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Abstract
Estrogens function in numerous physiological processes including controlling brain cell growth and differentiation. 2-Meth-
oxestradiol (2-ME2), a 17β-estradiol (E2) metabolite, is known for its anticancer effects as observed both in vivo and in vitro. 
2-ME2 affects all actively dividing cells, including neurons. The study aimed to determine whether 2-ME2 is a potentially 
cancer-protective or rather neurodegenerative agent in a specific tissue culture model as well as a clinical setup. In this study, 
2-ME2 activity was determined in a Parkinson’s disease (PD) in vitro model based on the neuroblastoma SH-SY5Y cell line. 
The obtained results suggest that 2-ME2 generates nitro-oxidative stress and controls heat shock proteins (HSP), resulting 
in DNA strand breakage and apoptosis. On the one hand, it may affect intensely dividing cells preventing cancer develop-
ment; however, on the other hand, this kind of activity within the central nervous system may promote neurodegenerative 
diseases like PD. Thus, the translational value of 2-ME2’s neurotoxic activity in a PD in vitro model was also investigated. 
LC–MS/MS technique was used to evaluate estrogens and their derivatives, namely, hydroxy and methoxyestrogens, in PD 
patients’ blood, whereas the stopped-flow method was used to assess hydrogen peroxide  (H2O2) levels. Methoxyestrogens 
and  H2O2 levels were increased in patients’ blood as compared to control subjects, but hydoxyestrogens were simultaneously 
decreased. From the above, we suggest that the determination of plasma levels of methoxyestrogens and  H2O2 may be a novel 
PD biomarker. The presented research is the subject of the pending patent application “The use of hydrogen peroxide and 
17β-estradiol and its metabolites as biomarkers in the diagnosis of neurodegenerative diseases,” no. P.441360.
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Introduction

Estrogens are sex hormones that are endogenously gener-
ated from cholesterol and serve important roles in a variety 
of physiological processes. Different organs and tissues, 
including the ovaries, testes, adipose tissue, and adrenal 
cortex, physiologically produce three major forms of estro-
gen: estrone (E1), estradiol (E2), and estriol (E3). They are 
known to elicit numerous neuroprotective effects by acting 
as antioxidants, mostly through estrogen receptors, and so 
up-regulating the production of antioxidant enzymes, as 
well as encouraging DNA repair, boosting growth factor 
expression, and regulating cerebral blood flow. Furthermore, 
estrogen-dependent signaling pathways regulate neurogenic 
processes by balancing the proliferation and differentiation 
of brain stem/progenitor cells. [1]. Likewise, cortical and 
hippocampal cells have both traditional (ERα and ERβ) and 
non-classical (GPER-1) estrogen receptors [2–4].

2-Methoxyestradiol (2-ME2), the major physiological 
metabolite of E2, inhibits cancerous and metastatic pro-
cesses (breast cancer, pancreatic cancer, Ewing’s sarcoma, 
and osteosarcoma) by affecting the growth and death mode 
of several neoplastic cell types both in vivo and in vitro 
[5–7]. 2-ME2 is present in both men and women and its 
level in the blood plasma ranges from mere pg/mL in men 
up to over 10,000 pg/mL in pregnant women [8]. A large 
number of studies revealed that 2-ME2 selectively induces 
neuronal nitric oxide synthase (nNOS) in both cancer and 
neuronal cell lines, notably, at pharmacological and physi-
ological concentrations [9–11]. From a molecular stand-
point, 2-ME2 enhances the localization of nNOS in the 
cell nucleus, resulting in DNA damage from nitro-oxida-
tive stress, which leads to cell cycle arrest and apoptosis in 
osteosarcoma 143b cells [9–14]. The activation of nNOS 
and further release of nitric oxide (NO) as observed at 
physiological levels of 2-ME2, show that 2-ME2 is not 
just a waste metabolic product but rather a biologically 
active molecule, and specifically an independent hor-
mone acting on its own [10]. In addition, it is important 
to note that the above-mentioned mechanism of action of 
2-ME2 is not confined to neoplastic cells, but rather to 
any actively dividing cells, including neurons [15] which 
is worth noticing in light of the fact that there are actually 
two sites of active neurogenesis in the adult brain—the 
dentate gyrus of the hippocampus and the subventricular 
part of the olfactory bulb [16]. Therefore, it is worthwhile 
to investigate if 2-ME2 as a potential anti-cancer drug may 
harmfully affect the brain cells. It has been shown that 
only pharmacological concentrations of 2-ME2 are also 
cytotoxic toward immortalized mouse hippocampal HT22 
cells, which is an interesting and challenging research 
prospect [11].

