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Abstract
Osteoarthritis (OA) is one of the most common joint disorder, with pain accompanied by functional impairment, as the 
most pronounced clinical symptom. Currently used pharmacotherapy involves symptomatic treatment that do not always 
provide adequate pain relief. This may be due to concomitance of central sensitization and development of neuropathic 
features in OA patients. Here we performed studies in the animal model of OA to investigate of the neuropathic component. 
Intraarticular injection of monoiodoacetate (MIA, 1 mg) was used to induce OA in Wistar male rats. Development of pain 
phenotype was assessed by behavioral testing (PAM test and von Frey’s test), while corresponding changes in dorsal root 
ganglia (DRGs L3–L5) and spinal cord (SC) gene expression were assessed by means of qRT-PCR technique. We also 
performed microtomography of OA-affected knee joints to correlate the level of bone degradation with observed behavioral 
and molecular changes. We observed gradually developing remote allodynia after MIA treatment, indicating the presence of 
neuropathic component. Our results showed that, among DRGs innervating knee joint, development of central sensitization is 
most likely due to peripheral input of stimuli through DRG L5. In SC, development of secondary hypersensitivity correlated 
with increased expression of TAC1 and NPY. Our studies provided molecular records on abnormal activation of pain 
transmission markers in DRG and SC during development of OA that are responsible for the manifestation of neuropathic 
features. The obtained results increase insight into molecular changes occurring in the neuronal tissue during OA development 
and may contribute to readdressing treatment paradigms.

Keywords Osteoarthritis pain · Neuropathic pain component · Pain chronicity factors expression · MIA model · Behavioral 
studies · Knee microtomography

Introduction

Osteoarthritis (OA) is the world’s leading cause of disabil-
ity among elderly and it has been recognized by the World 
Health Organization (WHO) as a “priority disease” (report 
WHO/EDM/PAR/2004.7) and one of the top 5 healthcare 
costs in Europe [1]. OA is a degenerative joint disease 
caused by breakdown of cartilage and underlying subchon-
dral bone, leading to development of chronic pain character-
ized by neuropathic features such as feelings of burning pain, 
tingling, numbness [2], and development of hyperalgesia at 
sites distant from the injury [3]. It is estimated that pain 
in one-third of OA patients involves neuropathic compo-
nent [4]. Constant and reoccurring pain at resting state may 
eventually lead to development of depressive symptoms and 
sleep disorder [5]. Unfortunately, there is no objective meas-
urement available to predict development of neuropathic 
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component, nor severity of pain, based on bone/cartilage 
damage or the intensity of synovial inflammation [6].

Importantly, cartilage itself is not innervated. Thus, it 
is not surprising that up to 40% of individuals with radio-
graphic damage have no pain, while patients with minimal 
and even non-radiographically detectable cartilage abnor-
malities develop pronounced, debilitating pain [7]. It is 
only surrounding tissue such as the synovium, ligaments, 
and subchondral bone that are largely innervated by a dense 
network of myelinated and unmyelinated fibers, which 
are involved in mediating pain sensation induced by joint 
lesions. Aδ myelinated fibers respond to strong mechanical 
stimuli and thermal stimuli, whereas unmyelinated C fibers, 
which are normally inactive, become responsive in patholog-
ical conditions such as inflammation to mechanical, thermal, 
and chemical stimuli [8]. In animal model of OA, the firing 
rate of C and Aδ afferents was increased after intra-articu-
lar (i.a.) MIA injection [9], whereas in the surgical model 
of OA, increased numbers of dorsal root ganglion (DRG) 
neurons responded to physical stimuli directed toward the 
operated knee or ipsilateral hind paw, compared to sham-
operated mice. This was previously shown to be correlated 
with the presence of knee hyperalgesia and mechanical allo-
dynia [10]. In OA, local inflammation is an important part of 
pathophysiology of the generation and maintenance of joint 
pain and it is accompanied by release of proinflammatory 
factors, implicating their role in nerve sensitization. Indeed, 
recent findings correlate inflammation of the synovium with 
development of knee pain sensitization [11]. Nonetheless, 
very few studies on the mechanisms underlying occurrence 
of the neuropathic pain component in OA development are 
available. Local release of proinflammatory factors leads to 
sensitization of nerve endings, while further progression of 
the neuronal input is largely unknown [12].

In OA and other chronic pain conditions, there is a grow-
ing number of reports that central mechanisms and sensiti-
zation play a significant role. In fact, central mechanisms 
seem to be engaged mostly during late and chronic stages 
[13] and may be responsible for the failure of treatments 
aiming at inflammatory component of the pain [14]. The 
correlation of OA development with signs of neuropathy 
was shown previously by Thakur et al., although this report 
focused on changes of histopathological and immunofluo-
rescence features rather than quantitative alterations of gene 
expression [15]. The latter would be important to estimate to 
distinguish underlying mechanisms leading to development 
of neuropathic component. Moreover, interplay between the 
central and peripheral systems suggests a general plastic-
ity of the nociceptive system in OA pain [16] that requires 
further studies.

