Skip to main content

Advertisement

Log in

HSP27 Modulates Neuropathic Pain by Inhibiting P2X3 Degradation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The role of heat shock protein 27 (HSP27), a chaperone, in neuropathic pain after nerve injury has not been systematically surveyed despite its neuroprotective and regeneration-promoting effects. In this study, we found that HSP27 expression in sensory neurons of the dorsal root ganglia (DRG) mediated nerve injury–induced neuropathic pain. Neuropathic pain behaviors were alleviated by silencing HSP27 in the DRG of a rat spinal nerve ligation (SNL) model. Local injection of an HSP27-overexpression construct into the DRG of naïve rats elicited neuropathic pain behaviors. HSP27 interacted with a purinergic receptor, P2X3, and their expression patterns corroborated the induction and reversal of neuropathic pain according to two lines of evidence: colocalization immunohistochemically and immunoprecipitation biochemically. In a cell model cotransfected with HSP27 and P2X3, the degradation rate of P2X3 was reduced in the presence of HSP27. Such an alteration was mediated by reducing P2X3 ubiquitination in SNL rats and was reversed after silencing HSP27 in the DRGs of SNL rats. In summary, the interaction of HSP27 with P2X3 provides a new mechanism of injury-induced neuropathic pain that could serve as an alternative therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Xiao HS, Huang QH, Zhang FX, Bao L, Lu YJ, Guo C, Yang L, Huang WJ et al (2002) Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci U S A 99(12):8360–8365

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sun W, Kou D, Yu Z, Yang S, Jiang C, Xiong D, Xiao L, Deng Q et al (2020) A transcriptomic analysis of neuropathic pain in rat dorsal root ganglia following peripheral nerve injury. Neuromolecular Med 22(2):250–263

    CAS  PubMed  Google Scholar 

  3. North RY, Li Y, Ray P, Rhines LD, Tatsui CE, Rao G, Johansson CA, Zhang H et al (2019) Electrophysiological and transcriptomic correlates of neuropathic pain in human dorsal root ganglion neurons. Brain 142(5):1215–1226

    PubMed  PubMed Central  Google Scholar 

  4. Hu G, Huang K, Hu Y, Du G, Xue Z, Zhu X, Fan G (2016) Single-cell RNA-seq reveals distinct injury responses in different types of DRG sensory neurons. Sci Rep 6:31851

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Denk F, McMahon SB (2012) Chronic pain: emerging evidence for the involvement of epigenetics. Neuron 73(3):435–444

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hirai T, Mulpuri Y, Cheng Y, Xia Z, Li W, Ruangsri S, Spigelman I, Nishimura I (2017) Aberrant plasticity of peripheral sensory axons in a painful neuropathy. Sci Rep 7(1):3407

    PubMed  PubMed Central  Google Scholar 

  7. Khoutorsky A, Price TJ (2018) Translational control mechanisms in persistent pain. Trends Neurosci 41(2):100–114

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Laedermann CJ, Decosterd I, Abriel H (2014) Ubiquitylation of voltage-gated sodium channels. Handb Exp Pharmacol 221:231–250

    CAS  PubMed  Google Scholar 

  9. Wang SM, Goguadze N, Kimura Y, Yasui Y, Pan B, Wang TY, Nakamura Y, Lin YT et al (2021) Genomic action of sigma-1 receptor chaperone relates to neuropathic pain. Mol Neurobiol 58(6):2523–2541

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Singh MK, Sharma B, Tiwari PK (2017) The small heat shock protein Hsp27: Present understanding and future prospects. J Therm Biol 69:149–154

    CAS  PubMed  Google Scholar 

  11. Schwartz NU (2019) Charcot-marie-tooth 2F (Hsp27 mutations): A review. Neurobiol Dis 130:104505

    CAS  PubMed  Google Scholar 

  12. Ousman SS, Frederick A, Lim EF (2017) Chaperone proteins in the central nervous system and peripheral nervous system after nerve injury. Front Neurosci 11:79

    PubMed  PubMed Central  Google Scholar 

  13. Chine VB, Au NPB, Ma CHE (2019) Therapeutic benefits of maintaining mitochondrial integrity and calcium homeostasis by forced expression of Hsp27 in chemotherapy-induced peripheral neuropathy. Neurobiol Dis 130:104492

    PubMed  Google Scholar 

  14. Mahajan K, Coppola D, Rawal B, Chen YA, Lawrence HR, Engelman RW, Lawrence NJ, Mahajan NP (2012) Ack1-mediated androgen receptor phosphorylation modulates radiation resistance in castration-resistant prostate cancer. J Biol Chem 287(26):22112–22122

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hsieh YL, Chiang H, Lue JH, Hsieh ST (2012) P2X3-mediated peripheral sensitization of neuropathic pain in resiniferatoxin-induced neuropathy. Exp Neurol 235(1):316–325