Up to this date, there is no data about the induction 
of Parkinson-like symptoms in animals by 2-ME2. Sev-
eral canine cancer cell lines [17], as well as tumor xeno-
graft development nude mice, have been used to research 
2-ME2’s anticancer features [18, 19]. In this project, the 
inverse relationship between PD and cancer incidence has 
specifically drawn the researchers’ attention. PD patients 
show some resistance to cancer, even tobacco-dependent 
cancers [20, 21]. The hippocampus is well known to be 
undergoing neurogenesis, so it is only logical that it may 
be particularly vulnerable to the potentially cytotoxic 
effects of 2-ME2. In addition to that, 2-ME2 is formed 
from E2 with the involvement of catechol-O-methyltrans-
ferase (COMT), an enzyme present in the hippocampus, 
which supports the claim that 2-ME2 levels may be quite 
meaningful in that area of the brain [16, 22, 23]. One of 
the key aims of our research was to clarify whether 2-ME2 
can be treated as a physiological factor protecting against 
cancer induction, and simultaneously the one contributing 
to the development of neurodegenerative diseases, specifi-
cally PD.

In the present study, 2-ME2 effect on the neuroblastoma 
(NB) SH-SY5Y cell line, as an in vitro PD model, was 
examined. The obtained results suggest that 2-ME2 gen-
erates nitro-oxidative stress and also regulates heat shock 
proteins (HSP) in NB SH-SY5Y cells leading to DNA 
strand breaks and consequently resulting in apoptosis.

Parkinson’s disease (PD) is a relatively frequent pro-
gressive neurodegenerative disease characterized by a 
variety of motor and non-motor symptoms [24–26]. Most 
motor symptoms may manifest at a late stage when the 
majority of dopaminergic neurons have already been 
destroyed [27]. Reliable diagnostic and prognostic bio-
markers are urgently required for the early diagnosis and 
possible subsequent treatment of PD at the initial stage.

The other part of our study was carried out in order to 
compare the results of the in vitro results with our obser-
vations based on the clinical model. The concentration of 
estrogens and their selected derivatives was determined in 
the plasma of patients presenting with PD by the LC–MS/
MS method, and the concentration of hydrogen peroxide 
 (H2O2) as a powerful biological oxidizer, was determined 
using our research team's original analytical stopped-flow 
technique, specifically adopted for the purpose [28–30]. 
Interestingly, the concentration of  H2O2 as measured in 
the blood of patients suffering from PD was significantly 
higher than in healthy individuals. Based on the above, 
we suggest that plasma levels of hydroxy- or methoxyes-
trogens, as well as plasma  H2O2 levels may be used in 
combination as reliable biomarkers for the diagnosis and 
monitoring of PD. The research results presented in our 
study are being evaluated as a patent application, enti-
tled: “Use of hydrogen peroxide, and 17β-estradiol and its 
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metabolites as biomarkers in the diagnosis of neurodegen-
erative diseases,” number P.441360.

Material and Methods

In Vitro Studies

Cell Culture

Experiments employed NB SH-SY5Y cell line as the neu-
rodegenerative cellular model. Sigma Aldrich (Poznan, 
Poland) provided human NB SH-SY5Y. The cells were 
grown in DMEM/F12 medium with 10% FBS, 1% L-glu-
tamine, 1% non-essential amino acids (Sigma-Aldrich), and 
1% penicillin/streptomycin at 37 °C with 5%  CO2.

