
Vol:.(1234567890)

Molecular Neurobiology (2024) 61:2866–2880
https://doi.org/10.1007/s12035-023-03699-9

1 3

P2X7 Receptor: an Emerging Target in Alzheimer’s Disease

Qiang Huang1,2 · Jun Ying1,2 · Wen Yu1,2 · Yao Dong1,2 · Hao Xiong1,2 · Yiping Zhang1,2 · Jie Liu1,2 · Xifeng Wang3 · 
Fuzhou Hua1,2 

Received: 15 June 2023 / Accepted: 6 October 2023 / Published online: 9 November 2023 
© The Author(s) 2023

Abstract
Alzheimer’s disease (AD) is a major cause of age-related dementia, which is becoming a global health crisis. However, the 
pathogenesis and etiology of AD are still not fully understood. And there are no valid treatment methods or precise diagnostic 
tools for AD. There is increasing evidence that P2X7R expression is upregulated in AD and is involved in multiple related 
pathological processes such as Aβ plaques, neurogenic fiber tangles, oxidative stress, and chronic neuroinflammation. This 
suggests that P2X7R may be a key player in the development of AD. P2X7R is a member of the ligand-gated purinergic 
receptor (P2X) family. It has received attention in neuroscience due to its role in a wide range of aging and age-related neu-
rological disorders. In this review, we summarize current information on the roles of P2X7R in AD and suggest potential 
pharmacological interventions to slow down AD progression.
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Introduction

Alzheimer’s disease (AD) is an age-related neurodegen-
erative disease characterized by overall cognitive decline, 
including progressive loss of memory, orientation, and rea-
soning skills. In line with increasing life expectancy, the 
2020 census found that 18.67% of the total population of 
China (approximately 264 million) is over the age of 60 and 
that number will grow, projected to reach 500 million by 
2050. The risk of developing AD increases exponentially 

with age, and society will bear an increasing burden due to 
AD unless effective prevention and treatment strategies are 
developed [1].

In the past decades, the Aβ hypothesis and the tau 
hypothesis were promulgated as the main explanations for 
the pathogenesis of Alzheimer’s disease [2]. However, the 
pathological features of AD are not only characterized by 
Aβ plaques, neurogenic fiber tangles (NFT). Studies now 
find that AD is always accompanied by synaptic loss and 
inflammation [3, 4]. Not only that, studies have shown that 
mitochondrial dysfunction and oxidative stress are involved 
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in the pathogenesis of AD [5–7]. Even in the absence of Aβ 
plaques and tau tangles, mitochondrial dysfunction is one of 
the earliest prominent features of AD. Therefore, it is now 
generally accepted that AD is a multifactorial neurodegen-
erative disease involving different pathological processes. 
However, the pathogenesis and etiology of AD are still not 
fully understood. And there are no valid treatment methods 
or precise diagnostic tools for AD.

Therefore, there is an urgent need to find new treatment 
pathways to reduce the progression of the disease. The 
purinergic receptors have been of interest for a long time in 
neurodegenerative diseases [8, 9]. The purinergic receptor 
family can be divided into two main types, P2X and P2Y, 
respectively. P2X7R is a family member of P2X. It is widely 
expressed in the nervous system and is involved in a vari-
ety of neurological functions [10]. Not only that, P2X7R is 
involved in the progression of multiple diseases including 
Parkinson’s disease, multiple sclerosis, and Huntington’s 
disease [11–13]. These had intrigued researchers about the 
role of P2X7R in AD. Researchers find P2X7R involved in 
multiple processes in the progression of AD. Firstly, P2X7R 
can regulate Aβ formation and the researchers found that the 
use of P2X7R antagonists reduced plaques in J20 mice [14]. 
P2X7R is inextricably linked to tau protein phosphoryla-
tion, oxidative stress, or chronic neuroinflammatory patho-
logical processes in AD [15–17]. These indicate that this 
P2X7R may become a drug target for a new AD therapeutic 
approach.

Here, we summarize the molecular characteristics, struc-
ture, and features of P2X7R. Subsequently, we discuss the 
significance of P2X7R in the pathogenesis of AD. Finally, a 
brief review of the research progress on P2X7R antagonists 
is presented.

