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Abstract
To reveal the network-level structural disruptions associated with cognitive dysfunctions in different cerebral small vessel 
disease (CSVD) burdens, we used probabilistic diffusion tractography and graph theory to investigate the brain network 
topology in 67 patients with a severe CSVD burden (CSVD-s), 133 patients with a mild CSVD burden (CSVD-m) and 
89 healthy controls. We used one-way analysis of covariance to assess the altered topological measures between groups, 
and then evaluated their Pearson correlation with cognitive parameters. Both the CSVD and control groups showed 
efficient small-world organization in white matter (WM) networks. However, compared with CSVD-m patients and con-
trols, CSVD-s patients exhibited significantly decreased local efficiency, with partially reorganized hub distributions. For 
regional topology, CSVD-s patients showed significantly decreased nodal efficiency in the bilateral anterior cingulate 
gyrus, caudate nucleus, right opercular inferior frontal gyrus (IFGoperc), supplementary motor area (SMA), insula and left 
orbital superior frontal gyrus and angular gyrus. Intriguingly, global/local efficiency and nodal efficiency of the bilateral 
caudate nucleus, right IFGoperc, SMA and left angular gyrus showed significant correlations with cognitive parameters 
in the CSVD-s group, while only the left pallidum showed significant correlations with cognitive metrics in the CSVD-
m group. In conclusion, the decreased local specialization of brain structural networks in patients with different CSVD 
burdens provides novel insights into understanding the brain structural alterations in relation to CSVD severity. Cognitive 
correlations with brain structural network efficiency suggest their potential use as neuroimaging biomarkers to assess the 
severity of CSVD.

Keywords  Cerebral small vessel disease burden · Diffusion tensor imaging · probabilistic tractography · Structural 
network · Graph theory
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Introduction

Cerebral small vessel disease (CSVD), one of the most com-
mon diseases in older adults, plays a vital role in demen-
tia and stroke [1, 2]. The clinical manifestations of CSVD 
mainly include cognitive decline, gait disturbance, and 
psychiatric disorders. It can be visualized on neuroimaging 
scans as lacune, white matter hyperintensity (WMH), peri-
vascular space (PVS), cerebral microbleed (CMB), recent 
small subcortical infarct, cortical superficial siderosis, brain 
atrophy, cortical cerebral microinfarct and summary small 
vessel disease score on brain MRI scans [3]. Previous stud-
ies have focused on the effect of a single CSVD feature and 
thus may have overlooked other features, but these neuro-
imaging features often occur simultaneously. Therefore, 
Pim Klarenbeek et al. proposed the concept of total CSVD 
burden, which integrates four previously mentioned CSVD 
features, to comprehensively evaluate the cumulative effects 
of various CSVD features on the brain and more completely 
estimate the severity of CSVD [4].

Recently, some studies have begun to pay attention to 
the CSVD burden. The MRI-based CSVD burden score 
improved diagnostic accuracy for predicting new onset of 
dementia after intracerebral hemorrhage [5]. Previous stud-
ies have shown that the CSVD burden was associated not 
only with the degree of damage to fiber tracts and reduced 
cortical thickness in a wide range of brain regions but also 
with gait/balance function and cognitive impairment [6–8]. 
Chen et al. paid attention to the multi-dimensional effects 
of CSVD burden on Parkinson’s disease (PD) and grouped 
PD patients according to the CSVD burden score (CSVD 
burden score 0–1 vs. 2–4). The results showed that motor 
dysfunction, cognitive impairment, depression, and anxiety 
were significantly worse in patients with severe CSVD than 
in those with mild CSVD [9]. A study on type 2 diabetes, 
divided patients into mild burden (0–1 points) group and 
moderate to severe burden (2–4 points) group based on the 
total CSVD burden score, demonstrated that the moder-
ate to severe burden group was more likely than the mild 
burden group to have narrowed retinal arterioles, widened 
retinal venules, and lower arteriole-to-venule ratio [10]. 
These findings suggested that the CSVD burden affected the 
basic structure of gray and white matter in the brain, as well 
as the development and clinical manifestations of various 
diseases.

Despite these advances in research, the mechanism by 
which patients with different CSVD burdens exhibit clinical 
differences is still unclear. The relationship among different 
brain white matter structures should be taken seriously. The 
interregional interactions between anatomically separated 
structures could play important roles in processing complex 
clinical symptoms. Some studies on brain connectivity have 

suggested that human whole-brain structural networks can 
be reconstructed using diffusion tensor imaging (DTI) and 
probabilistic tractography [11, 12]. Graph theory, a pow-
erful approach to characterize the interregional connec-
tive features within networks [13], can be used to obtain 
many important topological properties of brain structural 
networks, such as small-world topology, highly connected 
hubs and modularity [14], which exactly addresses the prob-
lem of interactions between different brain structures being 
neglected in some studies. Moreover, graph theory analy-
sis can detect subtle changes in WM structure networks 
that may be overlooked by traditional techniques when the 
disease is not too serious [15], so as to better reveal the 
separation and integration status of the networks and the 
transmission of information.