Cell Treatment

First, NB SH-SY5Y cells were seeded in culture media at 
appropriate densities 24 h before treatment. Next, the cells 
were treated with physiological (100 pM, 1 nM, and 10 nM) 
and pharmacological (100 nM, 1 μM, and 10 μM) concen-
trations of 2-ME2. The investigations were carried out in 
a medium without FBS in order to completely exclude the 
influence of hormones derived from sera. The solvent used 
to prepare 2-ME2 solutions, DMSO (dimethyl sulfoxide, 
D2438, Sigma Aldrich, Poland), was provided to control 
cells in the same ratio. The final DMSO concentration in the 
incubation medium was less than 0.1%.

Cell Viability/Cell Proliferation Assay (MTT Assay)

10,000 SH-SY5Y cells per well were seeded in 96-well 
plates. After 24 h, the cells were treated with 100 pM–10 
μM 2-ME2 for the next 24 h. Control cells were solvent-
treated and considered as 100% viability. After incubation, 
0.5 mg/mL MTT was added (Sigma-Aldrich, Poland). After 
4 h at 37 °C, the plates were centrifuged (700 g for 10 min) 
to remove the supernatant. The formazan crystals were dis-
solved with 100 μL DMSO (Sigma-Aldrich, Poland). Micro-
plate reader was used to read 570nm absorbance (BioTek 
Instruments, Inc., USA). The data was presented as a per-
centage of the control. Each experiment was repeated at least 
3 times.

Assessment of Cell Death Induction

Flow cytometry was used to measure the level of apopto-
sis and necrosis. SH-SY5Y cells in the number of 300,000 
were seeded into 6-well plates per well. After 24 h, the cells 
were incubated with 100 pM–10 µM 2-ME2. After trypsi-
nization, cells were centrifuged at 1200 g for 7 min and 

washed 3 times with ice-cold PBS (Sigma-Aldrich, Poznań, 
Poland). The cells were treated with Annexin V and Pro-
pidium Iodide (PI) for 15 min at room temperature (559763, 
PE Annexin V Apoptosis Detection Kit I, BD Biosciences). 
Except for annexin V and PI incubation, the treatment was 
performed on ice. Annexin V and PI conjugate fluorescence 
signals were detected with a BD FACSVerse flow cytometer 
(Becton–Dickinson, Franklin Lakes, NJ, USA). The FlowJo 
10.6.1 was used to evaluate the results (FlowJo LCC, Becton 
Dickinson, Oregon, USA). At least three repeats of the tech-
nique were performed to secure repeatability.

Assessment of Cell Cycle Arrest

Cell cycle analysis was conducted by flow cytometry. SH-
SY5Y cells in the number of 300,000 were seeded into 
6-well plates per well. After 24 h, the cells were treated 
with 100 pM–10 µM 2-ME2. After trypsinization, cells were 
centrifuged for 7 min at 1200 g. The samples were washed 
in ice-cold PBS and fixed in ice-cold 70% ethanol overnight 
at 4 °C. Then, 7 min of 1200 g centrifugation followed. The 
DNA was stained with 5 g RNase A (E1350-02, EURX, 
Poland). The final step involved the addition of 10 µg PI 
(51-66211E, BD Biosciences). FlowJo 10.6.1 was used to 
evaluate the results. At least three repeats of the technique 
were performed to secure repeatability.

Assessment of ROS Generation

The SH-SY5Y cells in the number of 300,000 were seeded 
into 6-well plates per well. Next, 100 pM–10 µM 2-ME2 
was added to the cells for 8 h. 2′,7′-dichlorofluorescin diac-
etate (DCF DA, D6883, Sigma-Aldrich, Poland) was added 
at a final concentration of 10 µM 30 min before the end of 
incubation. Trypsin was used to remove cells from plates 
before centrifugation (1200 g for 5 min). The cells were 
washed twice with PBS, suspended in PBS, and exam-
ined by flow cytometry. The procedure was carried out on 
ice. Flow cytometry counted and analyzed 30,000 cells 
(BD FACSVerse). FlowJo 10.6.1 was used to evaluate the 
results. At least three procedures were repeated to guarantee 
reproducibility.