Therefore, in our studies, we focused on establishing 
molecular factors involved in development of peripheral and 
central sensitization in DRGs and spinal cord (SC) in the 

MIA model of OA. We performed behavioral evaluation of 
pain symptoms development measuring response to direct 
mechanical stimulus (pressure application measurement, 
PAM) and presence of tactile allodynia (von Frey’s test). As 
our behavioral results suggested development of neuropathic 
component in our experimental setup, we have associated 
development of direct and distant hypersensitivity in OA 
with changes in subchondral bone morphology after MIA 
injection in time. The results showed possibility of exposure 
of nerve endings; thus, we examined increased proinflam-
matory signaling in DRGs that are innervating knee joints. 
Furthermore, we performed analysis of gene expression that 
are known to be affected during development of neuropathic 
pain, in mentioned DRGs and SC tissue.

Methods

Animals

Male Wistar rats (Charles River, Hamburg, Germany) ini-
tially weighing between 225 and 250 g were used for all the 
experiments. The authors are aware of possibility of biased 
results due to sex limitation in the study; nevertheless, to 
obtain reliable data in relatively small group of animals, they 
decided to perform experiments in males exclusively. The 
rats were housed in groups of 5 animals per cage under a 
12:12-h light/dark cycle and had free access to food and 
water. All animals were allowed to acclimatize to their hold-
ing cages for 3 to 4 days before any behavioral or surgical 
procedures were conducted. In total, 100 animals were used 
in performed experiments (20 animals in phenotype develop-
ment and immunofluorescence studies; 40 animals in phar-
macological studies and 40 in microtomography and molec-
ular studies). Animals were allocated in experimental groups 
randomly. All the behavioral experiments were conducted 
between 9:00 AM and 12:00 PM. The experiments were 
performed following the guidelines of the IASP and with 
the approval number 1130/2014 of the Local Bioethics Com-
mittee of the Institute of Pharmacology (Krakow, Poland). 
Care was taken to implement the “3 Rs” rule (replacement, 
reduction, and refinement) to reduce the number of animals 
used and their suffering during the experiments.

OA Induction

Animals were deeply anaesthetized with 5% isoflurane in 
100% oxygen (4.5 L/min) until the flexor withdrawal reflex 
was abolished. The skin overlying the right knee joint was 
shaved and swabbed with 100% ethanol. A 27-gauge needle 
was introduced into the joint cavity through the patellar liga-
ment and 1 mg of MIA (sodium monoiodoacetate, Sigma-
Aldrich), which is an irreversible NADPH inhibitor, diluted 
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in 50 µL 0.9% saline was injected into the joint (intra-artic-
ular, i.a.) to induce OA-like lesions. MIA inhibits chondro-
cyte glycolysis and produces cartilage degeneration and 
subchondral bone alterations. The MIA model reproduces 
osteoarthritis-like histological lesions and functional impair-
ment like that observed in human disease [17]. In biochemi-
cal experiments, sham animals (after intraarticular injection 
of saline) were used as a control. Animals were allocated to 
groups randomly. The rats were sacrificed at day 28 after 
MIA injection.

Pressure Application Measurement

The pressure application measurement (PAM) device (PAM; 
Ugo Basile, Italy) has been used for the mechanical stimu-
lation and assessment of joint pain as described previously 
[18]. Briefly, a quantifiable force was applied directly to 
the affected knee joint, and the automatic readout of the 
response was recorded. The animals were held lightly, and 
the operator placed a thumb with a force transducer mounted 
unit on one side of the animal’s knee joint and a forefin-
ger on the other. A gradually increasing squeeze force was 
applied across the joint at a rate of approximately 30 g/s 
with a maximum test duration of 15 s or applied 500 g force. 
Using calibrated instrumentation, the force in grams applied 
was displayed on a digital screen and was recorded. The 
test end point was the point at which the animal withdrew 
its limb or showed any behavioral signs of discomfort or 
distress such as freezing of whisker movement, wriggling, 
or vocalizing, such as freezing of whisker movement or 
wriggling. Two measurements of the ipsilateral knee were 
obtained and the mean limb withdrawal threshold (LWT) in 
grams (gf) was recorded. The baseline measurements were 
obtained immediately before the intra-articular injection 
(postoperative day 0) and then on 2, 7, 10, 16, 21, and 28 
postoperative days. The experimenters were blinded to the 
experimental groups throughout measurements.

von Frey’s Test

Touch-evoked pain is a hallmark of neuropathic pain both in 
animal models and in pain patients [19]; therefore, develop-
ment of mechanical allodynia was assessed in our studies. 
For the assessment of mechanical allodynia, the von Frey 
test was used. Animals were tested for their paw withdrawal 
threshold in response to the automatic von Frey’s filament 
(Bioseb, France). Rats were placed in plastic cages with 
wire net floor 15 min before the experiment (additional 
acclimatization was performed for 3 days before behavioral 
experiments started). A von Frey filament was applied to 
the midplantar surface of the ipsilateral hind paw and limb 
withdrawal threshold in grams (g) was recorded. Measure-
ments were taken twice and average of LWT values was 

drawn. The baseline measurements were obtained immedi-
ately before the intra-articular injection (postoperative day 
0) and then on 2, 7, 10, 16, 21, and 28 postoperative days. 
The experimenters were blinded to the experimental groups 
throughout measurements.

