enhancing the neuroinflammatory response after stroke and 
exacerbating ischemic brain injury. We review the function 
of Th17/IL-17A, the mechanism of action of Th17/IL-17A 
in stroke, and Th17/IL-17A-related stroke therapy (Fig. 1).

Differentiation of Th17 Cells and IL‑17A 
Signaling Pathway

CD4 + Th cells are involved in the clearance of pathogens 
as a key factor of adaptive immunity. Naive CD4 + T cells 
mature in the thymus and enter the peripheral lymphoid 
organs for circulation, including the spleen, lymph nodes, 
and mucosa-associated lymphoid tissue (MALT). Naive 
CD4 + T cells receive antigen from antigen-presenting cells 
(APCs) and rapidly activate, proliferate, and differentiate 
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into different Th lineages, including Th1, Th2, Th17, and 
T regulatory (Treg) [8]. The fate of Th lineages depends 
not only on the type and activation status of APCs but 
also on the type of pathogen-associated molecular pattern 
(PAMP) or damage-associated molecular pattern (DAMP), 
the strength of T cell receptor (TCR) signaling, the control 
of environmental signals (mainly cytokines), and the induc-
tion of specific transcription factors (TFs) within T cells. 
In 2006, researchers found that naive T cells differentiate 
into a new type of CD4 + Th cells, Th17 cells, in the com-
bined effect of transforming growth factor-β (TGF-β) and 
interleukin-6 (IL-6) [4]. Th17 cells characteristically express 
retinoic acid-related orphan receptor γt (RORγt) and secrete 
a unique set of pro-inflammatory cytokines (IL-17A, IL-17F, 
IL-21, IL-23, IL-6, Interferon-gamma(IFN-γ), and granulo-
cyte–macrophage colony-stimulating factor(GM-CSF)) [9]. 
Th17 cells are present in small numbers in circulation and 
large numbers in mucosal tissues [10].

The differentiation and maturation of Th17 cells are 
divided into three stages (Fig. 2) [11]. In the initial phase, 
the combination of TGF-β and IL-6 or IL-21 triggers the 
initial differentiation of naive CD4 + T cells into precursor 
Th17 cells. It was shown that IL-6 plays a dominant role 
in the initial stage of differentiation [12], while IL-21, 
at this stage, acts only as an alternative pathway to IL-6. 
However, during the second phase of expansion, IL-21, 

produced by Th17 cells, plays a significant role in the 
autocrine expansion cycle, ultimately promoting the dif-
ferentiation and proliferation of Th17 cells and the produc-
tion of the IL-23 receptor (IL-23R) [13]. During the final 
maturation phase of Th17 cells, IL-23 binds to IL-23R 
to achieve complete and sustained differentiation of Th17 
cells and promote the secretion of the pro-inflammatory 
factor IL-17A in large quantities [8]. Although the mecha-
nisms of differentiation are complex, several key pathways 
activated by cytokines be involved in the development 
of Th17 cells (Fig. 2) [14]. The binding of IL-6 to its 
receptor IL-6R leads to the activation of the janus kinase 
2 (JAK2)/signal transducer and activator of transcription 
3(STAT3) signaling pathway [12]. Activated STAT3 enters 
the nucleus and activates the expression of transcription 
factors RORγt and RORα. TGF-β binds to its receptor 
and mediates the nuclear translocation of Recombinant 
Mothers Against Decapentaplegic Homolog 2 (SMAD2), 
which initiates the transcription of IL-17A [9]. Two other 
transcription factors, B-cell activating transcription factor 
(BATF) and interferon regulatory factor 4 (IRF4), which 
are independent of STAT3 and SMAD2 signaling, are also 
essential for Th17 differentiation [15]. STAT3, RORγt, 
SMAD2, BATF, and IRF4 form a complex that together 
binds the promoter of the IL-17A gene to promote Th17 
differentiation and IL-17A expression. However, it is not 

Fig. 1  Graphical abstract of this 
review. Stroke causes increased 
levels of Th17 cells and IL-17A 
in peripheral blood and brain 
tissue. Th17 and IL-17A play 
different roles in the acute and 
chronic phases of stroke. In the 
acute phase, Th17 and IL-17A 
cause secondary brain damage 
by directly damaging neurons, 
promoting glial cell activation, 
disrupting the blood–brain 
barrier, and promoting periph-
eral immune cell infiltration. 
However, in the chronic phase, 
Th17 and IL-17A promote 
neurogenesis, myelinogenesis, 
angiogenesis, and cognitive 
improvement
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clear how BATF and IRF4 crosstalk with STAT3 to regu-
late Th17 differentiation.

IL-17A (also known as IL-17), a marker cytokine of 
the Th17 cell subpopulation, was discovered in 1993 and 
became the founding member of the IL-17 family. In addi-
tion to being primarily derived from Th17 cells, IL-17A is 
also expressed in CD8 + cells, γδ T cells, natural killer T 
(NKT) cells, group 3 innate lymphoid cells (ILC3s), neutro-
phils, and microglia [16]. The remaining five members of the 
IL-17 family include IL-17B, IL-17C, IL-17D, IL-17E, and 
IL-17F. Studies have shown the highest homology between 
the amino acid sequences of IL-17A and IL-17F. Moreover, 
heterodimers of both exist in vivo (IL-17A/F) [17]. IL-17A, 
IL-17F, and IL-17A/F share the same receptor (IL-17RA/RC 
complex) [18] and exhibit similar pro-inflammatory effects 
in many diseases. IL-17 receptors are widely expressed in 
the central nervous system, such as neurons, glial cells, and 
brain endothelial cells. IL-17A binds to the IL-17RA/RC 
complex and recruits the ubiquitin ligase Act1 through the 

intracellular structure of this receptor (SEFIR structural 
domain). Act1 recruits tumor necrosis factor (TNF) receptor-
associated factor 6 (TRAF6), leading to the activation of 
nuclear factor kappa B (NF-kB), C/EBP, and the mitogen-
activated protein kinase (MAPK)/AP-1 pathways [19, 20].