Assessment of RNS Generation

The SH-SY5Y cells in the number of 300,000 were seeded 
into 6-well plates per well. Next, 100 pM–10 µM 2-ME2 was 
added to the cells for 8 h. 2′,7′-difluorescein diacetate (DAF-
FM DA, D2321, Sigma-Aldrich, Poland) was added at a final 
concentration of 10 µM 30 min before the end of incubation. 
Trypsin was used to remove cells from plates before centri-
fuging (1200 g for 5 min). The cells were washed twice with 
PBS, suspended in PBS, and examined by flow cytometry. 
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The procedure was carried out on ice. Flow cytometry 
counted and analyzed 30,000 cells (BD FACSVerse). FlowJo 
10.6.1 was used to evaluate the results. At least three proce-
dures were repeated to guarantee reproducibility.

Western Blot Analysis

The levels of neuronal nitric oxide synthase (nNOS, ab5583, 
Abcam, United Kingdom), endothelial nitric oxide synthase 
(eNOS, ab66127, Abcam, United Kingdom), inducible nitric 
oxide synthase (iNOS, ab15323, Abcam, United Kingdom), 
heat shock proteins 60 (HSP 60, sc-13115, Santa Cruz, Dal-
las, Texas, U.S.A.), and 90 (HSP 90, ab80159Abcam, Great 
Britain), as well as cytochrome C (sc-13156, Santa Cruz, 
Dallas, Texas, USA), were determined. After 24 h, at 80% 
confluence, the cells were treated with 2-ME2 at 100 pM to 
10 µM concentrations for further 24 h. The whole Western 
blot procedure was carried out as previously described [31]. 
The signal was evaluated using ImageQuant LAS 500 (GE 
Healthcare, Poland). Densitometry analysis with Quantity 
One 4.6.7 was used to compute protein levels. The data have 
been normalized against β-actin. Each experiment was car-
ried out at the minimum of three times.

Confocal Microscopy Indicates DNA Strand Breaks

During apoptosis, DNA fragmentation occurs within the 
nucleus. Using the dUTP end-labeling (TUNEL (terminal 
deoxynucleotidyl transferase-mediated d-UTP Nick end-
labeling)) technique based on the activity of terminal deox-
ynucleotidyl transferase (TdT), DNA cleavage in apoptotic 
cells can be identified in situ in fixed cells. TUNEL is a 
highly specialized method for identifying apoptotic cells. 
The TdT enzyme catalyzes the addition of labeled dUTP to 
the 3′ ends of cleaved DNA fragments in the TUNEL assay. 
Labeled nucleotides: digoxigenin-dUTP or biotin-dUTP can 
be then identified using confocal microscopy with dUTP 
coupled to a fluorescent dye.

300,000 SH-SY5Y cells were seeded per well on 6-well 
plates with circular glass coverslips. The cells were sub-
jected to 24-h-2-ME2 treatments at concentrations between 
100 pM and 10 M. Using the TUNEL Andy FluorTM 488 
Apoptosis Detection Kit, the TUNEL assay was conducted 
in accordance with the manufacturer's instructions (A050, 
ABP Biosciences, USA), as previously described [31]. Con-
focal microscope images of the cells were captured digi-
tally (Opera PhenixTM, Perkin-Elmer, MA, USA). Both 
Harmony (Perkin-Elmer, Massachusetts, United States) and 
ImageJ (v1.52; NIH, United States) were applied for picture 
processing and merging. Normalized relative fluorescence 
unit (RFU) to control ratio was used to compute the results 
and prepare for statistical analysis.