Graph theory analysis has become increasingly popu-
lar in studying the CSVD burden and brain networks in 
CSVD patients. Previous studies have noted that an increas-
ing burden of CSVD was associated with decreased nodal 
efficiency [6, 16] and small-worldness, reduced integration 
(increasing path length and lower global efficiency) and 
increased segregation (increasing clustering coefficient) 
of brain structural networks [6, 17]. Rutger Heinen et al. 
reconstructed structural brain networks using fiber trac-
tography followed by graph theoretical analysis, assessed 
the relationship between total CSVD burden score, global 
network efficiency and cognition and showed that for every 
one-point increase in the CSVD burden score, global net-
work efficiency decreased by 0.260 SD units [18]. These 
results provide new insights into the impact of CSVD bur-
den on the structural network disruptions.

Building on previous works showing impaired structural 
connectivity networks in CSVD patients and the correla-
tion between the CSVD burden and network parameters, 
we investigated the differences in the topological organiza-
tion of the WM structural networks in patients with different 
CSVD burdens and controls through probabilistic diffu-
sion tractography and graph theory analysis. Since CSVD 
patients often tend to experience cognitive decline which 
is affected by CSVD burden, the purpose of this study was 
to determine the relationship between the graph theoretical 
quantitative metrics and cognitive parameters of different 
CSVD burden groups.

Materials and Methods

Subjects

This was a cross-sectional study approved by the insti-
tutional review board of Shandong Provincial Hospital 
Affiliated to Shandong First Medical University. Between 
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December 2018 and July 2022, 200 CSVD patients and 89 
age-, sex- and education-matched healthy subjects were 
recruited in our study. Each participant voluntarily signed 
an informed consent form prior to the start of the study.

The inclusion criteria for CSVD patients comprised: (1) 
40–75 years; (2) presence of lacune, WMH, PVS, CMB, 
recent small subcortical infarct, cortical superficial sidero-
sis, brain atrophy, cortical cerebral microinfarct or summary 
small vessel disease score based on current MRI consensus 
standards [3].

The exclusion criteria included: (1) a history of stroke, 
brain trauma, epilepsy, brain tumors, intracerebral hemor-
rhage; (2) a history of major neurologic or psychiatric ill-
nesses; (3) a history of alcohol or substance abuse; (4) a 
history of thrombolysis; (5) Alzheimer’s disease, Parkin-
son’s disease and other related diseases that cause cogni-
tive impairment; (6) acute complications of type 2 diabetes 
and severe hypertension; (7) with significant hearing, vision 
and speech impairment; (8) unable to tolerate MRI or 
claustrophobia.

MRI Acquisition and Evaluation

All subjects were imaged on a MAGNETOM Skyra 3.0 T MR 
scanner (Siemens Healthcare, Erlangen, Germany) using a 
product 32-channel head coil for signal reception. Diffusion 
weighted images (DWI) were acquired using a simultaneous 
multislice (SMS) accelerated single-shot echo planar imag-
ing (EPI) sequence with the following parameters: repetition 
time (TR) = 3000 ms, echo time (TE) = 110 ms, 30 diffusion 
directions with b = 1700  s/mm2 and a single b = 0  s/mm2 
acquisition, field of view (FOV) = 220 × 220  mm, matrix 
size = 110 × 110, 60 slices, and slice thickness = 2.2  mm 
with no intersection gap. 3D T1-weighted images were 
acquired using a magnetization-prepared rapid gradient 
echo (MPRAGE) sequence with the following parameters: 
TR / TE = 7.3 / 2.4 ms, inversion time (TI) = 900 ms, flip 
angle = 9°, FOV = 240 × 240  mm, matrix size = 256 × 256, 
192 slices, and slice thickness = 0.9  mm with no gap. In 
addition, T2-weighted imaging, fluid-attenuated inversion 
recovery (FLAIR) imaging, and susceptibility-weighted 
imaging (SWI) were acquired to detect brain abnormali-
ties. All participants were required to be awake and quietly 
breathing until the end of the scan.

Two experienced radiologists blinded to the clinical 
data independently evaluated CSVD imaging features on 
all MRI images based on the STRIVE criteria (STandards 
for ReportIng Vascular changes on Euroimaging) [3]. The 
CSVD burden is a pragmatic ordinal scale of 0–4 based 
on four MRI features of CSVD [4], their imaging perfor-
mances and rating standards are included in the Supplemen-
tary materials. One point was awarded if ≥ 1 lacunes were 

present; one point was awarded if periventricular WMH 
reaches grade 3 or deep WMH reaches grade 2 or 3; one 
point was awarded if there were moderate to severe (grade 
2–3) PVS in the basal ganglia; and one point was awarded 
if ≥ 1 CMB were present. In this study, CSVD patients 
were further grouped into those with a mild CSVD burden 
(CSVD-m; burden score 0–1; 133; age: 62.11 ± 6.88 years) 
and those with a severe CSVD burden (CSVD-s, burden 
score 2–4; 67; age: 64.16 ± 5.48 years). This stratification 
was consistent with the previous studies [9, 10].