TaqMan Quantitative Real‑Time Polymerase Chain 
Reaction

Rats were sacrificed by decapitation. DRGs (L3–L5) and 
dorsal horn of the SC were collected for each animal both 
on ipsilateral and contralateral side. Tissue samples were 
placed in individual tubes with the tissue storage reagent 
RNAlater (Qiagen, Inc.), frozen on dry ice, and stored 
at − 80 °C until RNA isolation. The samples were homog-
enized in 1 mL of Trizol reagent (Invitrogen, Carlsbad, CA). 
The RNA isolation was performed according to the manu-
facturer’s protocol. The total RNA quantity was assessed 
using a Nanodrop spectrophotometer (ND-1000, Nanodrop; 
Labtech International, UK). Each sample was equalized to a 
concentration of 1 μg/μL and reverse transcribed to cDNA 
using iScript Reverse Transcription Supermix (BioRad, Her-
cules, CA, USA) according to the manufacturer’s protocol in 
a 20 µL total volume. The qPCR reactions were performed 
using Assay-On-Demand TaqMan (Applied Biosystems). 
The following assays were performed: Rn02531967_
s1 (Bdnf), Rn00580432_m1 (Il1b), Rn01410330_m1 
(Il6), Rn01533872_m1 (Ngf), Rn01410145_m1 (Npy), 
Rn01500392_m1 (Tac1), Rn01525859_g1 (Tnf), 
Rn00569199_m1 (Cgrp), Rn01527840_m1 (Hprt1), 
Rn00591020_m1 (Scn9a), and Rn01485332_m1 (Scn3a). 
The reactions were run on a Real-Time PCR CFX96 Touch 
System (Bio-Rad). The expression of the Hprt1 transcript 
with a stable level between the control and investigated 
groups was quantified to control for variation in the cDNA 
amounts. The threshold cycle (CT) value for each gene was 
normalized with the CT value of Hprt1. RNA abundance 
was calculated as  2− (normalized ΔCt). Experiments were run in 
triplicates and mean value was calculated. The results are 
presented as a fold change proportional to the expression 
level in sham animals.

Immunohistochemistry

The rats were anesthetized with sodium pentobarbital 
(60 mg/kg) and perfused through the ascending aorta with 
100 mL of 0.9% saline followed by 300 mL of 4% para-
formaldehyde in 0.1 M phosphate buffer (PB), pH 7.4. The 
lumbar DRGs were located by tracing the lumbar dorsal 
roots back to the sciatic nerve. The dissected tissue was 
postfixed for 2 h at 4 °C, cryoprotected in 30% sucrose in 
0.1 M PB for 12 h at 4 °C, and embedded in Tissue Tek 
(OCT; Miles, Inc., Elkhart, IN). Cryosections were cut and 
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thaw mounted onto Superfrost slides (Menzel, Germany) 
at a thickness of 12 µm. The sections were processed for 
immunohistochemistry. The slides were incubated with 
blocking solution (TBS containing 10% normal goat serum 
and 0.1% Triton) for 2 h at room temperature. A rabbit pri-
mary antibody against rat IL1β (Abcam, ab9787) and CGRP 
(Sigma Aldrich, C8198) proteins were diluted in blocking 
solution at 1:50 and 1:200 ratio, respectively. Slides were 
incubated overnight with primary antibody. After 3 washes 
in PB, the primary immunofluorescence was revealed by 
incubation for 2 h in a mixture of goat anti-mouse antibody 
conjugated with Alexa 555, diluted to 1:500 in blocking 
solution. The sections were examined, and the areas of 
interest were photo documented on a confocal laser scan-
ning microscope, DMRXA2 TCS SP2 (Leica Microsystems, 
Germany), with a × 20 dry objective lens (Leica) driven by 
confocal software (Leica), Gre/Ne laser (laser line emitted 
at 543 nm light); the background noise of each confocal 
image was reduced by averaging 8 scans/line and 8 frames/
image. Compared slides were stained simultaneously and 
the images were collected with the same exposure settings 
to minimize variances in staining intensity between the 
slides. Cells expressing IHC signal intensity above 66% of 
image histogram values were considered positive. Images 
were analyzed using automated pipeline (raw images were 
first normalized to extend the histogram to values between 
0 and 255. Then, images were binarized and to count only 
positive cells, we have applied threshold value above > 170. 
Further image processing included removal of outliers, dilu-
tion, and watershed. Finally, particles with size above 80 px 
and circularity between 0.35 and 1 were counted as cells; 
Supplemental Fig. 1) and then validated by blinded observer.