    CAS  PubMed  Google Scholar 

  16. Hori K, Ozaki N, Suzuki S, Sugiura Y (2010) Upregulations of P2X(3) and ASIC3 involve in hyperalgesia induced by cisplatin administration in rats. Pain 149(2):393–405

    CAS  PubMed  Google Scholar 

  17. Inoue K, Tsuda M (2021) Nociceptive signaling mediated by P2X3, P2X4 and P2X7 receptors. Biochem Pharmacol 187:114309

    CAS  PubMed  Google Scholar 

  18. Leng C, Chen L, Li C (2019) Alteration of P2X1-6 receptor expression in retrograde Fluorogold-labeled DRG neurons from rat chronic neuropathic pain model. Biomed Rep 10(4):225–230

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen Z, Huang Q, Song X, Ford NC, Zhang C, Xu Q, Lay M, He SQ et al (2022) Purinergic signaling between neurons and satellite glial cells of mouse dorsal root ganglia modulates neuronal excitability in vivo. Pain 163(8):1636–1647

    CAS  PubMed  Google Scholar 

  20. Ugarte GD, Opazo T, Leisewitz F, van Zundert B, Montecino M (2012) Runx1 and C/EBPbeta transcription factors directly up-regulate P2X3 gene transcription. J Cell Physiol 227(4):1645–1652

    CAS  PubMed  Google Scholar 

  21. Cho T, Chaban VV (2012) Interaction between P2X3 and oestrogen receptor (ER)alpha/ERbeta in ATP-mediated calcium signalling in mice sensory neurones. J Neuroendocrinol 24(5):789–797

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nascimento DSM, Potes CS, Soares ML, Ferreira AC, Malcangio M, Castro-Lopes JM, Neto FLM (2018) Drug-induced HSP90 inhibition alleviates pain in monoarthritic rats and alters the expression of new putative pain players at the DRG. Mol Neurobiol 55(5):3959–3975

    CAS  PubMed  Google Scholar 

  23. Migita K, Ozaki T, Shimoyama S, Yamada J, Nikaido Y, Furukawa T, Shiba Y, Egan TM et al (2016) HSP90 regulation of P2X7 receptor function requires an intact cytoplasmic C-terminus. Mol Pharmacol 90(2):116–126

    CAS  PubMed  Google Scholar 

  24. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–110

    PubMed  Google Scholar 

  25. Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50(3):355–363

    Google Scholar 

  26. Chang MF, Hsieh JH, Chiang H, Kan HW, Huang CM, Chellis L, Lin BS, Miaw SC et al (2016) Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection. Sci Rep 6:35612

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kan HW, Chiang H, Lin WM, Yu IS, Lin SW, Hsieh ST (2018) Sensory nerve degeneration in a mouse model mimicking early manifestations of familial amyloid polyneuropathy due to transthyretin Ala97Ser. Neuropathol Appl Neurobiol 44(7):673–686

    CAS  PubMed  Google Scholar 

  28. Villetti G, Bergamaschi M, Bassani F, Bolzoni PT, Maiorino M, Pietra C, Rondelli I, Chamiot-Clerc P et al (2003) Antinociceptive activity of the N-methyl-D-aspartate receptor antagonist N-(2-Indanyl)-glycinamide hydrochloride (CHF3381) in experimental models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 306(2):804–814

    CAS  PubMed  Google Scholar 

  29. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Rooney DL, Zhang M et al (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33(3):401–406

    CAS  PubMed  Google Scholar 

  30. Benn SC, Perrelet D, Kato AC, Scholz J, Decosterd I, Mannion RJ, Bakowska JC, Woolf CJ (2002) Hsp27 upregulation and phosphorylation is required for injured sensory and motor neuron survival. Neuron 36(1):45–56

    CAS  PubMed  Google Scholar 

  31. Lin YY, Tseng TJ, Hsieh YL, Luo KR, Lin WM, Chiang H, Hsieh ST (2008) Depletion of peptidergic innervation in the gastric mucosa of streptozotocin-induced diabetic rats. Exp Neurol 213(2):388–396

    CAS  PubMed  Google Scholar 

  32. Hsieh YL, Chiang H, Tseng TJ, Hsieh ST (2008) Enhancement of cutaneous nerve regeneration by 4-methylcatechol in resiniferatoxin-induced neuropathy. J Neuropathol Exp Neurol 67(2):93–104

    CAS  PubMed  Google Scholar 

  33. Rabgay K, Waranuch N, Chaiyakunapruk N, Sawangjit R, Ingkaninan K, Dilokthornsakul P (2020) The effects of cannabis, cannabinoids, and their administration routes on pain control efficacy and safety: A systematic review and network meta-analysis. J Am Pharm Assoc (2003) 60(1):225–234 e6