Cognitive Assessments

All participants underwent the Montreal Cognitive Assess-
ment (MoCA) Beijing version (www.mocatest.org) which 
is a one-page 30-point test administered in 10  min [19]. 
The optimal cutoffs for detecting cognitive impairment was 
13/14 points for illiterate individuals, 19/20 for individuals 
with 1–6 years of education, and 24/25 for individuals with 
7 or more years of education [20]. In addition, a variety of 
executive functions, including flexibility, working memory 
and inhibition, were assessed. These tests included the fol-
lowing: the Rey auditory verbal learning test (AVLT) for 
assessing verbal memory abilities [21]; the symbol digit 
modalities test (SDMT) for evaluating attention and infor-
mation processing speed [22]; the trail-making test (TMT) 
for evaluating attention, information processing speed, 
visual search and motor coordination [23]; and the Stroop 
color-word test (SCWT) [24]. The test implementer was 
professionally trained and qualified and had no knowledge 
of the subject grouping.

Image Preprocessing

Following data acquisition, all the 3D T1-weighted images 
were manually reoriented to their respective anterior com-
missure–posterior commissure (AC-PC) plane using the 
statistical parametric mapping (SPM8, http://www.fil.ion.
ucl.ac.uk/spm) toolbox. Then, we used the FMRIB software 
library (FSL v5.09, http://www.fmrib.ox.ac.uk/fsl) for dif-
fusion image processing. Briefly, brain masks were created 
from the b0 image to remove nonbrain tissues using the 
Brain Extraction Tool (BET) in FSL. Second, eddy current 
distortions and motion artifacts were corrected by applying 
an affine alignment of each diffusion-weighted image to the 
b0 image and adjusting the gradient orientations to adapt to 
the slight rotations because of head movement parameters. 
Finally, the diffusion tensor model was fitted to each voxel 
using FMRIB’s diffusion toolbox (FDT v3.0), and the prob-
abilistic distribution of fiber orientations from each voxel 
was estimated with a two-tensor model [25].
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from the distributions of voxel-wise principal diffusion 
directions, each time computing a streamline through these 
local samples to generate a probabilistic streamline fiber. 
For a seed region, 5000×n streamline fibers were sampled; 
n is the number of voxels in the seed region. The number 
of streamline fibers passing through a given region divided 
by 5000×n was calculated as the connectivity probability 
from the seed region to the given region. The connection 
edges were defined as the above connectivity probability 
Pij between regions i and j. In this study, each brain region 
based on the AAL atlas was selected as the seed region, and 
its connectivity probability to each of the other 89 regions 
was calculated. Thus, for each subject, a 90 × 90 probability 
weighted matrix was created to represent the constructed 
network. To remove spurious connections, the weakest con-
nections under a given sparse threshold in the probability 
weighted matrix were discarded for each subject. To exclude 
the bias of a single sparse threshold, sparsity ranging from 
6 to 24% with an interval of 1% was used as in previous 
studies [12, 27], and the network metrics were calculated at 
each threshold.

Network Construction

Network construction requires the following basic ele-
ments: nodes and connection edges, and the main steps are 
described in the following sections (detailed in Fig. 1).

Node definition: We defined the network nodes as in 
our previous study [12]. Briefly, individual T1-weighted 
images were coregistered to the b0 images in the DTI space 
by using an affine transformation (FLIRT tool in FSL). The 
registered T1 images were then nonlinearly transformed to 
the ICBM152 T1 template in MNI space by using FNIRT 
tool in FSL. The inverse transformations were used to warp 
the automated anatomical labeling (AAL) atlas [26] from 
MNI space to each native DTI space. Of note, the nearest-
neighbor interpolation method was used to preserve discrete 
labeling values. Using this procedure, we obtained 90 corti-
cal and subcortical regions (45 for each hemisphere), each 
representing a node in the network (Supplementary Table 1).

Connection definition: To define the connections between 
brain regions, we performed probabilistic tractography. 
First, we used the bedpostx tool in FSL to run Markov Chain 
Monte Carlo sampling to estimate distributions on diffusion 
parameters at each voxel, which allows us to model cross-
ing fibers within each voxel of the brain. Second, we used 
the probtrackx tool in FSL to perform probabilistic track-
ing. Briefly, we repetitively performed 5000 samplings 

Fig. 1  Flowchart of white matter structural network construction
(1) Register the T1-weighted image to the b0 image in native DTI 
space for each subject by using an affine transformation. (2) The reg-
istered T1 images were then nonlinearly transformed to the ICBM152 
T1 template in the MNI space, resulting in a nonlinear transformation 
(T). (3) Apply the inverse transformation (T− 1) to the AAL atlas (90 
regions) in the MNI space, resulting in a subject-specific parcellation 

of node regions in native DTI space. (4) For each region, estimate the 
connectivity probability with other brain regions by using probabilistic 
diffusion tractography. (5) Construct the 90 × 90 weighted network for 
each subject by computing the connection probability between each 
pair of regions. (6) Threshold the individual matrix using a sparsity 
ranging from 6 to 24% with an interval of 1%. The visualization of the 
sparse networks is represented in lateral view
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all of the other nodes in the network and is computed as 
follows:

Enodal (i) =
1

N − 1

∑

i�=j∈G

1
Lij

Similar to previous studies, node i was considered a brain 
hub if Enodal(i) was at least one standard deviation (SD) 
greater than the average nodal efficiency of the network 
(i.e., Enodal(i) > mean + SD). We also calculated the area 
under the curve (AUC) for each network metric (global and 
local topological properties) to provide a summarized scalar 
independent of single threshold selection. The regional net-
work measure and hub analyses were all conducted on the 
AUC value of Enodal. The graph theory analysis was imple-
mented using a graph theoretical network analysis toolbox 
(GRETNA, http://www.nitrc.org/projects/gretna/) [29].

Between-Group Statistical Comparison and 
Correlation Analysis

One-way analysis of variance (ANOVA) and least significant 
difference (LSD) post hoc multiple comparisons were used 
to assess demographic parameters and cognitive test scores 
among the three groups, and the chi-square test was used 
to analyze the sex proportions. For global and nodal net-
work metrics, one-way analysis of covariance (ANCOVA) 
was performed to investigate differences among the three 
groups, controlling age, sex and education level as covari-
ates, with LSD post hoc tests for pairwise comparisons. 
Once significant intergroup differences were identified in 
any nodal topological metrics, we further assessed the Pear-
son’s correlations between the nodal metrics and cognitive 
parameters for all groups using SPSS Version 24.0 (SPSS 
Inc, Chicago, IL, USA), and the significance level was set 
to p < 0.05 for all analyses.

Results

Demographic and Clinical Characteristics of the 
Subjects

The demographic and clinical characteristics of each group 
are summarized in Table  1. The CSVD-s group had sig-
nificantly lower MoCA, the Rey auditory verbal learning 
test (AVLT), and the symbol digit modalities test (SDMT) 
scores and significantly higher the Stroop color-word test 
(SCWT) and the trail-making test (TMT) scores than the 
CSVD-m and control groups. In addition, the CSVD-m 
group had significantly lower SDMT scores than the control 

Network Topological Analysis

To characterize the topological organization of WM struc-
tural networks, graph theoretical quantitative metrics were 
assessed at each threshold. The global properties include:

(1) The clustering coefficient (Cp) of the network, which 
is the average nodal clustering coefficient (Ci) over all 
nodes, and is computed as follows:

Ci=
2

ki(ki-1)

∑

j,k

(
−
wij

−
wjk

−
wki

)1/3

where ki is the degree of node i, and −w  is the weight, which 
is scaled by the mean of all weights to control each subject’s 
cost at the same level.

(2) The shortest path length (Lp) of network G, and is 
computed as follows:

LP (G) =
1

N(N − 1)

∑

i �=j∈G

Lij

where Lij is defined as the length of the path for node i and 
node j with the shortest length. For weighted networks, the 
length of each edge was assigned by computing the recipro-
cal of the edge weight (1/wij).

(3–4) The normalized shortest path length λ = Lp
real/Lp

rand, 
and the normalized clustering coefficient γ = Cp

real/Cp
rand, in 

which Lp
rand and Cp

rand are the mean shortest path length 
and mean clustering coefficient of 100 matched random 
networks.

(5) The small-world index σ = λ/γ, and a real network 
would be considered to indicate a small world if γ > 1 and 
λ ≈ 1.

(6) The global efficiency (Eglob) of network G measures 
the global efficiency of the parallel information transfer in 
network [28], which is computed as follows:

Eglob (G) =
1

N(N − 1)

∑

i �=j∈G

1
Lij

(7) The local efficiency (Eloc) of network G reveals how 
much the network is fault tolerant and measures how effi-
cient the communication is among the first neighbors of 
node i when it is removed, and is computed as follows:

Eloc (G) =
1
N

∑

i∈G

Eglob (Gi)

where Gi denotes the subgraph composed of the nearest 
neighbors of node i.

(8) The nodal efficiency (Enodal), which measures the 
average shortest path length between a given node i and 
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Partially Reorganized Hub Distributions of WM 
Networks in CSVD-s Patients

For each group, the nodes were considered brain hubs if 
their Enodal was at least one SD greater than the average 
Enodal of the network [12, 27]. We found partially reorga-
nized hub distributions among groups with eleven common 
hub regions, including the bilateral inferior occipital gyrus 
(IOG), opercular inferior frontal gyrus (IFGoperc), Heschl 
gyrus, right inferior parietal gyrus, angular gyrus, amygdala 
and left supramarginal gyrus (SMG) and posterior cingulate 
gyrus. The CSVD-s and control groups each had an addi-
tional hub region in the left hippocampus and angular gyrus, 
respectively, and the CSVD-m group lacked the left Rolan-
dic operculum as a hub region (Table 3; Fig. 3a).