Changes of Th17/IL‑17A in Ischemic Stroke

Several studies have shown that Th17 cells and IL-17A 
are present in high numbers in the peripheral blood of 
patients with IS and are positively associated with sever-
ity, poor prognosis, and stroke sequelae such as cognitive 
impairment. The amount of Th17 cells in the peripheral 
blood of healthy adults is minimal, accounting for about 
1%-4% of CD4 + T cells. Li et al. study suggested that the 
levels of Th17 cells and IL-17A in the peripheral blood of 
healthy adults are age-dependent [21]. The percentage of 
Th17 cells was 2.31%, 1.42%, and 0.94% in healthy elderly, 

Fig. 2  Differentiation of Th17 cells and IL-17A signaling pathway. 
Th17 cells are differentiated from naive CD4 + T cells. CD4 + T cells 
receive stimulation from APCs and are affected by IL-6 and TGF-β to 
initiate the initial differentiation program. IL-21 is produced by Th17 
cells in an autocrine manner and then promotes the proliferation and 
differentiation of Th17 cells during the expansion phase. IL-6 binding 
to IL-6R mediates the phosphorylation of STAT3 by JAK2. TGF-β 

binding to its receptor mediates the phosphorylation of SMAD2. 
After nuclear translocation, P-STAT3, P-SMAD2, BATF, IRF4, and 
RORγt bind to the IL- 17 promoters to initiate IL-17A transcription. 
After IL-17 binds to its receptor, the intracellular structure of this 
receptor recruits and activates Act1. Activated Act1 phosphorylates 
TRAF6 and triggers TRAF6-dependent transcription of target genes 
such as NF-κB, CEBP, and MAPK/AP-1
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middle-aged, and young adults. IL-17A levels were 27.17, 
18.92, and 15.98 pg/ml in the three groups. A study showed 
that the Th17 cell percentage of patients with IS was approx-
imately 5.8% on admission and was positively correlated 
with NIHSS scores. The Th17 cell percentage increased 
to 6.8% on the first day after admission (D1), increased to 
7.7% on the third day (D3), and decreased to 5.8% on the 
seventh day (D7) [22]. Another study suggested a similar 
trend of Th17 cell changes [23]. On the D1 and D5 after IS, 
the Th17 percentage was 4.68% and 3.65% and decreased 
to 2.49% on the D10, similar to healthy controls. The study 
also documented an increase in IL-17A from 118 pg/ml to 
171, 147, and 146 pg/ml on the D1, D5, and D10 compared 
to controls. Lu et al. recorded a baseline (at admission) Th17 
percentage of 4.1% and baseline IL-17 levels of 98.7 pg/
ml in IS patients [24]. In addition, in patients’ postmortem 
stroke tissues, positive staining of cells expressing IL-17A 
was higher in the infarcted area than in non-ischemic tissues 
and remained at higher levels on days 2–5 [25].

Numerous studies have suggested that in animal ischemic 
stroke models, Th17 cell and IL-17A levels in the brain and 
circulation tend to increase after infarction. IL-17A in brain 
tissue was enhanced within one day, peaked on day 3, and 
decreased slightly in the following days, and this trend has 
been confirmed by several experimental results [20, 26, 27]. 
Luo’s study showed that the percentage of Th17 cells in 
brain tissue increased from less than 5 to 30% at 6 h after 
transient middle cerebral artery occlusion (tMCAO) and 
to 50% at 72 h after tMCAO [28]. However, Guo’s study 
showed that the percentage of Th17 cells rose to approxi-
mately 10% at 72 h after tMCAO [29]. This discrepancy may 
be because Luo’s study defined IL-17A-releasing T cells as 
Th17 cells, which led to an expansion of the Th17 cell range. 
Nevertheless, the trend of elevated Th17 cells in brain tissue 
after MCAO is undeniable.

Mechanism of Action of Th17 Cells 
and IL‑17A in Ischemic Stroke

Th17 Cells and IL‑17A Promote the Pathogenesis 
of Ischemic Stroke

Thrombosis or thromboembolism due to atherosclerosis 
(AS) is the main pathogenesis of stroke. When vascular 
endothelial dysfunction occurs, low-density lipoprotein 
(LDL) particles penetrate the intimal layer and activate 
macrophage-derived foam cells to secrete pro-inflamma-
tory factors, leading to plaque growth and lipid nuclea-
tion [30]. On the other hand, immune inflammation 
caused by immune cell infiltration, especially T cells, 
is also a key mechanism that promotes AS. In recent 
years, an increasing number of studies have shown that 