The Structure and Molecular Physiology 
of P2X7R

Adenosine 5-triphosphate (ATP) is the main energy car-
rying molecule in cells. However, studies now show that 
ATP can also play an important role in the nervous sys-
tem as a neurotransmitter. Purinergic receptors were first 
described in 1976, and as research progressed, researchers 
have so far identified multiple purinergic receptors, includ-
ing seven P2X receptor subtypes and eight P2Y receptor 
subtypes [18]. Ionotropic P2X7R belongs to the P2X puri-
noceptor family [19]. Similar to other P2XR types, P2X7R 
is an ATP-gated, non-selective homotrimeric cation channel 
[20]. However, P2X7R also has several features that are sig-
nificantly different from other members of the P2X receptor 
family and deserve special attention. P2X1-7 receptors are 
homo-trimeric forms formed from three identical P2X subu-
nits. In addition, some P2X receptors exist as heterotrimeric 

[21]. P2X7R acts via the homotrimeric form. The com-
mon structural motifs of P2X7R are two transmembrane 
structural domains (TM1, TM2) [22]. It contains a large, 
glycosylated, cysteine-rich extracellular loop, and a short 
intracellular N-terminal domain. Moreover, an intracellular 
C-terminal structural domain is longer than in other P2X 
receptor subunits [23]. The molecular structure of a single 
P2X7R subunit resembles a jumping dolphin. When co-
assembled as a homotrimer, P2X7R has a cup-like structure 
[24]. Notably, P2X7R is only activated by high concentra-
tions of ATP in the millimolar range, which is significantly 
higher than that required to activate other purinoceptor chan-
nels [19]. In addition, it is a non-selective cation channel. It 
shows different reactions to the agonist based on its concen-
tration and time of application. A brief activation, resulting 
in the opening of cation channels, allows  K+ efflux as well 
as  Ca2+ and  Na+ influx into the cell, leading to an inward 
current/depolarization at the resting membrane potential 
(Fig. 1). By contrast, prolonged activation of P2X7R by 
agonists leads to the formation of a large aqueous pore, 
which is permeable to molecules with molecular masses up 

Fig. 1  The P2X7R functions as a homo-trimer, forming a chalice-like 
structure, while the individual P2X7R subunit is akin to a leaping 
dolphin. P2X7R is a non-selective cation channel that is activated by 
high concentrations of ATP. Transient activation leads to the opening 
of the cation channel, allowing  K+ efflux and  Na+ influx into the cell, 
resulting in an inward current/depolarization at the resting membrane 
potential
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to 900 Da [25–28]. This ultimately leads to membrane bleb-
bing, cytokine release, and cell death [29, 30]. However, 
the underlying molecular mechanism is still a hotly debated 
issue. There are two main possible mechanism hypotheses. 
The first hypothesis suggests an asymptotic expansion of 
P2X7R-gated channels, in which a second transmembrane 
structural domain in P2X7R is thought to be critical for pore 
formation [31]. Another piece of evidence in favor of this 
hypothesis is that negatively charged fluorescent dyes with 
molecular diameters up to 1.4 nm pass directly through the 
P2X7R channel [32]. Another hypothesis suggests an associ-
ation with a pore-forming protein, pannexin-1 hemichannel. 
It was shown that in the absence of pannexin-1 hemichannel, 
the ability of astrocytes to take up macromolecular dyes was 
significantly reduced [33]. But some studies have found the 
opposite [34]. One possible explanation is that the P2X7R 
splice variant shows different pore-forming properties [35, 
36].

The Function of P2X7R in the CNS

P2X7R in Microglia

P2X7R was early found to be expressed in immune cells. 
Notably, P2X7R mediates multiple physiological aspects of 
microglia. A recent study unexpectedly found that P2X7R 
activation promotes the migratory capacity and phagocy-
tosis of microglia [37]. Another study showed that the key 
enzyme for microglia migration is glycogen synthase-3 
[38]. Indeed, P2X7R antagonists were found to reduce the 
number of amyloid plaques in the rat hippocampus, which 
is also thought to be associated with reduced GSK3 activ-
ity in microglia [14]. The large number of microglia with 
high P2X7R expression clustered around senile plaques in 
postmortem brain samples of AD patients and in AD mouse 
models may also be closely related to this phenomenon [39, 
40]. In addition, activation of P2X7R drives microglial acti-
vation and is a key factor in microglial proliferation [41]. 
Experiments in rat primary hippocampal neurons show 
that P2X7R drives microglial activation and can promote 
microglial proliferation [42]. More importantly, P2X7R is 
an important regulator of microglial secretion of pro-inflam-
matory cytokines and chemokines. For example, P2X7R is 
not only involved in the maturation of IL-1β in microglia but 
also plays an important role in its release [16, 43].