Altered Regional Properties of WM Networks in 
CSVD-s Patients

Ten brain regions exhibiting significantly (ANCOVA, 
p < 0.05) altered Enodal among the three groups were identi-
fied (Table  4). Furthermore, using the LSD post hoc test, 
pairwise intergroup differences were also identified. Com-
pared with the CSVD-m or control groups, the CSVD-s 
group exhibited significantly decreased Enodal in the bilat-
eral anterior cingulate gyrus (ACG), caudate nucleus, right 

group. No significant differences were found in age, sex or 
education among the three groups.

Altered Global Properties of WM Networks in CSVD-s 
Patients

Over the whole sparsity range, the CSVD-s, CSVD-m and 
control groups all exhibited high-efficiency small-world 
topology characterized by γ > 1, λ ≈ 1 and σ = γ / λ > 1 
(Fig. 2). Statistical comparisons (ANCOVA with LSD post 
hoc test) were performed to detect significant differences in 
global properties among the three groups. Compared with 
the CSVD-m and control groups, the CSVD-s group showed 
significantly (p < 0.05) decreased Eloc over a wide range of 
sparsity thresholds (Fig. 2b). No significant difference was 
found between the CSVD-m and control groups. Moreover, 
the CSVD-s group showed significantly decreased AUC 
values of Eloc compared with other groups (Table 2), indicat-
ing the consistency and robustness of significant alterations 
over sparsity thresholds. There was no significant difference 
in other global properties among groups.

Table 1  Demographic and clinical characteristics of CSVD patients and controls
Characteristic CSVD-s CSVD-m HC P value

(ANOVA 
/ χ2)

P value (post-hoc)
CSVD-s 
vs. HC

CSVD-s vs. 
CSVD-m

CSVD-
m vs. 
HC

Sex 43 M / 24 F 70 M / 63 F 40 M / 49 F 0.058χ2 - - -
Age (y) 64.16 ± 5.48 62.11 ± 6.88 61.43 ± 9.54 0.071a - - -
Hypertension 54 (80.6%) 67 (50.4%) 32 (36.0%) < 0.001χ2 - - -
Diabetes mellitus 32 (47.7%) 67 (50.4%) 32 (36.0%) 0.096χ2 - - -
Hyperlipidemia 37 (55.2%) 59 (44.4%) 41 (46.1%) 0.333χ2 - - -
Smoking 17 (25.4%) 36 (27.1%) 15 (16.9%) 0.196χ2 - - -
Education (y) 11.13 ± 3.15 12.10 ± 3.29 12.38 ± 3.88 0.070a - - -
MoCA 24.03 ± 2.97 25.26 ± 3.58 26.04 ± 3.79 0.003a 0.001 0.021 0.114
AVLT 54.76 ± 12.82 60.16 ± 13.14 63.11 ± 12.44 < 0.001a < 0.001 0.006 0.100
SDMT 26.39 ± 11.24 31.55 ± 12.53 39.32 ± 14.05 < 0.001a < 0.001 0.008 < 0.001
SCWT 175.44 ± 55.79 147.36 ± 43.95 137.12 ± 50.35 < 0.001a < 0.001 < 0.001 0.133
TMT (B-A) 172.86 ± 94.78 127.47 ± 100.03 111.37 ± 93.14 < 0.001a < 0.001 0.002 0.233
WMHs (1 point) 49 (73.1%) 6 (4.5%) - < 0.001χ2

EPVSs (1 point) 59 (88.1%) 40 (30.1%) - < 0.001χ2

CMBs (1 point) 44 (65.7%) 19 (14.3%) - < 0.001χ2

Lacunes (1 point) 30 (44.8%) 3 (2.3%) - < 0.001χ2

Abbreviations: CSVD = cerebral small vessel disease; MoCA = Montreal Cognitive Assessment; AVLT = sum of Rey auditory verbal learn-
ing test (N1-7); SDMT = symbol digit modalities test; SCWT = sum of Stroop color-word test (stroop1-3); TMT = the trail-making test; 
TMT (B-A) = the difference between TMT-B and TMT-A; WMHs = white matter hyperintensities; EPVSs = enlarged perivascular spaces; 
CMBs = cerebral microbleeds; CSVD-s = severe CSVD burden (score ≥ 2) group; CSVD-m = mild CSVD burden (score ≤ 1) group; HC = healthy 
controls; χ2 = chi-square test; a =ANCOVA test. The last four rows are the number of subjects who scored one point for each CSVD burden 
features in the two CSVD subgroups
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the involved regions mainly included the bilateral cau-
date nucleus, right IFGoperc, SMA and left angular gyrus. 
Briefly, network efficiency in CSVD-s patients was signifi-
cantly positively correlated with MoCA, AVLT and SDMT 
scores and negatively correlated with SCWT and TMT 
scores (Fig.  5). Moreover, only the left pallidum showed 
significant correlations with SDMT and TMT scores in the 
CSVD-m group (Fig. 4b).