Th17 and IL-17A promote the onset and development 
of atherosclerosis. Liu et al. suggested that Th17 cells 
were positively associated with carotid atherosclerotic 
plaques and that peripheral blood Th17 cell levels were 
higher in patients with unstable plaques [31]. IL-17A 
promotes thrombosis and callogenesis by activating 
tissue factors and reducing anticoagulation mediators 
(CD39 and thrombomodulin) [32]. Both in situ thrombo-
sis and embolism due to unstable plaque detachment are 
important pathogenic mechanisms of IS. Animal studies 
have shown that atherosclerotic plaques in ApoE-/- mice 
contain higher levels of Th17 cells and IL-17A than in 
wild-type (WT) mice, and exogenous supplementation 
with IL-17A significantly increases plaque size. All of 
the above studies suggest that Th17 cells and IL-17A are 
associated with AS [33, 34]. Studies on the mechanisms 
promoting AS progression have shown that IL-17 may 
promote migration and adhesion of innate immune cells 
(neutrophils, monocytes, and macrophages) to vascular 
lesions [34] and promote the release of pro-inflamma-
tory mediators [35] by acting on the three cell layers 
of the vessel wall. In vitro studies have shown that IL-
17A induces the secretion of pro-inflammatory cytokines 
(IL-6, GM-CSF) and chemokines (IL-8, C-X-C motif 
chemokine 1(CXCL1)) from human vascular endothelial 
cells (HVECs) through activation of STAT3 phospho-
rylation and nuclear translocation, and further induces 
neutrophil recruitment [36, 37]. In addition, IL-17A 
can also induce the expression of adhesion molecules 
in HVECs to promote the adhesion and rolling of mono-
cytes and platelets to endothelial cells [35, 38]. IL-17A 
can promote the expression of Vascular cell adhesion 
molecule 1(VCAM-1) in vascular smooth muscle cells 
(VSMCs) by a mechanism that may be related to the 
MAPK/ERK/NF-κB signaling pathway [39]. In addi-
tion, IL-17A induces significant expression of several 
other chemokines in VSMCs, such as CC chemokine 
ligand(CCL)20, CCL5, monocyte chemotactic protein-1 
(MCP-1), CXCL16, and the cytokine IL-6, promoting 
leukocyte recruitment and vascular inflammation [40]. 
When IL-17A is co-cultured with human atherosclerotic 
plaques, IL-17A induces the release of more MCP-1 and 
matrix metalloproteinase 9 (MMP-9) mRNA as well as 
IL-6, TNF-α, G-CSF, and TGF-β proteins [35]. New 
studies have found that IL-17 induces senescence in 
endothelial cells [21], which is one of the main causes of 
structural changes and dysfunction in blood vessels and 
is the basis of AS. However, it has also been shown that 
IL-17A deficiency can lead to the formation of athero-
sclerotic plaques, suggesting a protective role for IL-17A 
[41]. The promotive or inhibitory effect of IL-17A on AS 
is an important target for preventing cardio-cerebrovas-
cular diseases and needs further exploration.
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Th17 Cells and IL‑17A Promote Secondary Brain 
Injury After Ischemic Stroke

After IS, IL-17 is released by a variety of central and periph-
eral immune cells. When cerebral ischemia occurs, injured 
cells release DAMPs and first activate the innate immune 
response. As early as 12 h after ischemia/reperfusion (I/R), 
microglia increase the levels of pro-inflammatory cytokines, 
including IL-17A, IL-23, IL-β, and TNF-α, by upregulat-
ing and activating Toll-like receptors 2(TLR2) and sphin-
gosine kinase 1(Sphk1) signaling molecules [42]. During 
this period, astrocytes also act as an important source of 
IL-17A release, increasing IL-17A levels in ischemic brain 
tissue and cerebrospinal fluid [43]. IL-23 released from 
astrocytes can stimulate microglia to produce more IL-17 
and other inflammatory mediators such as IL-6, macrophage 
inflammatory protein-2 (MIP-2), and inducible nitric oxide 
synthase (iNOS) [44]. Infiltrating intrinsic immune cells, 
γδ T cells, are the primary source of IL-17A for 12 h to 
3 days after stroke [45, 46]. The adaptive immune response 
is activated after the innate immune response. CD4 + T cells 
increase in brain tissue 24 h after tMCAO, with their peak 
occurring six days later and continuing until at least 30 days 
[47]. Infiltrating CD4 + T cells driven by APCs and specific 
cytokines (IL-6/IL-21 + TGF-β) differentiate into Th17 cells.
IL-23, secreted by macrophages, microglia, and astrocytes, 
stabilizes the structure of Th17 cells and is an important fac-
tor in limiting the production of IL-17 by Th17 cells [45]. 
Ischemic signals (DAMPs) transmitted to the periphery 
activate RAGE receptors on naive CD4 + T cells and pro-
mote the differentiation of CD4 + T cells to Th17 cells after 
MCAO by directing the reprogramming of fatty acid metab-
olism [48]. Th17 cells in the peripheral circulation also peak 
3–5 days after ischemia, secreting pro-inflammatory factors 
such as IL-17A and crossing the disrupted blood–brain 
barrier(BBB) to reach the ischemic zone.

Th17 Cells and IL‑17A Enhance BBB Damage After Ischemic 
Stroke

After the ischemic stroke, BBB dysfunction begins with vas-
cular endothelial cell injury due to ischemia. Then, immune 
cells and molecules act directly or indirectly on BBB com-
ponents, exacerbating the disruption of BBB structure 
and increasing permeability, further leading to edema and 
inflammatory responses in the ischemic area [49]. Th17 cells 
and IL-17A are involved in BBB destruction in multiple 
sclerosis (MS) and autoimmune encephalomyelitis (EAE) 
disease models [50], and it is reasonable to suspect that IL-
17-producing cells also contribute to BBB dysfunction after 
stroke (Fig. 3). IL-17 receptors widely expressed in vascular 
endothelial cells, neurons, and glial cells are elevated after 
MCAO [51]. In an in vitro BBB model in which endothelial 

cells are co-cultured with astrocytes, IL-17A decreases 
the connexin ZO-1. It synergizes with IL-6 and TNF-α 
to decrease the expression of claudin-5 and occludin and 
increase the permeability of the BBB [52]. Zhang’s study 
showed that IL-17A induces BBB destruction by reducing 
the expression levels of occludin and claudin-5 proteins and 
increasing the expression levels of MMP-2 and MMP-9 pro-
teins in vascular endothelial cells [53]. In addition, IL-17A 
activates IL-17A receptors on vascular endothelial cells, 
promoting the release of reactive oxygen species (ROS) 
and further activating the myosin light chain (MLC). Phos-
phorylated MLC interacts with cytoskeletal actin to induce 
brain microvascular endothelial cells (BMECs) contraction, 
ultimately leading to the widening gap between endothelial 
cells and increased BBB permeability [54]. It has also been 
shown that IL-17 induces apoptosis in endothelial cells by 
activating caspase-3 and caspase-9 and upregulating the 
Bcl2 Associated X Protein(Bax)/ B-cell lymphoma-2 (Bcl-
2) ratio, thereby mediating the destruction of BBB [55]。

Th17 Cells and IL‑17A Promote Infiltration of Peripheral 
Immune Cells After Ischemic Stroke