P2X7R in Neurons

The localization of P2X7R on neurons has been the subject 
of a long-standing debate, and even now there is no universal 
consensus. At first, researchers found that P2X7R immuno-
reactivity was significantly expressed on excitatory nerve 

terminals [44]. Yu et al. used isotope in situ hybridization 
to examine the distribution of P2X7R mRNAs in the brain 
and found that P2X7 mRNA signals were also detected on 
NeuN-positive neurons cells [45]. During brain growth, both 
neural precursor cells and neuroblastoma cells can express 
P2X7R. Many studies have reported the presence of func-
tional P2X7R, including embryonic stem cells, neuron-like 
human embryonic stem cells-derived neural progenitor cells, 
human neural progenitor cells, as well as NPCs isolated 
from the subventricular zone of adult mice or the striatum 
of embryonic mice [46–49]. However, immunohistochemi-
cal studies showed that P2X7R was expressed at the cell 
membrane of microglia and NPC but not on neurons [50]. In 
contrast to the contradictory results of immunohistochemis-
try, the function of the P2X7 receptor in the nervous system 
was demonstrated. P2X7R is involved in the growth of neu-
ronal axons [51], and further experiments demonstrated that 
alkaline phosphatase regulates axonal growth via P2X7R. 
A study that exposed cultured hippocampal neurons to ATP 
reported slow axon growth. By contrast, hippocampal neu-
rons cultured with P2X7R antagonists or P2X7R deficiency 
had faster axon growth and formed more branches [52]. In 
addition, presynaptic P2X7R regulates the release of neuro-
transmitters [51]. P2X7R is also involved in the process of 
neuronal differentiation [48, 53]. However, P2X7R is harm-
ful in pathological states. For example, P2X7R is involved in 
ATP-induced neuronal death [54]. ATP was found to induce 
neuronal death in pure culture, and neuronal activity was 
restored after the use of the P2X7R-specific antagonists 
A438079 and KN-62, suggesting that P2X7R is involved in 
ATP-induced neuronal death. In a later study, ATP-induced 
neuronal death was found to be correlated with high expres-
sion levels of P2X7R [55].

P2X7R in Astrocytes and Oligodendrocytes

In addition to microglia, P2X7R is also expressed by astro-
cytes [56, 57] and oligodendrocytes [58]. P2X7R mediates 
multiple physiological functions of astrocytes. For example, 
the release of glutamate from astrocytes can be involved in 
signaling between brain cells, and glutamate can also regu-
late synaptic activity, while P2X7R receptors are involved 
in the regulation of glutamate release from astrocytes [59]. 
In addition, P2X7R is also involved in the regulation of ATP 
release from astrocytes, which participate in intercellular 
communication through ATP-mediated  Ca2+ waves [60, 
61]. Another important role of P2X7R activation in astro-
cytes is the upregulation of MCP1/CCL2 expression via 
the p-38MAPK and ERK1/2 pathways [62, 63]. Functional 
P2X7 receptors that can mediate cell death in vitro and 
in vivo are expressed by Schwann cells and oligodendrocytes 
[58]. More intuitively, P2X7R labeled by functional EGFP 
was observed in oligodendrocytes of P2X7 BAC transgenic 
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mice [64]. Another study also showed that P2X7R may be 
involved in oligodendrocyte migration under pathological 
conditions [65].

Mechanism of P2X7R Upregulation 
in Alzheimer’s Disease

Initially, researchers discovered that P2X7R is upregulated 
in a transgenic mouse model of Alzheimer’s disease [17]. 
Subsequently, semi-quantitative reverse transcriptase-pol-
ymerase chain reaction also revealed enhanced expression 
of P2X7R in the microglia of AD patients [40]. However, 
due to the complexity of P2X7 function, the exact mecha-
nism of P2X7 upregulation remains unclear. In general, the 
regulatory mechanisms of P2X7 expression can be divided 
into transcriptional and post-translational regulation [66]. 
The P2X7 promoter contains putative binding sites for sev-
eral transcription factors, among which specificity protein 1 
(Sp1) has been particularly noted as a potential P2X7 tran-
scriptional regulator. Sp1 is a damage-activated transcription 
factor highly expressed in the brain [67]. Sp1 is involved 
in the transcriptional regulation of receptors in the central 
nervous system, and it has been demonstrated that Sp1 is 
a key component in the transcriptional regulation of P2X7 
[68]. It was found that in a mouse model of epilepsy, the 
transcription factor Sp1 induced P2X7R expression [69]. A 
recent study reported that progerin 2 deficiency promotes 
Aβ-induced injury and neuroinflammation by upregulating 
P2X7R expression via the Sp1 pathway [70]. Inhibition of 
SP1 may therefore contribute to the upregulation of P2X7R 
in AD.