X‑ray Microcomputed Tomography (XMT)

The ex vivo commercial XMT system was used (v|tome|x 
s, GESensing & Inspection Technologies, Phoenix|x-ray, 
Wunstorf, Germany). Trimmed knee samples with tibial 
and femoral bone sections were dissected before the intra-
articular injection of MIA (postoperative day 0) and then on 
10, 21, and 28 post MIA injection and immediately stored in 
dry ice (− 80 °C) until analysis. The samples were defrosted 
for 30 min prior to analysis. The XMT scanning parameters 
were as follows: System Phoenix v|tome|x s; voltage (kV): 
160; current (μA): 70; voxel size (μm): 11.3; detector tim-
ing (milliseconds): 200; filter Cu: 0.1. Identical scanning 
parameters were applied to all the samples. Each sample was 
placed inside the scanner chamber using the same holder. 
Reconstructed cross-sections were stored in 256 grayscale 
format (8 bits per voxel) and later processed by Drishti 
(open-source Volume Exploration and Presentation Tool 
by Limaye) [20] to visualize the bone microstructure. All 
advanced image analyses were carried out with the ImageJ 

software, an open-source image enumeration software pack-
age (US National Institute of Health, Bethesda, MD, USA) 
[21] and CTAn (Skyscan CT-analyzer software, Belgium). 
The microstructural parameters were estimated for subchon-
dral bone of tibia (Fig. 1), including the following: bone 
volume (BV)—volume of the region segmented as bone; 
specific bone surface (BS/BV)—the ratio of the segmented 
bone surface to the segmented bone volume; the trabecular 
thickness (Tb.Th)—the average thickness of trabeculae; total 
porosity (Po(tot))—the volume of all the open and closed 
pores as a percentage of the total volume [22].

Data Analysis

The analysis was performed using Prism 7 (GraphPad Soft-
ware). Data was first examined for Gaussian distribution by 
Shapiro–Wilk normality test and the equality of variances 
by Brown–Forsythe or F test. Behavioral data regarding 
pain phenotype development was analyzed using one-way 
ANOVA with Dunnett’s post hoc test, where mean values at 
each time point (day post MIA injections) were compared 
against basal mean values at day 0. Changes in expression 
patterns were analyzed by one-way ANOVA with Bonfer-
roni’s post hoc test, where mean values were compared 
against samples from sham-treated animals. Quantitative 
IHC results were compared in each DRG using two-tailed 
unpaired t-test. In the case of the XMT results, the data did 

Fig. 1  3D visualization of the femorotibial joint. The analyzed vol-
ume of subchondral bone of tibia was marked. Scale bar = 1 mm
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not meet the assumptions about Gaussian distribution and 
equality of variances in Tb.Th; therefore, it was analyzed 
by non-parametric Kruskal–Wallis test with Dunn’s post 
hoc comparison, whereas BS/BV and total porosity were 
analyzed by ANOVA with Dunnett’s post hoc test, where 
mean values at each time point (day post MIA injections) 
were compared against basal mean values at day 0. XMT 
data underwent an outlier analysis with ROUT method 
and Q value set to 5%. All experiments were performed for 
n = 6–10. For qRT-PCR analysis, samples of DRGs from two 
animals (separately for ipsilateral and contralateral L3, L4, 
L5) were pulled together to obtain better RNA yield. Behav-
ioral analyses were performed under blinded conditions.

Results

Development of Pain Phenotype and Disturbances 
in Subchondral Bone Morphology After 
Intraarticular Administration of MIA

Intraarticular injection of MIA caused significant reduc-
tion in mechanical pain threshold, measured in PAM test 
at post-operative day 2 and further from day 16 till the end 
of experiment at day 28 (Fig. 2A). Allodynia measured as 
withdrawal threshold by von Frey’s test was observed from 
day 10 and increased gradually until day 28 (Fig. 2B) indi-
cating development of neuropathic component in OA pain 
over time. Moreover, it has to be stressed that only 28 days 
post MIA injection all animals present significant allodynia 
that may be due to the different pace of cartilage degra-
dation for different animals. Further biochemical analyses 

were performed starting from day 10, although analyses 
of neuropathic factors’ expression were performed at day 
28. To back up our hypothesis, we performed XMT anal-
ysis of tibial articular surface in rats after MIA adminis-
tration (Fig. 3A–D). Quantitative analysis of subchondral 
bone morphology revealed statistically significant decrease 
in BV and Tb.Th (Fig. 3E, G), as well as increase in BS/
BV (Fig. 3F) at day 28 after OA induction. Albeit we have 
not observed statistically significant changes in total bone 
porosity (Po(tot)) in any given time point (Fig. 3F), a t-test 
comparison between D0 and D28 revealed P = 0.0773, 
which suggests a raising trend in bone porosity due to MIA 
administration.