IL-17 promotes the adhesion and transendothelial transfer 
of neutrophils, lymphocytes, and monocytes after stroke 
(Fig. 3). After recruitment from the periphery, neutro-
phils adhere to the brain endothelium around the infarct 
site within minutes and peak 2–3 days after the onset 
of ischemia [56]. Neutrophils promote the degradation 
of endothelial cells and BBB by activating MMP-2 and 
MMP-9 [57]. Activated neutrophils entering the brain 
parenchyma through the damaged BBB can lead to neu-
ronal death [56]. Lymphocyte infiltration occurs relatively 
late. In the tMCAO model, peak T-cell infiltration occurs 
3–5 days after stroke induction. In the permanent MCAO 
(pMCAO) model, peak T-cell infiltration occurs at a rela-
tively delayed 7 days after stroke [47]. IL-17A stimulates 
brain endothelial cells to express VCAM-1 and induces 
the release of chemokines CCL2 and CXCL1 in a dose-
dependent manner, thereby driving neutrophils and T 
lymphocytes (including Th17 cells) into the brain paren-
chyma and propagating immune responses [58]. Early 
brain-derived IL-17 from γδ T cells has also been shown 
to induce neutrophil infiltration of brain parenchyma by 
stimulating astrocytes to secrete CXCL1 [59]. Inhibition 
of the IL-17A signaling pathway (anti-IL-17A treatment) 
significantly inhibits neutrophil infiltration and reduces 
infarct size. IL-17A derived from Th17 cells interacts 
with IL-17 receptors on endothelial cells to induce BBB 
breakdown by disrupting tight junctions, ultimately lead-
ing to massive infiltration of CD4 + T lymphocytes into 
the central nervous system (CNS) parenchyma [50]. In 
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addition, IL-17 has been shown to support monocyte 
migration in the blood–brain barrier through an intracel-
lular adhesion molecule (ICAM)-1-dependent mechanism 
[54].

Interaction of Th17 Cells and IL‑17A with Glial Cells After 
Ischemic Stroke

It was found that Th17 cells crosstalk with microglia after 
stroke (Fig. 3). Th17 and IL-17A can promote microglia dif-
ferentiation to M1 phenotype, inhibit M2 polarization, and 
promote the inflammatory response. Meanwhile, M1 micro-
glia secrete IL-6 and IL-23 and recruit and induce differen-
tiation of Th17 cells. Zhao et al. showed that non-invasive 
vagus nerve stimulation (nVNS) attenuated ischemia–rep-
erfusion injury in mice by promoting microglia M2 polari-
zation. The researchers further nullified the nVNS-induced 
facilitation of microglia M2 polarization by intranasal 
injection of recombinant IL-17A, thus demonstrating that 
IL-17A inhibits the process of microglia M2 polarization 

after I/R [60]. In I/R model mice, IL-17A knockout (IL-
17A−/−) or anti-IL-17A monoclonal antibody treatment sig-
nificantly reduces microglial activation and induces a shift 
in activated microglia from M1 to M2 phenotype [61]. In 
OGD-induced microglia, ROS, HMGB1, and IL-17A are 
expressed increased. Moreover, the upregulation of IL-17A 
expression mediates the expression of a series of factors 
and affects p53 and PI3K/Akt signaling pathways, inhibit-
ing microglia proliferation and promoting apoptosis [62]. 
Microglia recognize I/R-induced DAMPs signaling through 
TLR receptors, leading to the release of pro-inflammatory 
cytokines IL-1β, TNF-α, IL-17, and IL-23 [42]. Th17 and γδ 
T cells express many IL-23R on their surface. IL-23R binds 
to IL-23 to promote the conversion of Th17 and γδ T cells 
to a mature neurotoxic phenotype and the release of inflam-
matory cytokines such as IL-17A [63]. Thus, a positive feed-
back loop is formed between microglia and Th17, and Th17 
becomes a pro-inflammatory factor in brain injury. How-
ever, in vitro studies have shown that Th1-related factors can 
directly activate and trigger pro-inflammatory M1-type gene 

Fig. 3  IL-17A-mediated immune response after stroke. IL-17 is 
mainly produced by peripheral Th17 cells, γδ T cells infiltrating the 
CNS, and astrocytes and microglia in the brain parenchyma. IL-17A 
acts on a variety of cells in the CNS and exerts a role in exacerbating 
brain injury. IL-17A binds to IL-17A receptors on vascular endothe-
lial cells and induces destruction of the BBB by decreasing the 
endothelial intercellular junction proteins ZO-1, claudin-5, and occlu-
din. IL-17A activates ROS release from vascular endothelial cells and 
further activates MLC, leading to endothelial cell contraction and gap 
expansion. The compromised blood–brain barrier creates prerequi-

sites for the influx of peripheral immune cells into the brain paren-
chyma. IL-17A stimulates the release of chemokines and adhesion 
molecules from vascular endothelial cells and astrocytes, attracting 
neutrophils, lymphocytes, and monocytes for adhesion and transen-
dothelial transport. In the brain parenchyma, IL-17A stimulates astro-
cytes and microglia to produce large amounts of pro-inflammatory 
mediators. In addition, IL-17 can act alone or synergistically with 
other factors to directly cause apoptosis and excessive autophagy in 
neurons
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expression profiles in microglia, whereas Th17 cells or their 
related factors have little effect on microglia [64].

Astrocytes are also important responders to IL-17A 
signaling. IL-17A attenuates apoptosis in primary cultured 
cortical astrocytes by inhibiting OGD/R-induced downregu-
lation of IL-17A receptor membrane translocation [65]. IL-
17A antibody significantly inhibits astrocyte activation in 
the peri-infarct region 3 and 7 days after tMCAO. Stimula-
tion of astrocytes in vitro by TNF-α and IL-17A increases 
the expression of several chemokines, including CCL20, 
CXCL2, CXCL9, CXCL10, and CXCL11 [66]. Additional 
studies have shown that the combination of IL-6 with IL-17A 
modulates CCL20 expression in astrocytes and increases the 
migration of CCR6-expressing T cells, including Th17 cells, 
whereas IL-17A alone has little effect [67]. Astrocytes may 
also be a source of IL-23 during cerebral ischemia and are 
involved in the differentiation of Th17 cells as APCs [68]. 
Astrocytes also secrete IL-17A and are the main cellular 
source of IL-17A 28 days after tMCAO [69].