The Relationship Between P2X7R and Aβ

One pathological feature of AD is the extracellular aggre-
gation of Aβ plaques [71, 72]. Aβ peptide is produced by 
the hydrolytic cleavage of amyloid precursor protein (APP), 
which is sequentially cleaved by aspartic proteases through 
amyloidogenic and non-amyloidogenic pathways [73]. In the 
amyloidogenic pathway, APP is successively hydrolyzed by 
β-secretase and γ-secretase to produce Aβ, while in the anti-
amyloidogenic pathway, APP is cleaved by α-secretase and 
γ-secretase, ultimately producing p3 and sAPP-alpha, the 
latter of which has a well-established neuroprotective effect 
[74, 75].

Notably, both APP processing modalities can be found 
in the same cells of the central nervous system [76]. The 
balance between normal and pathological APP processing 
is still an active area of research on Aβ accumulation as a 
characteristic hallmark of AD. The process of Aβ production 
can be regulated by various signaling pathways. Glycogen 

synthase kinase-3β (GSK3-β) is considered an important 
enzyme in AD pathophysiology [77]. In fact, an increase 
in GSK-3 activity can directly lead to increased accumu-
lation of Aβ [78]. It was shown that inhibition of P2X7R 
activity in J20 mice reduced Aβ, which was associated with 
increased α-secretase activity by decreased GSK-3β activity 
[14]. GSK-3β also interferes with APP cleavage by affect-
ing presenilin1(PS1) activity [79]. Furthermore GSK-3β can 
mediate β-site APP cleaving enzyme 1(BACE1) expression 
through nuclear factor kappa-B(NF-kB) [80]. When this 
balance is upset, the accumulation of Aβ will increase, but 
P2X7R receptor antagonists can reverse this effect (Fig. 2). 
It has been shown that the use of P2X7R antagonists reduces 
GSK-3β activity, which in turn reduces Aβ [14].

In addition, P2X7R activation can also regulate the func-
tion of microglia, affecting Aβ. First, P2X7R regulates 
microglial cell migration, causing microglia to accumulate 
near senile plaques [37]. In addition, P2X7R also regulates 
the ability of microglia to phagocytize Aβ [37]. In another 
study, researchers using BBG, an antagonist of P2X7R, in 
a mouse model of AD could observe smaller plaques [14].

The Connection Between P2X7R and Tau

Another characteristic pathological feature of AD is the intra-
cellular aggregation of neurofibrillary tangles (NFT), mainly 
composed of highly phosphorylated tau protein [81]. Tau is 
a microtubule-associated protein (MAPT) that polymerizes 
tubulin into microtubules and participates in sustaining the 
complex neuronal cell microarchitecture, with roles such as 
stabilization and microtubule assembly, especially in axons 
[82].Under pathological conditions, tau proteins dissociate 
from microtubule-binding proteins and form NFTS [83]. This 
process is regulated by a variety of enzymes including, but not 
limited to, C-kinase, A-kinase, cell cycle protein-dependent 
kinase-5, glycogen synthase kinase-3β [84, 85]. As a phos-
phoprotein, tau is directly regulated by its phosphorylation 
state, and NFTs are induced by abnormal Tau phosphorylation, 
which is modulated by glycogen synthase kinase-3 β (GSK-3β) 
and cyclin-dependent kinase 5 (CDK5) [86]. GSK-3β is argu-
ably the most widely investigated kinase associated with 
abnormally high tau phosphorylation [87]. GSK-3β phospho-
rylates tau mainly by using the PI3K/ AKT/GSK-3β pathway 
[87]. Studies have shown that P2X7R promotes neuronal tau 
phosphorylation via GSK3 kinase [52]. What’s more, the tau-
related pathology of AD is also affected by inflammation, and 
tau propagation is suppressed by the depletion of microglia 
[88]. P2X7R plays an important role in this process. Elevated 
P2X7R expression was found in the brains of transgenic 
mice and patients with tauopathies. Moreover, hippocampus-
dependent spatial memory and long-term synaptic plastic-
ity were improved by P2X7R deletion in a mouse model of 
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tauopathy [15, 89]. In a tauopathy mouse model, researchers 
found that oral administration of GSK1482160, a P2X7R-spe-
cific antagonist, significantly improved cognitive performance 
in rats [90]. Similarly, blockade of IL-1β signaling leads to 
reduced tau pathology [91]. Conversely, tau pathology was 
exacerbated by persistent interleukin-1β overexpression [92]. 
Microglial activation has been shown to precede tau pathology 
in the P301S mouse model [93]. Studies have demonstrated 
that microglial activation significantly accelerated tau pathol-
ogy and behavioral abnormalities in model mice [94]. Reac-
tive microglia drive tau pathology and it help spread abnormal 
tau in the brain [95]. Pharmacological blockade of P2X7R 
decreased the accumulation of misfolded tau aggregates and 
restored cognitive function in P301S mice, likely by suppress-
ing exosome secretion [90]. Studies have shown that the use of 
P2X7R antagonists reduces cell death by altering the balance 
of tau phosphorylation inside and outside the cells [96]. The 
same study also found that P2X7R inhibition affected extra-
cellular tau phosphorylation by reducing tissue-nonspecific 
alkaline phosphatase (TNAP) expression.