Immunohistochemical Analysis of Number of Cells 
Positive for IL1β and CGRP in Lumbar DRGs 
of Animals Treated with MIA

The increased bone porosity leads to the exposure of nerve 
endings at the final stages of the experiment and in con-
sequence to activation of neuropathic ascending pathways; 
therefore, we decided to examine factors of neuronal origin 
that are known to be activated DRG during development 
of neuropathic pain—IL1β and CGRP [23]. Immunohis-
tochemistry analysis revealed IL1β immunofluorescence 
at day 28 in DRG L5 in both sham- and MIA-treated ani-
mals, although the number of IL1β cells was higher in ani-
mals with developed OA (Fig. 4A). Similar situation was 
observed for CGRP immunofluorescence that was detected 
in higher number of DRG L5 cells in MIA-treated animals 
when compared to control (Fig. 4B). The number of posi-
tive cells both for IL1β and CGRP in DRG L3 was similar 
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Fig. 2  Development of pain phenotype after intraarticular administra-
tion of MIA (1 mg) measured in PAM (A) and von Frey’s (B) tests. A 
statistical analysis was performed using a one-way ANOVA followed 

by Dunnett’s post hoc test. The values are presented as mean ± SEM; 
n = 6–10. *Statistically significant difference (P < 0.05)
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Fig. 3  Development of 
histomorphological changes 
due to MIA administration in 
microtomographic image of the 
subchondral bone. 3D visualiza-
tions present articular surface 
of the tibia at day 0 (A), day 10 
(B), day 21 (C), and day 28 (D) 
after OA induction. Black scale 
bar represents 1 mm. Graphs 
present quantitative analysis of 
subchondral bone morphology 
including segmented bone vol-
ume (E), ratio of the segmented 
bone surface to the segmented 
bone volume (F), mean thick-
ness of trabeculae (G), and total 
porosity (H). Each experimental 
group included n = 8–10 rats, as 
outliers were detected by ROUT 
method excluded from analysis. 
Statistical analysis was per-
formed using one-way ANOVA 
followed by Dunnett’s post hoc 
test or Kruskal–Wallis test fol-
lowed by Dunn’s post hoc test, 
both with P < 0.05 confidence 
interval. Filled black circles 
denotes statistical significance 
in comparison to day 0
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for sham- and MIA-treated animals, while in DRG L4 was 
significantly increased (Supplemental Fig. 2). Nonetheless, 
the enhancement was lower than for DRG L5 suggesting that 
neuronal input in that model goes mainly through the latter.

Changes in Expression Patterns of Genes Involved 
in Inflammation and Pain Processing in DRG and SC 
During OA Development

Our results showed that, among lumbar DRGs innervating 
knee joint—L3, L4, and L5, OA development was mostly 
affecting gene expression in DRG L5 (data for DRG L3–L4 
can be found in Supplemental Fig. 3). Twenty-eight days 
post MIA injection, we observed most abundant changes 
in chosen factors’ expression in both DRG L5 and lumbar 
SC (Fig. 5). Among inflammatory markers, mRNA for Il1β 
(Il1b) tends to be increased in both neuronal structures, 
though Il6 transcript showed no level alterations. Signifi-
cant increase of Tnf and Ngf was observed in DRG L5, 
while Bdnf expression was upregulated at both ipsilateral 
and contralateral SC at the given time point. Further pro-
nociceptive neuropeptide examination showed increase in 
the Cgrp and Npy expression in both studied structures. The 
level of the transcript for preprotachykinin-1 (Tac1)—a pre-
cursor for neurokinin A and substance P—was significantly 
elevated in SC, suggesting increased response of CNS to 
tactile stimuli from peripheral nervous system in the studied 
model. We also observed changes in expression of voltage-
gated sodium channel subunits (NaV1.3 and NaV1.7) in both 

DRG L5 and SC. Transcript for NaV1.3 (namely Scn3a) 
was overexpressed in lumbar SC after development of OA 
in animals; on the contrary, expression of Scn9a (NaV1.7) 
was downregulated in DRG L5 in the measured time point.

Discussion

Experiment performed within our study revealed nuanced 
pain phenotype that may account for both nociceptive and 
neuropathic component. First, we have observed a bipha-
sic decrease in withdrawal threshold in PAM measurement, 
as it was described in details in our previous work [18]. 
The initial stage of pain is commonly attributed to inflam-
mation resulting from the procedure, while subsequent to 
pain resolution (as seen at days 7 and 10), we observed a 
second phase of heightened knee sensitivity attributed to 
cartilage degradation and the progression of osteoarthri-
tis (OA). Decrease in mechanical pain threshold in PAM 
precedes development of tactile allodynia (von Frey’s test), 
which is in line with our further findings showing increase 
in expression of numerous inflammatory mediators, pro-
nociceptive peptides in DRGs, and SC at late stage of OA 
development. These features of the behavioral phenotype 
were quite unusual for inflammatory pain, particularly the 
time course or the site of the allodynia (distinct from injury 
site). The time course of the behavioral phenotypes were 
intriguing, particularly when comparing the PAM and von 
Frey responses of days 2–7 to those of days 21–28. These 