Discussion

In this study, the topological organization of WM structural 
networks was investigated using probabilistic diffusion 
tractography and graph theory. Compared with CSVD-m 
patients and healthy controls, CSVD-s patients exhibited 

IFGoperc, supplementary motor area (SMA), insula and left 
orbital superior frontal gyrus (ORBsup) and angular gyrus 
(Table  4; Fig.  3b). Notably, compared with controls, the 
CSVD-m group showed significantly decreased Enodal only 
in the left angular gyrus, while the CSVD-s group showed 
significantly increased Enodal in the pallidum.

Altered Network Efficiency Related to Cognitive 
Performance in CSVD Patients

For global/local efficiency and significantly altered nodal 
efficiencies among groups, participants Pearson’s correla-
tions with cognitive parameters were calculated. Intrigu-
ingly, we observed significant correlations (p < 0.05, FDR 
corrected [30]) between network efficiencies and all cog-
nitive parameters for the CSVD-s group (Fig.  4a), and 

Table 2  Group comparisons of AUC values of global properties
Global property
(AUC value)

CSVD-s CSVD-m HC P value
(ANCOVA)

P value (post-hoc)
CSVD-s vs. 
HC

CSVD-s vs. 
CSVD-m

CSVD-
m vs. 
HC

Eglob (×e−2) 1.19 ± 0.08 1.22 ± 0.09 1.24 ± 0.09 0.091a - - -
Eloc (×e−2) 1.62 ± 0.10 1.67 ± 0.10 1.68 ± 0.11 0.035a 0.027 0.044 0.432
Lp 84.64 ± 5.43 82.67 ± 6.18 81.55 ± 5.59 0.100a - - -
Cp (×e−2) 4.49 ± 0.39 4.51 ± 0.39 4.53 ± 0.38 0.958a - - -
γ 7.23 ± 0.23 7.21 ± 0.24 7.19 ± 0.18 0.704a - - -
λ 1.38 ± 0.02 1.38 ± 0.02 1.38 ± 0.01 0.581a - - -
σ 5.23 ± 0.15 5.22 ± 0.15 5.21 ± 0.13 0.835a - - -
Abbreviations: AUC = area under the curve; Eglob = the global efficiency; Eloc = the local efficiency; Lp = the shortest path length; Cp = the 
clustering coefficient; γ = the normalized clustering coefficient; λ = the normalized shortest path length; σ = the small-world index

Fig. 2  Group comparisons of global topological properties
Data points marked with a star indicate the global property showing 
significant differences (p < 0.05, ANCOVA with LSD post-hoc test) in 

the CSVD-s group compared with the CSVD-m and control groups 
under a corresponding sparsity threshold. There was no difference 
between the CSVD-m and control groups
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structural networks in patients with CSVD, highlighted the 
importance of network analysis, and provided insights pro-
moting a better understanding of the relationship between 
altered structural networks and cognitive deficits in patients 
with different CSVD burdens.

The human brain is understood to be a complex net-
work with small-world properties, characterized by high 
local clustering and short path lengths, reflecting a balance 

significantly decreased Eloc, which implied a disturbance 
in information exchange in the structural brain network of 
CSVD-s patients. Moreover, widespread decreased Enodal in 
CSVD-s patients was found mainly in the cognitive func-
tional regions. Intriguingly, significant correlations between 
network efficiency and cognitive performance scores 
were detected mainly in CSVD-s patients. These find-
ings revealed the disruption of topological organization in 

Fig. 3  Hub region distributions in the WM structural networks and 
nodes with altered efficiency among the three groups
(a) Hub nodes are displayed with different node sizes indicating their 
nodal efficiency values. (b) The CSVD-s group exhibited significantly 

increased nodal efficiency, and the scaled node sizes indicate the F 
values in the ANCOVA test. The brain graphs were visualized by using 
BrainNet Viewer software (http://www.nitrc.org/projects/bnv/). For 
the abbreviations of nodes, see Supplementary Table 1
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efficiency [39]. Eloc quantifies the resistance of a network 
to small-scale damage. Therefore, a reduced Eloc means that 
when one region is damaged or disconnected, its connec-
tions with linked regions are dramatically affected [40]. Our 
previous study on the functional brain networks revealed 
significantly decreased Eloc in CSVD patients with CMBs 
[41]. In addition, compared with the CSVD-m group, the 
CSVD-s group had more severe pathological changes, more 
diverse MRI features and more severe topological disrup-
tion. Therefore, compared with the control group, only the 
CSVD-s group changed significantly, while no significant 
change was observed in the CSVD-m group.