Th17 Cells and IL‑17A Promote Neuronal Injury

In vitro studies show that IL-17A binds to upregulated IL-
17A receptors and promotes hippocampal neuronal dam-
age in response to OGD stress [51]. Neuronal apoptosis is 
one of the major pathological changes of ischemic brain 
injury. Studies suggest that endoplasmic reticulum stress 
(ERS) is a key factor in inducing neuronal apoptosis. Using 
bioinformatics analysis, Zhang et al. found that in blood 
specimens from stroke patients, ERS-related genes were 
mainly enriched in immune-related pathways, especially 
neutrophil activation, and Th17 cell differentiation, and 
ERS-related proteins specifically included the hypoxia-
inducible factor family and cAMP-response element-
binding protein (CREB) family [70]. Transient receptor 
potential cation channel 6 (TRPC6) phosphorylates CREB 
to activate brain-derived neurotrophic factor (BDNF) 
and anti-apoptotic protein Bcl-2. TRPC6/CREB pathway 
maintains neuronal survival and function after stroke by 
enhancing hypoxia tolerance of neuronal cells [71]. IL-17A 
may promote I/R-induced neuronal death and neurological 
dysfunction by increasing calpain-mediated TRPC6 pro-
tein hydrolysis [72]. In addition, IL-17A can cause exces-
sive neuronal autophagy to aggravate ischemic injury 
in tMCAO mice. The Calcineurin/Protein Phosphatase 
(PP)2B is a Ca2 + -associated Ser/Thr phosphatase and has 
been proven physically binding to Mammalian Target of 
Rapamycin(mTOR) [73]. In OGD/R-induced cortical neu-
rons, IL-17A increases PP2B activity and PP2B-mediated 
dephosphorylation of mTOR to induce excessive autophagy 
in neurons [74].

Th17 Cells and IL‑17A Regulate Ischemic Stroke 
Recovery

Th17 Cells and IL‑17A and Neurovascular Remodeling 
During Stroke Recovery

During recovery from ischemic stroke, neurogenesis that 
occurs mainly in the subgranular zone (SGZ) of the dentate 
gyrus (DG) in the hippocampus and the subventricular zone 
(SVZ) on the outer walls of the lateral ventricles makes 
a prominent contribution to the recovery of neurological 
function. Neural stem cells (NSCs) undergo proliferation 
and division and differentiate into neural progenitor cells 
(NPCs), which migrate to the lesion area and differentiate 
into newborn neurons. The role of IL-17A in regulating 
neurogenesis remains controversial. In vitro studies have 
shown that IL-17A inhibits the proliferation of NSCs and 
the differentiation of NSCs to astrocytes and oligodendro-
cyte precursor cells (OPCs) [75]. Acute rapid eye movement 
(REM) sleep deprivation inhibits adult hippocampal neural 
progenitor cell proliferation by increasing IL-17A expres-
sion and activating the p38 MAPK signaling pathway [76]. 
IL-17A knockout mice show more mature and immature 
neurons in the hippocampal dentate gyrus and stronger 
short-lived presynaptic plasticity [77]. IL-17 knockout 
mice increase the expression of PI3K/Akt pathway-related 
genes and promote NSC proliferation and neurogenesis 
from 3 to 28 days after stroke [78]. Another study showed 
that IL-17 knockout mice upregulated the Wnt signaling 
pathway after stroke, promoting neurogenesis in the hip-
pocampus and improving cognitive dysfunction after stroke. 
In vitro experiments also demonstrated that IL-17A down-
regulated the expression of Wnt2, β-catenin, and GSK-3β 
and significantly inhibited the growth and proliferation of 
neurospheres in NSCs [79]. In contrast, Lin and Zhang 
showed that after tMCAO, activated astrocytes increased 
IL-17 secretion and improved proliferation and differen-
tiation of NPCs after stroke by regulating the p38 MAPK/
calpain 1 signaling pathway and NF-κB factors [69, 80]. 
IL-17 induces neurite outgrowth in post-sympathetic gan-
glion neurons by activating NF-κB signaling and inhibit-
ing voltage-dependent Ca2 + influx. The mechanism of IL-
17A action on neurogenesis is undoubtedly complex. One 
study proposed that IL-17A regulates adult neurogenesis 
in two stages. They suggest that IL-17A may reduce the 
proliferation and self-renewal of NPCs, which means that 
it inhibits the early stages of neurogenesis. However, IL-
17A promotes the differentiation and maturation of NPCs 
by downregulating Notch signaling and upregulating FGF-
13 expression, which means it increases the later stage of 
neurogenesis [81].
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Oligodendrocytes are the main myelin producers and 
are susceptible to damage after IS. During ischemic 
stroke pathology, endogenous oligodendrocytes are 
induced to be produced. Oligodendrocyte precursor 
cells (OPCs) are recruited to the demyelinated region 
and differentiate into mature oligodendrocytes. OPCs 
transplantation promotes motor and cognitive function 
recovery in tMCAO mice after 5 weeks. This benefit can 
be attributed to the enhanced endogenous oligodendro-
cyte production and promotion of neurite growth and 
synaptogenesis [82]. It was shown that after exposure to 
IL-17A for 48 h, OPCs showed increased expression of 
voltage-gated K + (Kv)1.3 channel protein and decreased 
expression of phosphorylated Akt (p-Akt), and OPC pro-
liferation was delayed. Blocking Kv1.3 increased p-Akt 
and prevented IL-17-induced loss of cell viability and 
proliferation inhibition. These together suggest that IL-
17A attenuates Akt signaling through the Kv1.3 chan-
nel and inhibits the proliferation and differentiation of 
OPCs [83]. Wang et al. showed that in a co-culture sys-
tem of OPCs and astrocytes, IL-17-induced activation 
of NOTCH1 in OPCs induced the formation of a com-
plex between the adaptor protein Act1 and the NOTHC1 
intracellular domain (NICD1). The Act1-NICD complex 
was translocated into the nucleus to induce inflamma-
tory gene expression and also through some target genes 
(e.g., STEAP4), promoting OPC proliferation but inter-
fering with OPC maturation [84].