P2X7R and Neuroinflammation in AD

Neuroinflammation is considered to be the third core 
pathology of AD, and inflammation is involved in the 
onset as well as the progression of the disease. Moreover, 

the neuroinflammation hypothesis also links the two other 
hypotheses of AD pathogenesis [97]. As resident immune 
cells of the CNS, microglia are key regulators of neuro-
inflammation [98]. As such, microglia are involved in the 
maintenance of the inflammatory and immune response in 
the entire brain [99]. In response to different environmen-
tal factors and stimuli, microglia can usually be activated 
into two polarized states, called the M1 phenotype and M2 
phenotype [100, 101]. M1 microglia are thought to enhance 
the inflammatory response, while M2 microglia exert neu-
roprotective effects and promote tissue repair by inhibiting 
neuroinflammation. M1 microglia can secrete a variety of 
pro-inflammatory cytokines and chemokines, such as IL-1β, 
IL-6, IL-18, and TNF-α [102, 103]. IL-1β plays an important 
role in inflammation. The activation of the NLRP3 inflam-
masome in microglia is the basis for the maturation and 
release of IL-1, IL-6,IL-18, and TNF-α [104], and P2X7R is 
involved in regulating NLRP3. Therefore, P2X7R is essen-
tial for the release of pro-IL-1β from microglia [16, 43]. 
The production of IL-1β is a two-step process. First, a large 
amount of Pro-IL-1βis synthesized in the cytoplasm and is 
then proteolytically processed into IL-1B before it is finally 
released. Even LPS-mediated synthesis of large amounts of 
pro-IL-1β requires the activation of the P2X7 receptor to 
release mature IL-1β [105]. This also illustrates the impor-
tance of P2X7R in the maturation process of pro-inflamma-
tory cytokines. The release of IL-1 β by microglia is mainly 

Fig. 2  The relationship between P2X7R and Aβ. P2X7R activation 
promotes Aβ formation by adjusting Glycogen synthase kinase-3β 
(GSK3-β) activity. (1) GSK3-β induces β-site APP cleaving enzyme 
1(BACE1) gene expression through upregulation of nuclear factor 

kappa-B(NF-kB) signaling; (2) regulates γ-secretase activity by mod-
ulating presenilin1((PS1) activity; (3) directly regulates α-secretase 
activity
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dependent on NLRP3 activation. P2X7R activation leads 
to  K+ efflux, after which reduced intracellular  K+ initiates 
NLRP3 inflammasome assembly and activation [106, 107]. 
The NLRP3 inflammasome consists of the adapter protein 
ASC (apoptosis-associated speck-like protein containing a 
CARD) and the sensor protein NLRP3. ASC can recruit and 
activate pro-caspase-1, which can be cleaved by the induced 
complex to produce active caspase-1, which in turn cleaves 
pro-IL-1β and IL-18, eventually leading to the release of 
IL-1 [108]. A defective NLRP3 inflammasome was found 
to result in reduced Aβ deposition in the APP/PS1 model of 
Alzheimer’s disease [109]. All these studies suggest that the 
NLRP3/caspase-1 axis may be a target for the treatment of 
Alzheimer’s disease.