Clinical Studies

Patients’ Biological Material Collection

The studied group consisted of 16 patients diagnosed with spo-
radic Parkinson’s disease (8 women and 8 men, whose average 
age was 63 years (± 10), average disease duration 12 years 
(± 3), average Hoehn–Yahr (H&Y) 2.3 score (± 0.39)) who 
fulfilled the following inclusion criteria: confirmed diagnosis 
(according United Kingdom Parkinson’s Disease Society Brain 
Bank criteria (UKPDS BB) of previously untreated PD stage 
H-Y I-II, aged 45–70 years.

The healthy controls were 4 women and 5 men, with an 
average age of 56 (± 10) and no disease data from the his-
tory, nor symptoms in the clinical examination and in the brain 
imaging examination suggesting a diagnosis of symptomatic 
or atypical parkinsonism.

Both groups were matched for average age and sex. In the 
control group, any co-morbidities were excluded.

A sample of 20 mL of blood was collected from each 
patient diagnosed with PD after prior consent to the study. The 
blood was then centrifuged at 1200 rpm for 10 min to sepa-
rate the plasma from the red cells. The obtained plasma was 
used for investigation of E2 metabolites and oxidative stress 
markers. The red blood cells were disposed. The concentration 
of estrogens and their selected derivatives was determined in 
the plasma of PD patients by the LC–MS/MS method, and 
the concentration of  H2O2 was determined by the proprietary 
stopped-flow method.

This study was approved by the Independent Bioethics 
Committee for Scientific Research at Medical University of 
Gdańsk with the approval number of 195/2020.

LC–MS Analysis of Estradiol Derivative Levels in the Blood 
of Patients Presenting with PD and Control Subjects

The tested plasma samples were obtained from healthy vol-
unteers, participants of a research project carried out by the 
Department of Neurology and Stroke, The St. Wojciech Hos-
pital, Gdańsk, in cooperation with the Department of Medical 
Chemistry, Medical University of Gdańsk. All participants in 
the study provided their written consent.

The concentrations of estrogens (estron (E1) and estradiol 
(E2)) and their major biological derivatives: 2-hydroxyestrone 
(2-OH-E1), 2-methoxyestrone (2-ME1), 2-hydroxyestradiol 
(2-OH-E2), and 2-methoxyestradiol (2-ME2) were examined 
by liquid chromatography combined with tandem mass detec-
tion–LC–MS/MS as previously described [32].
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Detection of Hydrogen Peroxide  (H2O2) as an Oxidative 
Stress Marker

After blood collection and separation of the red blood cells, 
the plasma was collected and centrifuged (200 × g, for 5 
min). The cell pellets were washed twice with PBS and then 
were resuspended in 3 mL of extraction buffer (150 mM 
NaCl, 5 mM EDTA, 1% Triton X-100, 10 mM Tris–HCl pH 
7.4). Insoluble cellular debris was pelleted by centrifuga-
tion (500 × g, for 10 min). Supernatants were then analyzed 
by a stopped-flow technique. The concentration of  H2O2 
was determined by the stopped-flow method as previously 
described [28–30]. For this purpose, a carbon dioxide  (CO2) 
biosensor, previously synthesized by our research team, was 
used—the coordination compound of chromium (III) with 
pyridoxamine (cis-[Cr  (C2O4) (pm)  (OH2) 2] +). In short, the 
method for  H2O2 determination is based on the assumption 
of a selective reaction of α-ketoacid—pyruvate with  H2O2 
with subsequent decarboxylation of the formed intermedi-
ate— pyruvic peracid. The released  CO2 is being further 
trapped by the biosensor—cis-[Cr  (C2O4) (pm)  (OH2) 2]+. 
The rate of  CO2 uptake is measured by the spectrophotomet-
ric stopped-flow method allowing for determination of the 
original level of  H2O2 having been converted into  CO2 in a 
1: 1 molar ratio. The reagent solutions were placed separately 
in two working syringes A and B, respectively: in syringe 
A—the biological material (sample) and a 5-mM solution 
of potassium pyruvate mixed in a 1: 1 molar ratio, while in 
syringe B—1 mM biosensor suspended in a phosphate buffer 
solution at pH 7.4. Then, the solutions were passed through 
the mixer (mixing occurs very quickly—3–10 s), and succes-
sively through the measuring cell back to the return syringe 
B. Filling the return syringe with the solution caused the 
plunger to be pushed against the microswitch. At this point, 
the flow was stopped and the measurement started. The pro-
gress of the reaction in the portion of the solution retained 
in the measuring cell was monitored spectrophotometrically. 
During the measurement, the change in substrate concentra-
tion was measured as a function of time.