Angiogenesis is an important protective mecha-
nism to promote neurogenesis, neuronal plasticity, and 
finally functional recovery during after stroke. Differ-
ent studies have shown that angiogenesis occurs after 
cerebral ischemia in different steps, such as endothelial 
cell proliferation and migration, angiogenic sprouting, 
lumen formation, and endothelial network maturation 
[85]. The ischemic penumbra secretes numerous angi-
ogenic factors, including vascular endothelial growth 
factor (VEGF), angiopoietins, platelet-derived growth 
factor (PDGF), angiogenin, transforming growth fac-
tors (TGFs), basic fibroblast growth factor (bFGF), 
MMP, NO, etc., of which the most important stimula-
tory factor is VEGF [85]. IL-17 knockout (IL-17 KO) 
mice show lower expression of VEGF and CD34 than 
wild-type mice at 28 days of reperfusion injury [86]. 
There are evidences showing that enriched environ-
ment (EE) can mediate angiogenesis in reperfusion-
injured rats by increasing the expression of IL-17A 
in astrocytes. EE increases the level of microvessel 
density (MVD) in the penumbra and promotes the 
expression of CD34, VEGF, IL-6, JAK2, and STAT3 
[87]. Although there are fewer studies on IL-17A and 

angiogenesis after stroke, the role of IL-17A on angi-
ogenesis in diabetes mellitus [88] and inf lammatory 
diseases such as arthritis [89, 90] and allergic pul-
monary [91] has been demonstrated. It is reasonable 
to believe that IL-17A will be an important target for 
post-stroke angiogenesis.

Th17 Cells and IL‑17A and Cognitive Dysfunction After 
Ischemic Stroke

Dementia occurs in about one-third of patients after a stroke. 
The incidence of vascular cognitive impairment (VCI) that 
does not meet the diagnostic criteria for dementia is higher. 
It often progresses to a dementia state without early detec-
tion and treatment, which significantly impacts patients’ lives. 
Studies have shown that Th17 cells and IL-17A correlate with 
VCI after stroke and that the proportion of Th17 and IL-17 
levels in IS patients at admission are positively associated with 
cognitive decline 1 and 2 years after IS [24]. The authors sug-
gested that it may be because chronic inflammation caused by 
Th17 cells and IL-17A leads to long-term cognitive decline in 
patients after IS. Th17 cells on day 3 and day 7 after onset were 
negatively correlated with MMSE scores at discharge [22]. In 
contrast, a study by Peng et al. suggested that peripheral blood 
IL-17 + Th17 cells in patients with stroke-induced VCI did not 
differ from those in the healthy population [92]. Zhang et al. 
statistically found that peripheral cytokines, including IL-17A, 
had little predictive value for the recovery of cognitive func-
tion during subacute inpatient rehabilitation after stroke [93]. 
The mechanism by which IL-17A and Th17 cells contribute 
to cognitive dysfunction may be related to the inhibition of 
hippocampal neuronal proliferation and neurogenesis. This 
has been described in detail in the previous section and will 
be added a little in the following. A link was found between 
intestinal responses and increased peripheral IL-17, especially 
in the context of a high-salt diet. A high salt diet promoted 
Th17 polarization by activating the p38/MAPK pathway and 
led to increased plasma levels of IL-17. IL-17 had toxic vas-
cular effects, causing brain endothelial cells to stop producing 
eNOS, leading to reduced cerebral blood flow and cerebro-
vascular dysfunction, and ultimately to neuronal dysfunction 
and cognitive impairment [94]. Intestinal epithelial stem cell 
(Lgr5 + stem cells) transplantation reduced circulating levels 
of LPS and IL-17A and improved cognitive function 4 weeks 
after stroke by repairing the intestinal structure and decreas-
ing intestinal permeability [95]. A more nuanced view was 
presented by Ribeiro, whose study showed that IL-17 KO 
mice exhibited short-term memory impairment while long-
term memory did not show abnormalities. They believe that 
this may be related to IL-17A stimulating glial cells to produce 
BDNF and increasing hippocampal neuronal plasticity [96].
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Targeting Th17 Cells and IL‑17A in Treatment 
of Ischemic Stroke

There are fewer studies on IL-17A and Th17 cells for treat-
ing IS. The following section focuses on an overview of 
the mechanisms involved in inhibiting the differentiation of 
Th17 cells and inhibiting/neutralizing the production of IL-
17A to find therapeutic targets for IS (Table 1).

Inhibition of Proliferation and Differentiation 
of Th17 Cells

The proliferation and differentiation of Th17 cells are regu-
lated by extracellular signaling, transcription, RNA modifi-
cation, and post-translational modifications.

Altering the Microenvironment Affecting Th17 Cell 
Differentiation

Many studies have shown that the differentiation of Th17 
cells is influenced by the extracellular microenvironment, 
which depends mainly on various cytokines (IL-6, IL-21, 
and IL-23, etc.) and immune cells (Dendritic cells). There-
fore blocking the signaling of these cytokines (e.g., neutral-
izing antibodies, inhibitors) can inhibit Th17 differentiation 
and alleviate IS. When cerebral ischemia occurs, infiltrating 
macrophages and dendritic cells(DCs) are the main source 
of IL-23. In the I/R mouse model, deletion of the IL-23 gene 
has a more pronounced protective effect than deletion of γδ 
T cells [114], suggesting that IL-23 not only induces prolif-
eration of γδ T cells after stroke but also is greatly likely to 
be involved in the proliferation and differentiation of Th17 
cells. Lentiviral shRNA specially targeting IL-23p19 effec-
tively inhibits the IL-23/IL-17 axis, reduces IL-17 expres-
sion in brain tissue 5 days after pMCAO, and ultimately 
improves neurological scores and reduces infarct volume 
[97]. Depletion of IL-23-producing CD172a + /Irf4-Express-
ing cDC2 Cells similarly ameliorates neurological deficits 
after stroke [98]. Monoclonal antibodies against IL-12 and 
IL-23 P40 reduce CD4 + T cells and γδ T cells in the brains 
of I/R mice and attenuate infarct volume and neurological 
deficits [99]. Luo et al. showed that IL-33 decreased in the 
ischemic brain of mice 6 h after tMCAO. And they found 
that exogenous ventricular injection of IL-33 reduced the 
proportion of IL-17-secreting T cells in brain tissue and 
improved neurological function [28].