P2X7R and Mitochondrial Dysfunction 
in Alzheimer’s Disease

Alterations in energy metabolism occur in their brains dur-
ing the early stages of AD, and the researchers used fluoro-
deoxyglucose positron emission tomography to monitor 
hypometabolism of glucose in the brain [110]. This implies 
that mitochondrial dysfunction is extremely important in the 
development of the disease. In amyotrophic lateral sclerosis, 
P2X7R was shown to be involved in autophagy in microglia 
[111]. Not only that, the P2X7R signaling pathway medi-
ates impairment of lysosomal function [112]. The adenosine 
monophosphate (AMP)-activated protein kinase (AMPK) 
pathway is closely related to mitochondrial division [113]. 
Researchers find that P2X7R activation can induce mito-
chondrial fission and affect mitochondrial autophagy 
through an AMPK-dependent pathway [114]. Mitochon-
drial autophagy maintains a balance between mitochon-
drial production and mitochondrial death. However, in AD, 
mitochondrial autophagy is impaired, which in turn affects 
energy metabolism [115, 116]. Impaired mitochondrial 
autophagy impairs mitochondrial autophagy by increasing 
oxidative damage and cellular energy deficits cognitive defi-
cits, which in turn impair mitochondrial autophagy [117].

Oxidative stress is a condition caused by the increased 
production of reactive oxygen species (ROS) that is greater 
than the capacity of cellular antioxidant mechanisms. ROS 
are normally produced during physiological processes and 
have both beneficial and harmful effects in biological sys-
tems [118]. In AD, the apparent oxidative imbalance and 
increase of ROS have been widely noted [119]. A study 
comparing the levels of isoprostane 8,12-iso-iPF(2alpha)-
VI in cerebrospinal fluid, plasma, and urine of cognitively 
normal elderly and probands with mild cognitive impair-
ment (MCI) found significantly elevated levels of these sub-
stances in MCI. The isoprostane 8,12-iso-iPF(2alpha)-VI is 
a specific marker of in vivo lipid peroxidation. This also 

suggests a significant oxidative imbalance in the early stages 
of AD when there is no significant accumulation of senile 
plaques and NFTs [120, 121]. This suggests that the onset 
of oxidative stress precedes the development of AD-related 
pathology and may contribute to its development. In addi-
tion, high levels of ROS are often detected in the brains of 
patients with different types of neurodegenerative diseases 
[122]. In addition, a variety of blood markers of oxidative 
stress, such as protein carbonyl and 3-nitrotyrosine, are fre-
quently detected in AD patients or corresponding animal 
models [123, 124]. Although ROS are mainly produced by 
mitochondria, which have strong innate oxidation resistance, 
excessive ROS accumulation can also cause mitochondrial 
dysfunction, which is also one of the prominent pathological 
features of AD [125].

Notably, a recent study demonstrated the mitochondrial 
localization of the P2X7R ionotropic purinergic receptor 
[126]. In addition, the basal respiration rate, ATP-coupled 
respiration, maximal uncoupled respiration, resting mito-
chondrial potential, and mitochondrial matrix  Ca2+ levels 
were affected when there was no P2X7R in the mitochon-
dria. This may indicate that P2X7R is also an improtant reg-
ulator of mitochondrial energy metabolism. The researchers 
also found reduced proteasome activity in the brains of AD 
patients as well [127]. The latest study found that sustained 
activation of P2X7R can induce ubiquitin–proteasome sys-
tem dysfunction and ultimately lead to neuronal death [128]. 
This implies that P2X7R is involved in multiple metabolic 
mechanisms in the brains of AD patients.

In addition, it was shown that P2X7R expression in the 
APPswe/PS1dE9 mouse model of Alzheimer’s disease may 
mediate neuronal injury through the generation of ROS [39]. 
It was also confirmed in another study that Aβ can induce 
mitochondrial toxicity, but this process requires the involve-
ment of P2X7R in microglia [129]. Furthermore, activation 
of P2X7R in the microglial cell membrane by ATP may 
induce the generation of hydrogen peroxide [130]. Recent 
research has demonstrated that P2X7R activation following 
stimulation with BzATP or ATP can induce ROS generation 
in microglia and macrophages. And the researchers found 
that the use of P2X7R inhibitors reduced the production of 
ROS [17, 131, 132]. Mitochondrial dysfunction along with 
oxidative stress appears to be an important early event in 
disease development.