Fig. 4  Changes in the expres-
sion of IL1β (A) or CGRP (B) 
in DRG L5 after intraarticular 
injection of MIA (1 mg). Data 
is presented as % of positive 
cells ± SEM. Experiments were 
performed double-blinded. The 
results were evaluated using a 
t-test analysis; n = 10–12 slices. 
*Statistically significant differ-
ence (P < 0.05). White scale bar 
denotes 100 µM Sham MIA

Sham MIA
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Fig. 5  Changes in the neu-
ropathic pain-related gene 
expression in the DRG L5 
(A) and lumbar SC (B) dur-
ing development of OA after 
intraarticular injection of MIA 
(1 mg). Data are presented as 
the mean ± SEM and represent 
normalized averages derived 
from 6–10 samples for each 
group. The results are presented 
as a fold change normalized to 
the expression of the refer-
ence gene Hprt1 compared to 
the sham animals. Statistical 
analysis was performed using 
one-way ANOVA followed 
by Bonferroni post hoc tests. 
Values with P < 0.05 were con-
sidered significant. *Significant 
differences vs. sham
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data support the possibility of a potential neuropathic (i.e., 
nerve injury) mechanism. Hypersensitivity to mechanical 
stimuli could be observed as early as day 10 after MIA injec-
tion in some of the animals, although full effect was reached 
at the end of experiment (Fig. 2). Those results are corre-
sponding with microtomography images, where first tissue 
deficiencies were observed at day 10 after model induction 
and cartilage continue to decay until termination of the 
experiment (Fig. 3B). Here for the first time, we were able 
to demonstrate with the use of microtomography that 1 mg 
of MIA injection is sufficient to cause cartilage degradation 
analogical to one observed in clinical conditions and simul-
taneously lead to development of OA-like hypersensitivity 
in rats. It is important as the dose 3 mg of MIA used in our 
lab previously may lead to over excessive changes in the 
cartilage metabolism, which may not correspond with OA 
development seen in patients [24].

Microtomographic data led to obtain 3D visualization 
of knee joints. Based on the visualization of tibial articular 
surface, its degradation can be precisely observed in specific 
time points (Fig. 3). The articular degeneration also caused 
deformity to subchondral bone. These visual observations 
were confirmed by analyzing microstructural parameters, 
such as BV, BS/BV, Tb.Th, and total porosity. The results 
obtained in this study show that OA causes damage of corti-
cal and trabecular bone, such as significant quantitative loss 
of bone volume (BV), gradual decrease in trabecular thick-
ness (Tb.Th), and increase in BS/BV and total porosity in 
subchondral bone. BS/BV ratio indicates the level of bone 
turnover [25], which is accelerated in OA development [25].

The increased bone porosity leads to the exposure of 
nerve endings at the final stages of the experiment and 
in consequence to activation of neuropathic ascending 
pathways. It was shown previously by Thakur et al. that 
development of hypersensitivity in MIA model of OA was 
accompanied by the increase of ATF-3 expression in lum-
bar DRGs [15]. Our studies showed increase expression of 
Atf3 (data not shown), although we focused on examination 
of the neuronal input to the central nervous system (CNS), 
and observed increase in the number of lumbar DRG cells 
expressing factors that are known to be activated during 
development of neuropathic pain—IL1β and CGRP [23, 26]. 
Moreover, both factors are known to be expressed in high-
threshold mechanonociceptive Aδ fibers that are responsible 
for tactile allodynia [27, 28]. The number of cells expressing 
both factors was increased in the OA animals at the later 
stage of disease development only in DRG L5, showing that 
main neuronal input from knee tissues may go through that 
particular lumbar DRG (Fig. 4), especially that this is in line 
with anatomical distribution of nerve afferents from knee 
subchondral bone [29].

A key part of our research was molecular analysis of 
the expression of inflammatory mediators, pro-nociceptive 