Reduction in the Levels of Relevant Transcription Factors

At the transcriptional and RNA levels, most of the current 
therapeutic targets are focused on transcription factors and 
miRNAs. The extracellular environmental factors mentioned 

above can promote IL-17 expression by activating the tran-
scription factor RORγt through the JAK2-STAT3 signaling 
pathway or SMAD2. In this process, RORγt, RORc, STAT3, 
SMAD2, BATF, and IRF4 can directly bind to IL-17 gene 
promoter, promote IL-17 gene transcription, and regulate 
Th17 cell differentiation. Inhibition of the above transcrip-
tion factors can inhibit Th17 differentiation and IL-17A 
secretion and improve the symptoms of neurological deficits. 
Megan et al. reduced the transcription factor RORc in Th17 
cells and decreased infarct volume by giving tMCAO mice 
1,25-VitD3, the active form of vitamin D3 [100]. MiR-155 
promoted Th17 cell differentiation by targeting the inhibition 
of cytokine signaling 1 (SOCS1), which can inhibit JAK-
STAT3 signaling. MiR-155 inhibitor significantly reduced 
the expression of phosphorylated STAT3 in the brains of 
distal MCAO (dMCAO) mice during the subacute phase (7 
to 14 days) and attenuated neuroinflammation [101].

Inhibition of the Activity of Related Transcription Factors

The transcription factors STAT3 and RORγt, which are 
involved in Th17 differentiation, are regulated by vari-
ous post-translational modifications. Non-phosphorylated 
STAT3 is not transcriptionally active and is activated only 
after phosphorylation by JAK2 on the cell membrane. The 
JAK kinase inhibitor CP-690550 inhibited IL-17 production 
by γδ T cells and activated CD4 + T cells, reducing infarct 
volume in tMCAO mice. PR-957 (also named ONX 0914), 
a selective inhibitor of the immunoproteasome subunit 
LMP7, strongly attenuated brain injury and inhibited pro-
inflammatory cytokine activity [115]. Guo et al. showed that 
PR-957 downregulated p-STAT3 protein expression in the 
brain, leading to a decrease in RORγt at the transcriptional 
level after tMCAO and ultimately leading to the inhibi-
tion of Th17 cell differentiation and IL-17A secretion [29]. 
However, a study by Fan et al. showed that IL-23 antibodies 
enhanced the phosphorylation levels of JAK2 and STAT3 
and reduced the infarct volume in tMCAO mice. The ame-
liorative effect of neurological deficits was abolished when 
JAK2 inhibitors were used in conjunction with IL-23 anti-
bodies [102]. Post-transcriptional regulation of Th17 cell 
differentiation is an important target for treating stroke, and 
more studies are needed to elucidate it further.

Neutralization or Inhibition of IL‑17A

Many studies have shown that inhibition of IL-17A secre-
tion or neutralization of IL-17A using monoclonal anti-
bodies has promising therapeutic effects in treating IS and 
is a good therapeutic approach. Monoclonal anti-murine 
IL-17A antibody is widely used in treating MCAO mice 
and has significantly improved. Anti-IL-17A treatment 
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significantly inhibits neutrophil infiltration, reduces the 
activation of microglia and astrocytes, and reduces the 
infarct volume in the acute phase of MCAO [59, 61, 66]. 
Notably, a multicenter preclinical randomized controlled 
trial by Gelderblom et al. showed that anti-interleukin-17A 
reduced infarct volume in large infarct lesions (involving 
both cortical and striatal regions) but had no significant 
effect on small infarct lesions (involving only striatal 
regions) [103]. Suckinumab, ixekizumab, and brodalu-
mab are monoclonal antibodies that inhibit IL-17A and 
are widely used in the treatment of psoriasis and ankylos-
ing spondylitis (AS). The restoration of neuronal cell death 
produced by Th17 cells in Parkinson’s patient-generated 
pluripotent stem cell-derived neurons by secukinumab 
[116]. Unfortunately, there are no studies on the use of 
the above drugs for the treatment of IS.

A large body of evidence suggests that intestinal flora 
is essential for normal host metabolism and physiologi-
cal function, affecting the immune and nervous systems. 
The gut microbiota affects the gut-brain axis via immune 
(cytokines), endocrine (cortisol), and neural (enteric nerv-
ous system) pathways [117]. Lvanov et al. demonstrated the 
importance of intestinal flora, especially segmented fila-
mentous bacteria (SFB), in mucosal Th17 cell production 
[118]. In recent years, there have been an increasing num-
ber of studies related to the effects of microorganisms and 
their metabolites on IS through modulation of the cytokine 
IL-17A. After 30 days of continuous gavage of fecal flora 
from young mice to aged mice, researchers established the 
tMCAO model. They found significant reductions in IL-17 
levels in serum, colon, and brain tissue, reduced infarct vol-
umes, and improved neurological function [104]. Indole-
3-propionic acid (IPA), a tryptophan (Trp) catabolic prod-
uct produced by intestinal flora, is reduced in the serum of 
MCAO mice. Significant increases in the number of Th17 
and significant decreases in the number of Treg in tMCAO-
induced Peyer’s patches and intestine-associated lymphoid 
tissues were reversed by exogenous supplementation of 
IPA [105]. Short-chain fatty acids (SCFAs) are produced 
by bacteria when they metabolize non-digestible fibers in 
the intestine and act to stabilize the intestine by activating 
G protein-coupled receptors and inhibiting histone deacety-
lases [119]. SCFAs can ameliorate neurological damage by 
enhancing the integrity of the intestinal barrier and attenu-
ating the inflammatory response in the gut and brain. The 
mechanism is related to changes in the expression profile of 
various cytokines necessary to mediate the inflammatory 
response and immune cell maturation, including inhibition 
of pro-inflammatory cytokines: IL-17, TNF-α, MCP-1, and 
IL-1β [120]. Lee et al. showed that restoring SCFA to lev-
els found in young microbiomes using SCFA-producing 
bacteria resulted in increased brain and plasma SCFA lev-
els, decreased brain IL-17 + γδ T cells and IL-17A, and 