P2X7R and Synaptic Dysfunction in AD

AD is also characterized by synaptic loss and dysfunction. 
Synaptic loss and dysfunction in the brain can be detected 
by researchers early in the progression of AD disease and 
is strongly associated with cognitive decline in AD patients 
[133]. By directly observing neurons in AD transgenic mice, 
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the researchers found a significant reduction in spine density 
[134]. Reduced synaptic density and fewer synaptic con-
nections per neuron can also be observed in the AD brain 
[135]. In addition, synaptic dysfunction is one of the earliest 
hallmarks of AD. In the early stages of AD, the decrease in 
synaptic proteins precedes all other neurodegenerative mark-
ers in the cerebrospinal fluid [136].

P2X7R is likely to be involved in synaptic changes in AD 
progression. In a mouse model of AD, researchers show that 
synaptic dysfunction may be linked to ROS production by 
P2X7R [39]. Meanwhile, the inhibition of P2X7R favors the 
reduction of aβ and Tau. aβ and Tau play a role in synaptic 
damage [137]. P2X7R is also involved in regulating synaptic 
neurotransmission. P2X7R can excite synapses by mediating 
the release of glutamate from astrocytes [59]. Further stud-
ies, the researchers found that the use of BBG, an antagonist 
of P2X7R, improved the development of dendritic spines in 
hippocampal neurons of AD model mice [138].

P2X7R as a Potential Target in AD

AD is now increasingly recognized as a multifactorial neu-
rodegenerative disease with different pathological processes 
as possible contributors, including amyloid deposition, tau 
protein phosphorylation, oxidative stress, or chronic neuro-
inflammation. Notably, P2X7R is involved in all these pro-
cesses (Fig. 3) and consistently appears to play an important 
role in the development of Alzheimer’s disease. The fact that 
P2X7R is antagonistic only when activated at high ATP con-
centrations is a significant advantage for a drug target [19]. 
In this way, pharmacological antagonism of P2X7R will not 
affect the function of P2X7R in normal physiological states. 
It was reported that in vivo P2X7R inhibition reduced amy-
loid plaques, providing the first evidence of the potential of 
P2X7R antagonists as therapeutic agents for Alzheimer’s 
disease [14]. Similarly, P2X7R antagonist treatment was 
also found to prevent the development of amyloid plaques 
in a mouse model of AD. Moreover, cognitive decline was 
rescued by P2X7R knockout in the APP/PS1 mouse model 
of AD [139].

The potential of P2X7R as a therapeutic target is sup-
ported by reports of improved symptoms and neuropathology 

Fig. 3  This figure suggests that 
P2X7R is involved in different 
physiopathological processes 
in Alzheimer’s disease. As the 
figure demonstrates, P2X7R 
regulates the processing of 
amyloid APP, promotes Tau 
phosphorylation, and is also 
involved in synaptic changes, 
ROS, microglia activation, and 
promotes inflammatory factor 
release which are all processes 
that contribute to AD progres-
sion
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in animal models of AD through pharmacological blockade 
or gene deletion [138–140]. For example, one study showed 
that the P2X7R antagonist BBG rescued spatial memory, 
learning, and cognitive deficits in a mouse model of AD 
[138]. BBG is a derivative of Brilliant Blue FCF, which has 
been proven safe in healthy animals and is approved for use 
as a food additive in the USA under various brand names, 
such as FD&C Blue No. 1 or Acid Blue 9 [141]. Notably, 
BBG also has the advantage of high blood–brain barrier per-
meability [142]. In the brain, BBG not only reduces the level 
of purinoceptor expression but also attenuates gliosis [143]. 
Moreover, BZ-ATP treatment increased IL-1β secretion in 
human microglia that had been preactivated with Aβ(1–42), 
while pretreatment with P2X7 receptor antagonists had the 
opposite effects [144]. In addition to treatment with P2X7R 
antagonists, inhibition of the P2X7R pathway may be a new 
therapeutic approach for the treatment of AD. Thus, P2X7R 
has great therapeutic potential.