peptides, and neuronal receptors in DRGs and lumbar SC 
to point out the possible mechanisms of the development of 
neuropathic component in OA. Proinflammatory interleukins 
are well known to be involved in the development of neu-
ropathic pain [26]. Our data demonstrates that the mRNA 
expression of IL1β in DRGs of MIA animals was elevated 
on day 28 (Fig. 5A), which aligns with an increased pres-
ence of IL1β-expressing cells in the same DRG L5 samples 
(Fig. 4A). IL1β is widely recognized for its involvement 
in the development of neuropathic pain, having demon-
strated the ability to induce neuropathic pain in vivo [30]. 
Moreover, various studies have illuminated its impact on 
dorsal root ganglion neurons [28, 31]. It is important to 
note, however, that IL1β has not been previously associ-
ated with the development of the neuropathic pain compo-
nent of OA at the DRG level. Nevertheless, we hold that 
the presence of this interleukin, closely tied to neuropathic 
pain, in our research supports our findings and substantiates 
the conceptual underpinning the study. Despite the well-
documented elevation of IL6 in DRGs during neuropathic 
pain development [32, 33], our study might not capture these 
changes, probably due to our focus on individual DRGs (L3, 
L4, and L5 separately). Interestingly, upon examining data 
from other DRGs (L3 and L4), we do observe an elevated 
expression of IL6 in DRG L3 during the progression of 
OA-associated pain (Supplemental Fig. 3). Mechanisti-
cally, peripheral and central pain sensitization develop with 
chronic mechanical and inflammatory stimuli in induced 
and naturally occurring animal models of OA, which is in 
part mediated by tumor necrosis factor alpha (TNFα), nerve 
growth factor (NGF), and brain-derived neurotrophic fac-
tor (BDNF) [34]. Our data showed increased expression of 
TNFα in DRG L5 in the response to development of OA 
already 10 days after MIA injection followed by increase 
in Ngf levels 28 days post model induction. The findings 
of the present study suggest that the elevated production of 
TNFα may have induced elevated production of NGF, which 
is to activate the regeneration paths of peripheral nervous 
system [35]. In contrast to the central nervous system, the 
peripheral nervous system has some regenerative potential 
that is mediated by neurotrophic factors like NGF or BDNF. 
However, actual regeneration is far from complete and func-
tional recovery rarely returns to pre-injury levels. Moreover, 
excessive release of neurotrophic factors may backfire into 
development of malfunctioning neuronal projection, result-
ing in chronic pain development [35]. Functionally, neuronal 
somas in DRGs often develop lowered firing thresholds or 
persistent spontaneous firing following injury, which is 
assumed to intensify peripheral signals reaching the SC and, 
thus, may contribute to the phenomenon of sensitization and 
neuropathic pain [36]. TrkA, TrkB, and TrkC receptors acti-
vated by NGF seem to mediate increase of BDNF synthesis 
in primary afferents [37–39] resulting in hypersensitivity. In 
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the case of the spinal cord, our studies showed increase in 
Bdnf levels starting 21 days post model induction. Increased 
expression of BDNF is involved in facilitating plasticity of 
spinal neurons in response to pain input leading to antino-
ciception, although chronic pain can alter the response to 
elevated BDNF levels allowing the development of central 
sensitization and contribute to the maintenance of hyperal-
gesia [40, 41].

The peptidergic factors (CGRP, NPY, and preprotachy-
kinin-1), that expression was upregulated in both SC and 
DRG in our study, are involved in pain signaling within 
nervous system. Characteristics of peptides, such as 
requirement of relatively high threshold value for release, 
diffused and prolonged action within extracellular space, 
high binding affinity, and regulation on transcription fac-
tors [42], predispose them as physiologically functional 
modulators in chronic pain. CGRP is released in spinal 
cord in response to acute noxious stimuli [43]. The pri-
mary signal transduction mechanism of CGRP receptors in 
the spinal cord is activation of adenylyl cyclase [42]. Up to 
date, acute and persistent increase in CGRP expression in 
DRG was shown in inflammatory model of arthritis [44]. 
Moreover, Schaible et al. have shown CGRP release in 
the dorsal horns of SC due to mechanical innocuous pres-
sure in animals with joint inflammation, while the same 
stimuli did not evoke any effects in control animals [43]. 
Indeed, studies of other authors have shown hyperalgesia 
to mechanical stimuli following acute intrathecal CGRP 
administration [45, 46]. Likewise, a CGRP receptor antag-
onist blocks the increased synaptic current evoked in spi-
nal dorsal horn neurons in vitro in samples obtained from 
rats with acutely inflamed joints [47]. Similarly, intrathe-
cal administration of a CGRP receptor antagonist blocks 
mechanically evoked nociceptive responses in animals 
after the development of hyperalgesia due to joint inflam-
mation [48]. Human studies seem to confirm essential role 
of CGRP in chronic pain development as CGRP is upreg-
ulated in synovial fluid and serum of OA patients [49], 
while the cerebrospinal concentration of CGRP is down-
regulated [50]. Moreover, the CGRP levels in serum are 
positively correlated with pain intensity [49]. Our model 
of OA seems to mimic increase in CGRP progression 
observed in clinical conditions in both OA and neuropathic 
pain. NPY receptors are  Gi/o coupled, resulting mostly in 
hyperpolarization of neuron upon activation. Therefore, 
NPY upregulation in DRG and SC observed in models of 
neuropathic pain [51–54], as well as in our OA model, can 
be explained as an adaptive inhibitory mechanism to coun-
teract sensitized pain pathways. This hypothesis is strongly 
supported by conditioned knock-out experiments, in which 
NPY deletion following nerve injury led to rapid increase 
in hypersensitivity, indicating tonic inhibitory role of 
NPY in the maintenance of persistent pain [55]. Tac1 gene 