Apart from studying the global properties, we also inves-
tigated the nodal topology of structural networks. Hub 
regions occupy a central position and interact with many 
brain regions in the network, supporting their diverse func-
tional roles across a broad range of tasks and widespread 
dynamic coupling within and across networks [42]. How-
ever, due to the high level of centrality of hub regions, these 
regions are susceptible to disconnection and dysfunction 
in brain diseases [42]. We defined the hub regions of brain 
structural networks according to the nodal efficiency of the 
network and found that the three groups had highly simi-
lar hub distributions, with hub regions mainly in the fron-
tal gyri (bilateral IFGoperc), occipital gyri (bilateral IOG), 
parietal (right inferior parietal gyrus, angular gyrus and 
left SMG), temporal gyri (bilateral Heschl gyrus and right 
amygdala) and left posterior cingulate gyrus, supporting the 
view that the key regions of the structural network can toler-
ate developmental alterations and disease [12]. In addition, 
the CSVD-s and control groups each had an additional hub 
region in the left hippocampus and angular gyrus, respec-
tively, and the CSVD-m group lacked the left Rolandic 
operculum as a hub region. This may be due to the changes 
in the brain structural networks during the course of the 

between global integration and local segregation [31]. In 
this study, both CSVD patients and controls showed small-
world properties of WM structural networks, which was 
consistent with previous studies of structural networks 
in CSVD patients [32]. compared with the CSVD-m and 
control groups, the CSVD-s group exhibited significantly 
decreased Eloc, which means that the structural network has 
decreased efficiency in information processing and transfer 
in CSVD-s patients [33]. A considerable amount of research 
has shown that WM integrity is widely impaired in CSVD 
patients [34–36], and damage to WM leads to a breakdown 
in the structural and functional connections among specific 
brain regions [35, 37, 38], which cause reduced network 
efficiency [39]. Some researchers have suggested that dis-
connections between brain regions cause reduced network 

Table 3  Hub regions of WM networks in both the CSVD and control 
groups
CSVD-s CSVD-m HC
regions Enodal 

(×e−2)
regions Enodal 

(×e−2)
regions Enodal 

(×e−2)
IFGoperc.L 2.67 IFGoperc.L 2.86 IFGoperc.L 2.85
IFGoperc.R 2.48 IFGoperc.R 2.64 IFGoperc.R 2.73
PCG.L 2.44 PCG.L 2.52 PCG.L 2.56
AMYG.R 2.44 AMYG.R 2.52 AMYG.R 2.58
IOG.L 2.70 IOG.L 2.77 IOG.L 2.79
IOG.R 2.53 IOG.R 2.63 IOG.R 2.65
IPL.R 2.62 IPL.R 2.67 IPL.R 2.67
SMG.L 2.99 SMG.L 2.98 SMG.L 3.07
ANG.R 2.85 ANG.R 2.81 ANG.R 2.77
HES.L 4.73 HES.L 4.99 HES.L 5.07
HES.R 4.33 HES.R 4.48 HES.R 4.65
ROL.L 2.38 ROL.L 2.50
HIP.L 2.41 ANG.L 2.53
Abbreviations: WM = white matter; Enodal = nodal efficiency. Enodal 
represents the AUC value of nodal efficiency across thresholds; For 
the abbreviations of regions, see Supplementary Table 1

Table 4  Brain regions showing significantly altered nodal efficiency among the three groups for the WM networks
Enodal (×e−2) p value

(ANCOVA)
p value (post-hoc)

Module Region CSVD-s CSVD-m HC CSVD-s 
vs. HC

CSVD-s vs. 
CSVD-m

CSVD-
m vs. 
HC

attention ORBsup.L 1.64 ± 0.24 1.73 ± 0.25 1.67 ± 0.25 0.042  N.S. 0.007  N.S.
attention IFGoperc.R 2.48 ± 0.27 2.64 ± 0.37 2.73 ± 0.29 0.015 0.002 0.042  N.S.
attention ANG.L 2.37 ± 0.34 2.36 ± 0.37 2.53 ± 0.44 0.037 0.045  N.S. 0.012
sensory/motor SMA.R 1.14 ± 0.23 1.26 ± 0.28 1.22 ± 0.27 0.021  N.S. 0.005  N.S.
sensory/motor INS.R 1.84 ± 0.24 1.95 ± 0.32 2.02 ± 0.26 0.042 0.008  N.S. N.S.
DMN ACG.L 0.90 ± 0.13 0.97 ± 0.16 1.02 ± 0.19 0.002 0.001 0.015  N.S.
DMN ACG.R 1.33 ± 0.22 1.44 ± 0.32 1.53 ± 0.33 0.007 0.006 0.041  N.S.
Subcortical CAU.L 0.57 ± 0.16 0.68 ± 0.21 0.73 ± 0.22 0.030 0.022 0.027  N.S.
Subcortical CAU.R 0.50 ± 0.09 0.58 ± 0.18 0.62 ± 0.16 0.027 0.003 0.035  N.S.
Subcortical PAL.L 1.11 ± 0.79 0.88 ± 0.34 0.78 ± 0.26 0.008 0.007  N.S. N.S.
Abbreviations: DMN = default mode network; N.S.= not significant. Enodal represents the AUC values (mean ± SD) of the nodal efficiency of 
each group. For the abbreviations of regions, see Supplementary Table 1
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patients, and it is not difficult to understand that the Enodal 
reduction is more significant in this group. Intriguingly, the 
CSVD-s group showed increased Enodal in the pallidum. We 
hypothesize that this is a compensatory mechanism of the 
brain for regions with reduced Enodal.