significantly improved stroke outcomes [106]. Microflora 
from the oral cavity spreads to the intestine with swallow-
ing. Chen’s study showed that MCAO model mice gavaged 
with salivary flora of periodontitis exhibited more severe 
neuroinflammation and worse prognosis. The mechanism 
may be related to increased IL-17A-producing immune cells 
(including Th17 cells and IL-17 + γδ T cells) in the gut and 
facilitated the migration of these cells from the gut to the 
brain [107].

Traditional Chinese Medicine Treatment Targeting 
Th17 Cells or IL‑17A

Traditional Chinese medicine (TCM) has a long history of 
the treatment of stroke in China with remarkable efficacy. 
Chinese herbal medicine, including formulas, extracts, and 
compounds, is characterized by integrated treatment with 
multiple sites and targets and overall regulation for the treat-
ment of IS. IL-17A has been widely studied as an important 
inflammatory factor. The following section summarizes the 
published studies on TCM that can improve stroke by modu-
lating Th17 cells or IL-17A.

Resveratrol, a natural polyphenol, reduces BBB injury 
and neuroinflammation and improves neurological defi-
cits in tMCAO mice. Dou et al. showed that Resveratrol 
improved tMCAO-induced increase in small intestinal epi-
thelial and vascular permeability, attenuated the increase in 
Th17 cells in the lamina propria of the small intestine, and 
attenuated the increase in IL-17A in serum and brain tis-
sue by modulating intestinal flora [108]. Salidroside (Sal) 
decreased the expression of RORγt and the number of Th17 
cells in the peripheral circulation and increased the number 
of peripheral Treg cells in ischemic brain tissue. In hypoxic 
T cells (Th17 and Treg cells), Sal significantly inhibited the 
expression of IL-6, TNF-α, MCP-1, STAT-3, and NF-κB 
proteins [109]. Dihuang Yinz can regulate the intestinal flora 
of tMCAO rats to the firmicutes, bacteroidetes, and proteo-
bacteria, reduce the content of IL-6, TNF-α, and IL-17, and 
increase the content of TGF-β, IL-10 in the brain, serum, 
and colon tissues [110]. HMGB1/TLR4 signaling pathway 
can induce IL-17A secretion [42]. Glycyrrhizin significantly 
reduces infarct volume and neurological deficits at 3 days 
after MCAO by inhibiting the HMGB1/TLR4/IL-17A sign-
aling pathway [111]. Xueshuantong for Injection attenuates 
tMCAO-induced infarct volume and edema and reduces the 
expression of IL-17, IL-23p19, IL-1β, and TNF-α mRNA 
in the brain by inhibiting the Prx6-TLR4 signaling pathway 
[112]. Hyperforin, a pharmacologically active component of 
the medicinal plant Hypericum perforatum, reduces IL-17A 
expression and IL-17A-mediated microglia activation after 
3 days of tMCAO onset to alleviate acute cerebral ischemic 
injury [61]. A combination of Astragalus membranaceus 
extract and ligustrazine improves neuroinflammation in rats 
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with cerebral ischemia treated with thrombolysis by increas-
ing the expression of endogenous Tregs and decreasing 
inflammatory factors such as IL-17A and IL-1β [113]. In 
addition to the effects of IS in the acute phase, IL-17A and 
Th17 cells also play a role in neurogenesis and angiogenesis 
in the subacute and recovery phases of IS. Astragaloside 
IV (As IV), a primary bioactive compound of Radix Astra-
gali, may inhibit IL-17A expression and upregulate Akt/
GSK-3β and Wnt/β-catenin signaling pathway proteins by 
decreasing the expression of IL-17A and neuronal apoptosis 
and promote neurogenesis in MCAO mice, ultimately alle-
viating post-stroke cognitive impairment [78, 79]. Zhang 
et al. showed that Hyperforin promotes angiogenesis and 
improves prognosis in tMCAO mice at 28 days. However, 
they suggested that the possible mechanism was that Hyper-
forin induced an increase in IL-17A and further promoted 
vascular endothelial growth factor (VEGF) expression [86]. 
This study presents a contrary opinion to the studies with 
lowering IL-17A as a therapeutic target. Therefore the fur-
ther investigation is still needed for the therapeutic mecha-
nism of IL-17A in stroke recovery.

Conclusion

Published studies suggest that IL-17A and Th17 cells have 
important effects on the pathogenesis, secondary brain 
injury, and regulation of the prognosis of IS. Immuno-
therapy targeting IL-17A and Th17 cells has shown good 
ameliorative effects in ischemic stroke mice. However, it 
must be acknowledged that the mechanisms involved are 
certainly complex, and many unresolved questions need to 
be addressed. Th17 cells and IL-17A have prominent pleio-
tropic properties in regulating pro- and anti-inflammatory 
responses after stroke. It is important to understand the 
pathophysiological role of IL-17A in the acute to recovery 
phase of ischemic stroke and to suggest appropriate thera-
peutic approaches. Whether other members of the IL-17 
family are involved in the post-stroke pathological process 
still needs to be explored. Nevertheless, the available stud-
ies have shown that biological therapies targeting IL-17A 
may be novel therapies for the treatment of IS and deserve 
further investigation.
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