codes for preprotachykinin-1, a precursor protein which 
can variably undergo post-translational modification to 
produce neurokinin A and substance P. Recent findings 
have presented essential role of Tac1 in the pathophysiol-
ogy of chronic pain as Tac1 KO prevents development of 
mechanical sensitization [56]. Apart from inflammation 
and pain, both neurokinin A and substance P are media-
tors of nervous tissue damage; therefore, increased levels 
of those peptides in our model may account for observed 
development of neuropathic component of pain [57]. 
Consistence of expression pattern of the studied peptider-
gic factors in our data (meaning increased expression of 
most of them 21 and 28 days post MIA injection on the 
ipsilateral site of injury) points them as probable factors 
leading to development of neuropathic component in MIA 
model of knee osteoarthritis. Simultaneously, these results 
indicate the neural origin of the neuropathic component 
of OA-related pain, thus diminishing the involvement of 
inflammation in the development of this phenotype.

Moreover, observed behavioral and neurochemical dis-
turbances in the MIA model of OA were accompanied by 
changes in expression of sodium channels, a key mediator in 
signal propagation throughout nervous tissue, including pain 
sensation. Ectopic spontaneous activity in primary affer-
ent neurons following nerve injury is matched by altered 
expression of voltage-gated sodium channels [58]. Nav1.7 
is preferentially expressed at high levels in nociceptive and 
sympathetic neurons and its gain of function mutation low-
ers thresholds for single action potentials and high frequency 
firing in dorsal root ganglion neurons resulting in inherited 
pain disorder [59]. In our study, we have observed a down-
regulation of gene coding for Nav1.7 (Scn9a) in DRG L5, 
which may be a homeostatic response for ongoing inflamma-
tion. This also confirms the activation of molecular pathways 
leading to the development of neuropathic pain, as it was 
shown that Nav1.7 is colocalizing with CGRP and its firing 
is responsible for the transduction of pathological pain firing 
[60]. On top of that, this study showed that overexpression of 
Scn9a was present only in unaffected DRG neurons, which 
may explain why we observed global downregulation of this 
transcript in our experiments. It was shown that Nav1.3 is 
an important factor in the development of chronic pain in 
the response to nerve injury [61]. In our studies, we did 
not observe upregulation of Nav1.3 transcript (Scn3a) in 
DRG L5, although it was mainly upregulated in studies on 
more robust models of neuropathic pain caused by nerve 
injury [61, 62]. Interestingly, we observed upregulation of 
Scn3a in lumbar SC that may reflect sensitization of central 
pain pathways, as it was observed previously [63]. These 
results demonstrate that development of OA rats can trigger 
changes in sodium channel expression and suggest a func-
tional link between Nav1.3 expression and neuronal firing 
associated with neuropathic pain.



1590 Molecular Neurobiology (2024) 61:1580–1592

1 3

Conclusions

The present study showed the characteristics and the time 
course of pain behavior in a MIA-induced rodent knee OA 
model during 28 days after injection, both in the aspect of 
local hypersensitivity and developing over time signs of 
neuropathy. Acknowledgment of the presence of neuropa-
thy component in OA-related pain should lead to changes 
in patient’s treatment paradigms, especially that our behav-
ioral data corresponded nicely with subchondral bone 
alterations measured by the means of microtomography.

The main result of our studies is characterization of 
molecular changes present in DRG L5 and SC during pro-
gression of OA. Our experiments revealed upregulation of 
key factors involved in neuropathic pain development in an 
animal model of OA. Greatest alterations were observed 
for growth factors, peptidergic signaling molecules, and 
voltage dependent sodium channels—all indicating the 
neural origin of the neuropathic component of OA-related 
pain and declining the involvement of inflammation in 
that process. Especially that changes in the expression 
of proinflammatory cytokines in examined tissues were 
relatively of low significance. These results suggest that 
persistent cartilage degeneration within the OA joint leads 
to molecular changes within DRG L5 and lumbar SC that 
correspond to functional changes observed in neuropathic 
pain conditions.

However, one must note the limitations of the study. 
Observed molecular changes on the tissue level of DRG 
and SC were not cell-type specific. While qRT-PCR was 
performed on homogenized nervous tissue containing both 
neurons and glia cells, IHC was also lacking double-stain-
ing with cell-specific markers. Thus, the question about 
whether these molecular changes affect strictly neuronal 
cell or is rather mediated by glial cells, remains to be 
open. Furthermore, the current study focused exclusively 
on a subset of the factors that exhibited alterations in the 
DRGs and spinal cord of OA-afflicted animals, specifi-
cally IL1β and CGRP. This deliberate narrowing of scope 
underscores the necessity for subsequent investigations to 
reach into the remaining factors. Consequently, there is a 
strong need for further studies to substantiate the presence 
of a neuropathic pain component within the context of OA.

Our data bring better understanding of mechanism 
behind difficult to treat chronic OA pain and support the 
hypothesis of neuropathic-like component in the MIA 
model. This might serve as compelling evidence for 
development of novel therapeutic agents for OA treat-
ment, although functional coupling to pain development 
remains yet to be shown.
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