Advances in Drug Research

The potential of P2X7R as a drug target has long been noted 
in other diseases, such as neuropsychiatric disorders, and 
cancer [145, 146]. Surprisingly, P2X7R antagonists also 
have neuroprotective effects in central nervous system dis-
orders. It has shown great potential in both multiple sclerosis 
and ALS [147, 148]. BzATP is a P2X7R agonist. It elicits 
pore formation, IL-1β release, and calcium influx in rats, 
human receptors, and mice. Researchers have investigated 
a variety of P2X7R antagonists. The species-dependent dif-
ferences in receptor sensitivity have been well summarized 
for the various P2X7R antagonists [149]. Although most 
P2X7R antagonists do not cross the blood–brain barrier and 
are unable to act in vivo, recent studies have made signifi-
cant progress in identifying brain-permeable P2X7R antago-
nists. GlaxoSmithKline has developed the P2X7 receptor 
antagonist GSK1482160 with good CNS penetration [150]. 
The amide GSK1370319A also showed good brain penetra-
tion [151]. It inhibits inflammasome-induced cell death and 
neurodegeneration [152]. JNJ-54175446 and JNJ-55308942 
are two new brain-penetrant P2X7R antagonists [153, 154]. 
More brain penetrant P2X7R antagonists are listed in 
Table 1. For more details see Table 1.

P2X7R as a New Diagnostic Tool for AD

PET imaging is a recognized technique commonly used to 
diagnose brain diseases including Alzheimer’s disease [158]. 
PET studies of Alzheimer’s disease have the advantage of 
identifying different subtypes of the disease through neu-
ropathology and sometimes genetic causation, which may 

have implications for guiding treatment. PET imaging of 
Alzheimer’s disease has so far mainly used the radiotracer 
[18F]FDG to image glucose metabolism [159]. However 
several radiotracers have been developed for the detection 
of other molecules, interestingly including several P2X7R 
radiotracers [146]0.11C-JNJ-54173717 was developed as a 
high-affinity P2X7R antagonist. In animal rat models, it has 
demonstrated its advantage as a PET radioligand for visu-
alizing the expression and distribution of P2X7R in vivo. 
And it can also be used in monkey brain to selectively dis-
play P2X7RX expression and distribution [160]. 18F-JNJ-
64413739 is also considered a suitable PET ligand for quan-
tifying P2X7R expression in the human brain, which can 
be used for P2X7R expression in health and Alzheimer’s 
disease to provide ideas for therapy [161]. However, whether 
P2X7R-PET has the potential to stratify Alzheimer’s disease 
such as disease severity needs to be analysed in a larger 
cohort of patients, but P2X7R-based PET imaging may be 
a promising tool.

P2X7R is not only expressed in brain tissue but also in the 
peripheral immune system, where it can be found in mac-
rophages and T cells [162, 163]. A recent study has shown 
that the expression of P2X7R is elevated in the blood of 
patients with Alzheimer’s disease, so it can be assumed that 
the plasma level of P2X7R is a biomarker that can differ-
entiate between patients with Alzheimer’s disease and non-
Alzheimer’s disease [164]. Although we should not use a 
single biomarker as a diagnostic tool, elevated plasma levels 
of P2X7R in patients with Alzheimer’s disease suggest that 
combined plasma levels of P2X7R are promising as a diag-
nostic tool.

Conclusions and Prospects

We summarized the roles of P2X7R in the central nerv-
ous system and its significance in the pathogenesis of AD, 
after which we discussed the various effects of P2X7R 
activation. As described in this review, the success of 

Table 1  Features of various brain-permeable P2X7R antagonists

Class/Compound Features Ref

JNJ-54175446 Progressed into preclinical develop-
ment

[154]

JNJ-55308942 Retained rodent activity [153]
JNJ-47965567 

and JNJ-
42253432

Shows activity on rodent and human 
P2X7

[155, 156]

JNJ-54175446 High affinity and potency P2X7 
antagonist

[157]

GSK1482160 Good CNS permeability [150]
BBG The selective antagonist for P2X7R [142]
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P2X7R antagonists in preclinical models indicates that 
P2X7R should be a focus of future research on targeted 
therapies for AD. A detailed understanding of the roles of 
P2X7R is essential for the discovery of new therapeutic 
approaches for the treatment of neurological disorders. A 
great potential advantage may lie in the absence of P2X7R 
activation or low P2X7R expression in healthy tissues, 
which may limit the side effects of drug treatment.

Although many P2X7R antagonists have now been 
developed, many challenges remain. Highly selective and 
effective P2X7R agonists and antagonists that can pen-
etrate the CNS need to be further explored. Importantly, 
the clinical use of these drugs will first require extensive 
further study of their safety. In addition to treatment with 
P2X7R antagonists, inhibition of the P2X7R pathway may 
also be a new therapeutic approach for the treatment of 
AD. With further exploration of AD pathogenesis and 
further drug development, P2X7R-targeted therapies are 
likely to become a promising new treatment modality in 
the future.
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