The values of hydrogen peroxide concentrations were for 
this purpose calculated using the global analysis approach 
based on collecting the results in the form of a set of absorp-
tion spectra that were measured for the entire (specific for 
a given compound) wavelength range (330–700 nm), in a 
specified time interval.

Kinetic Analysis

Determination of chemical rate constants was carried 
out by a stopped-flow technique using the Applied Pho-
tophysics SX-17MV spectrophotometer. The observable 
rate constants were computed with “Glint” software. A 
global analysis of the data acquired for 37 wavelengths, 

within the range of 340–700 nm at 10-nm increments, was 
performed for different reaction models.

Statistical Analysis of the Results

Statistical analysis was performed using the IBM SPSS 
Statistics 25 package.

In the case of comparing two groups of people (PD 
patients and healthy control), the Mann–Whitney U test 
was used. The following descriptive statistics were used 
in the statistical analysis: median, minimum, maximum, 
first, and third quartile.

The p-value < 0.05 was adopted as statistically 
significant.

The in vitro results are presented as the mean and stand-
ard deviation (SD) calculated from at least three independ-
ent experiments. The differences between control samples 
and 2-ME2-treated samples were assessed utilizing one-
way analysis of variance (ANOVA) and Dunnett’s multiple 
comparison post hoc test. A p-value of 0.05 was defined 
as statistically significant. The GraphPad Prism software 
was utilized for data analysis (GraphPad Software, Inc., 
version 8, USA).

Results

In Vitro Results

Effect of 2‑ME2 on Cell Viability

In order to elucidate the mechanism of action of 2-ME2 
on NB SH-SY5Y cells, a series of experiments were car-
ried out focusing on 2-ME2 cytotoxicity impact relative 
to either pharmacological or physiological concentrations 
of the compound.

Precisely, cytotoxicity of 2-ME2 was determined after 
treatment of NB SH-SY5Y cells for 24 h with pharmaco-
logical (10 µM, 1 µM, and 100 nM) or physiological (10 
nM, 1 nM, and 100 pM) concentrations of 2-ME2. Cell 
viability was determined by the microplate MTT spectro-
photometric method. The percentage of viable cells in the 
sample was calculated as compared to the control cells 
referred to as 100% viable.

Pharmacological concentrations of 2-ME2 inhibited the 
growth of SH-SY5Y cells by 33% (± 5.17%) for 10 µM, 
29% (± 7.53%) for 1 µM, and 19% (± 6.15%) for 100nM, 
while the physiological concentrations of 2-ME2 (10 nM, 
1 nM, and 100 pM) did not seem to reduce cell viability 
in a statistically significant manner (Fig. 1a).
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Cell Cycle Analysis After Treatment of 2‑ME2 Cells

In the next stage of our research, the influence of 2-ME2 
on the NB SH-SY5Y cell cycle was assessed. The NB SH-
SY5Y cells were treated with concentrations correspond-
ing to pharmacological (10 µM, 1 µM, and 100nM) or 
physiological (10 nM, 1 nM, and 100pM) concentrations 
of 2-ME2 for 24 h (Fig. 1b). Subsequently, the distribution 
of cells at individual phases of the cell cycle was deter-
mined by flow cytometry using the PI dye.

In the case of NB SH-SY5Y cells treated with pharma-
cological concentrations of 2-ME2, a statistically signifi-
cant increase in the number of cells in the subG1 phase 
was observed. The number of subG1-phased SH-SY5Y 
neuroblastoma cells significantly increased after treat-
ment with 10 µM, 1 µM, 100nM, and also 10 nM 2-ME2, 
respectively, up to 32.93% ± 0.97%, 32.13% ± 0.39%, 
13.66% ± 0.45%, and 7.82% ± 0.99% relative to control 
(9.99% ± 1.06%). At physiological concentrations, no sta-
tistically significant changes were observed except for 10 
nM (see above).