The CSVD burden is an important predictor for cogni-
tive impairment in patients [50]. However, the role of brain 
structural network efficiency in the cognitive decline of 
CSVD patients has not yet been explored. We observed sig-
nificant correlations between Enodal and cognitive parameters 
in the CSVD-s group in the bilateral caudate nucleus, right 
IFGoperc, SMA and left angular gyrus. Importantly, Enodal 
in the right caudate nucleus and left angular gyrus was sig-
nificantly correlated with all five cognitive parameters. The 
caudate nucleus was suggested to be an important part of 
the brain’s learning and memory system and plays a role in 
stereotyped and repetitive functions [51]. The angular gyrus 
and its connectivity with other brain regions are involved 
in memory function to different degrees [52]. Moreover, 
the IFGoperc, a brain region whose function encompasses 
both social cognition and emotion, serves as both a sensory-
cognitive integration area and a control node of the ven-
tral attention network [53]. Damage to the SMA region can 
affect executive function/cognitive control [54]. Through 
the mediation of Enodal, these regions affect the cognitive 
function of the brain from multiple perspectives. We infer 
that the right caudate nucleus and left angular gyrus may 

disease in CSVD patients, which affect the optimal paths of 
information transmission and ultimately lead to alterations 
in the hub distribution.

In this study, we also researched nodal efficiency and 
observed that the CSVD-s group had decreased Enodal in 
nine brain regions, primarily located in subcortical, DMN, 
motor and attention functional modules [43], compared with 
the CSVD-m or control groups. Several studies have consis-
tently shown that nodal efficiency decreased in brain regions 
associated with these functional modules in CSVD patients 
[16, 44, 45]. In addition, we found that the decrease in 
nodal efficiency was more severe in CSVD-s patients. Sig-
nificantly decreased nodal efficiency in the CSVD-s group 
indicated that the ability to transmit information between 
this node and other nodes in the network decreased. With 
the progression of the disease, TNF-α expression in endo-
thelial cells increases [46]. TNF-α increases blood brain 
barrier (BBB) permeability by inhibiting the expression of 
tight junction complexes [47]. Leakage of inflammatory 
substances into the brain through a disrupted BBB leads 
to central nervous system (CNS) inflammation [48]. In the 
presence of TNF-α, microglia can promote the release of 
glutamate from astrocytes, thereby enhancing the excitotox-
icity of neurons [49]. In excitotoxicity, excessive release of 
glutamate leads to calcium overload in neurons, resulting in 
neuronal dysfunction, necrosis or apoptosis. Therefore, the 
destruction of the brain structure is more severe in CSVD-s 

Fig. 4  Pearson’s correlations between nodal efficiency and cognitive 
parameters in both the CSVD and control groups
(a–c) Heat map of the correlation coefficient between nodal efficiency 
of disrupted regions and cognitive tests scores for the CSVD-s group, 
CSVD-m group and controls, respectively. *: p < 0.05, **: p < 0.01. 

For the CSVD-s group, network efficiency was significantly positively 
correlated with MoCA, AVLT, and SDMT scores and negatively cor-
related with SCWT and TMT (B-A) scores in multiple regions. For the 
abbreviations of nodes, see Supplementary Table 1
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Some limitations in this study should be considered. 
First, the use of a cross-sectional design implied that no 
conclusion about the temporality of alterations in CSVD 
burden, network properties, and cognition can be obtained. 
Second, this study only elaborated on disrupted WM struc-
tural networks, and follow-up studies should be conducted 
to combine structural and functional MR imaging to pro-
vide a comprehensive understanding with regard to the 
structure‒function coupling relationship. Third, although 
the CSVD burden was introduced in our study to compen-
sate for the shortcomings of a single neuroimaging feature, 
we still need to investigate whether different scoring fea-
tures have significant differences in brain structural changes 
under the same burden score.

be two key areas that are more correlated with the sever-
ity of cognition, which is important for the exploration of 
neurophysiological mechanisms in CSVD-s patients. More-
over, all network efficiencies were significantly correlated 
with the SCWT scores, indicating that CSVD-s patients 
were most susceptible to impairment of visual search speed, 
working memory and conflict monitoring ability. Based 
on Pearson’s correlation analysis, we speculate that only 
when the CSVD burden reaches a certain level will sub-
stantial damage to the brain structure occur, resulting in a 
linear decline in cognitive function. These results highlight 
the importance of investigating the correlation between 
network metrics and cognitive function in patients with 
different CSVD burdens, suggesting that early screening, 
diagnosis, detection and treatment of CSVD patients could 
prevent or delay cognitive decline.

Fig. 5  Scatter plots showing the significant (all p < 0.05, FDR cor-
rected) Pearson’s correlations between network efficiency and cogni-
tive parameters
The red, orange and blue represent the CSVD-s, CSVD-m and con-

trol groups respectively. Linear regression lines with 95% confidence 
intervals for the best-fit line (shading area), as well as r (partial corre-
lation coefficient) and p values, are provided. For the abbreviations of 
nodes, see Supplementary Table 1
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