    PubMed  Google Scholar 

  34. Chen R, Yin C, Fang J, Liu B (2021) The NLRP3 inflammasome: an emerging therapeutic target for chronic pain. J Neuroinflammation 18(1):84

    PubMed  PubMed Central  Google Scholar 

  35. Ueda H (2021) Pathogenic mechanisms of lipid mediator lysophosphatidic acid in chronic pain. Prog Lipid Res 81:101079

    CAS  PubMed  Google Scholar 

  36. Inoue M, Rashid MH, Fujita R, Contos JJ, Chun J, Ueda H (2004) Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat Med 10(7):712–718

    CAS  PubMed  Google Scholar 

  37. Rivera RR, Lin ME, Bornhop EC, Chun J (2020) Conditional Lpar1 gene targeting identifies cell types mediating neuropathic pain. FASEB J 34(7):8833–8842

    CAS  PubMed  Google Scholar 

  38. Gonzalez-Gil I, Zian D, Vazquez-Villa H, Hernandez-Torres G, Martinez RF, Khiar-Fernandez N, Rivera R, Kihara Y et al (2020) A novel agonist of the type 1 lysophosphatidic acid receptor (LPA(1)), UCM-05194, shows efficacy in neuropathic pain amelioration. J Med Chem 63(5):2372–2390

    CAS  PubMed  Google Scholar 

  39. Renthal W, Tochitsky I, Yang L, Cheng YC, Li E, Kawaguchi R, Geschwind DH, Woolf CJ (2020) Transcriptional Reprogramming of Distinct Peripheral Sensory Neuron Subtypes after Axonal Injury. Neuron 108(1):128–144 e9

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Romero A, Gonzalez-Cuello A, Laorden ML, Campillo A, Vasconcelos N, Romero-Alejo E, Puig MM (2012) Effects of surgery and/or remifentanil administration on the expression of pERK1/2, c-Fos and dynorphin in the dorsal root ganglia in mice. Naunyn Schmiedebergs Arch Pharmacol 385(4):397–409

    CAS  PubMed  Google Scholar 

  41. Marvaldi L, Panayotis N, Alber S, Dagan SY, Okladnikov N, Koppel I, Di Pizio A, Song DA et al (2020) Importin alpha3 regulates chronic pain pathways in peripheral sensory neurons. Science 369(6505):842–846

    CAS  PubMed  Google Scholar 

  42. Ding S, Yu Q, Wang J, Zhu L, Li T, Guo X, Zhang X (2020) Activation of ATF3/AP-1 signaling pathway is required for P2X3-induced endometriosis pain. Hum Reprod 35(5):1130–1144

    CAS  PubMed  Google Scholar 

  43. Stetler RA, Gao Y, Signore AP, Cao G, Chen J (2009) HSP27: mechanisms of cellular protection against neuronal injury. Curr Mol Med 9(7):863–872

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Navarro-Zaragoza J, Cuenca-Bermejo L, Almela P, Laorden ML, Herrero MT (2021) Could small heat shock protein HSP27 be a first-line target for preventing protein aggregation in Parkinson's disease? Int J Mol Sci 22(6)

  45. Li X, Kang L, Li G, Zeng H, Zhang L, Ling X, Dong H, Liang S et al (2013) Intrathecal leptin inhibits expression of the P2X2/3 receptors and alleviates neuropathic pain induced by chronic constriction sciatic nerve injury. Mol Pain 9:65

    PubMed  PubMed Central  Google Scholar 

  46. Chen L, Liu YW, Yue K, Ru Q, Xiong Q, Ma BM, Tian X, Li CY (2016) Differential expression of ATP-gated P2X receptors in DRG between chronic neuropathic pain and visceralgia rat models. Purinergic Signal 12(1):79–87

    CAS  PubMed  Google Scholar 

  47. Xia LP, Luo H, Ma Q, Xie YK, Li W, Hu H, Xu ZZ (2021) GPR151 in nociceptors modulates neuropathic pain via regulating P2X3 function and microglial activation. Brain

  48. Cook SP, McCleskey EW (2002) Cell damage excites nociceptors through release of cytosolic ATP. Pain 95(1-2):41–47

    CAS  PubMed  Google Scholar 

  49. Xiang Z, Xiong Y, Yan N, Li X, Mao Y, Ni X, He C, LaMotte RH et al (2008) Functional up-regulation of P2X 3 receptors in the chronically compressed dorsal root ganglion. Pain 140(1):23–34

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Razandi M, Pedram A, Levin ER (2010) Heat shock protein 27 is required for sex steroid receptor trafficking to and functioning at the plasma membrane. Mol Cell Biol 30(13):3249–3261

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Spinaci A, Buccioni M, Dal Ben D, Marucci G, Volpini R, Lambertucci C (2021) P2X3 receptor ligands: structural features and potential therapeutic applications. Front Pharmacol 12:653561

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Davenport AJ, Neagoe I, Brauer N, Koch M, Rotgeri A, Nagel J, Laux-Biehlmann A, Machet F et al (2021) Eliapixant is a selective P2X3 receptor antagonist for the treatment of disorders associated with hypersensitive nerve fibers. Sci Rep 11(1):19877

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Richards D, Gever JR, Ford AP, Fountain SJ (2019) Action of MK-7264 (gefapixant) at human P2X3 and P2X2/3 receptors and in vivo efficacy in models of sensitisation. Br J Pharmacol 176(13):2279–2291

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Charmpilas N, Kyriakakis E, Tavernarakis N (2017) Small heat shock proteins in ageing and age-related diseases. Cell Stress Chaperones 22(4):481–492

    PubMed  PubMed Central  Google Scholar 

  55. Bohush A, Bieganowski P, Filipek A (2019) Hsp90 and its co-chaperones in neurodegenerative diseases. Int J Mol Sci 20(20)

  56. Shelton LB, Baker JD, Zheng D, Sullivan LE, Solanki PK, Webster JM, Sun Z, Sabbagh JJ et al (2017) Hsp90 activator Aha1 drives production of pathological tau aggregates. Proc Natl Acad Sci U S A 114(36):9707–9712

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chaudhury S, Keegan BM, Blagg BSJ (2021) The role and therapeutic potential of Hsp90, Hsp70, and smaller heat shock proteins in peripheral and central neuropathies. Med Res Rev 41(1):202–222

    CAS  PubMed  Google Scholar 

  58. Iftinca M, Flynn R, Basso L, Melo H, Aboushousha R, Taylor L, Altier C (2016) The stress protein heat shock cognate 70 (Hsc70) inhibits the Transient Receptor Potential Vanilloid type 1 (TRPV1) channel. Mol Pain 12

  59. Garcia-Caballero A, Gadotti VM, Stemkowski P, Weiss N, Souza IA, Hodgkinson V, Bladen C, Chen L et al (2014) The deubiquitinating enzyme USP5 modulates neuropathic and inflammatory pain by enhancing Cav3.2 channel activity. Neuron 83(5):1144–1158

    CAS  PubMed  Google Scholar 

  60. Xue P, Liu X, Shen Y, Ju Y, Lu X, Zhang J, Xu G, Sun Y et al (2018) E3 ubiquitin ligase c-Cbl inhibits microglia activation after chronic constriction injury. Neurochem Res 43(8):1631–1640

    CAS  PubMed  Google Scholar 

  61. Freilich R, Arhar T, Abrams JL, Gestwicki JE (2018) Protein-protein interactions in the molecular chaperone network. Acc Chem Res 51(4):940–949

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Choi SK, Hwang SY, Jeon S, Yoo H, Lee J, Shin JH, Na Y, Kwon Y et al (2023) Design, synthesis, and biological evaluation of novel HSP27 inhibitors to sensitize lung cancer cells to clinically available anticancer agents. Bioorg Chem 130:106260

    CAS  PubMed  Google Scholar 

  63. Umar HI, Ajayi AT, Mukerjee N, Aborode AT, Hasan MM, Maitra S, Bello RO, Alabere HO et al (2022) Discovery of novel HSP27 inhibitors as prospective anti-cancer agents utilizing computer-assisted therapeutic discovery approaches. Cells 11(15)

Download references

Acknowledgements

This work was supported by grants from Ministry of Science and Technology (MOST 107–2320-B-002–043-MY3, MOST 107–3017-F-002–002), Ministry of Education (107L9014–2), National Health Research Institutes (NHRI-112BCCO-EB-232332), and National Taiwan University Hospital (UN112-UN0019).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: S.-T.H. Performed the experiments and conducted the analysis: T.-Y.Y., M.-F.C., H.-W.K., and H.C. Writing and editing: T.-Y.Y. and M.-F.G. Prepared figures: T.-Y.Y. and M.-F.G. Supervision: S.-T.H. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sung-Tsang Hsieh.

Ethics declarations

Ethics Approval and Consent to Participate

All procedures performed for using animals in the experiments were in accordance with the ethical standards of the Institutional Animal Care and Use Committee, National Taiwan University College of Medicine.

Consent for Publication

All authors gave consent for publication.

Conflicts of Interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3434 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, TY., Chang, MF., Kan, YY. et al. HSP27 Modulates Neuropathic Pain by Inhibiting P2X3 Degradation. Mol Neurobiol 61, 707–724 (2024). https://doi.org/10.1007/s12035-023-03582-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03582-7

Keywords

Navigation