As for the G0/G1 phase, a statistically significant 
decrease in the number of SH-SY5Y neuroblastoma 
cells was observed after treatment with 10 µM and 1 µM 
2-ME2, down to 44.70% ± 1.20% and 45.77% ± 0.38%, 
respectively, as compared to the control (81.03% ± 0.82%).

In terms of the S phase, a statistically significant 
increase in the number of SH-SY5Y neuroblastoma cells 
was observed after treatment with 10 µM and 1 µM 2-ME2 
up to 11.90% ± 0.14% and 11.76% ± 0.19%, respectively, 
as compared to the control (4.91% ± 0.13%).

There was a statistically significant increase in the num-
ber of SH-SY5Y neuroblastoma cells in the phase G2/M of 
the cell cycle as compared to control cells for all 2-ME2 
concentrations used. The following values were recorded 
for respective 2-ME2 concentrations: 7.66% ± 0.39% for 
10 µM, 6.58% ± 0.25% for 1 µM, 6.04% ± 0.64% for 100 
nM, 6.57% ± 0.30% for 1 nM, and 6.03% ± 0.04% for 
100pM relative to control (3.68% ± 0.11%).

Fig. 1  Cell viability and cell cycle after 24h incubation with 2-ME2. 
A Viability of NB SH-SY5Y cells after 24-h incubation with 2-ME2: 
2-ME2 was added in a concentration range of 100 pM–10 µM and 
incubated for 24 h. Cells were harvested and viability was determined 

by MTT assay. ****p < 0.0001 vs. control. B Phases of the cell cycle 
of 24 h 2-ME2-treated cells NB SH-SY5Y as examined by flow 
cytometry. *p < 0.1, ***p < 0.001, and ****p < 0.0001 vs. control
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Analysis of Apoptosis and Necrosis by Flow Cytometry

Subsequently, the induction of apoptosis and necrosis in the 
NB SH-SY5Y cell line after incubation with 2-ME2 was 
assessed by flow cytometry technique using annexin V and 
propidium iodide (PI).

NB SH-SY5Y cells were treated with 2-ME2 at a concen-
tration range from 100 pM to 10 µM for 24 h, and after that 
time, the number of annexin V-positive and PI-positive cells 
was measured by flow cytometry method.

The number of apoptotic NB SH-SY5Y cells signifi-
cantly increased up to 24.27% (± 3.09%) for samples treated 
with 1nM, up to 21.73% (± 2.14%) for 10 nM, up to 23.3% 
(± 0.4%) for 100 nM, up to 57.42% (± 3.14%) for 1µM, and 
up to 57.62% (± 3.11%) 10 µM in comparison to the control 
with 13.53% (± 0.51%) of apoptotic cells (Fig. 2a). Interest-
ingly, only 10 µM 2-ME2 significantly induced necrosis as 
observed in 3.85% (± 1.33%) of the treated cells in compari-
son to the control (1.41% (± 0.35%)) (Fig. 2b).

Analysis of ROS and RNS by Flow Cytometry

Induction of nitro-oxidative stress in treated cells is a 
potential mechanism and consequently the reason for 
cytotoxic and cytostatic activity of 2-ME2. Thus, in the 
next stage of our research, intracellular levels of reactive 
oxygen species (ROS) and reactive nitrogen species (RNS) 
were examined. Flow cytometry was utilized to carry out 
the measurements. Cells were treated with 2-ME2 for only 
6 h, because of a labile nature and relatively dynamic pro-
file of both ROS and RNS [33].

Interestingly, treatment of NB SHSY-5Y cells with 
2-ME2 increased the level of ROS up to 270% (± 57%) at 1 
µM 2-ME2, and up to 150% (± 50%) 10 µM concentration 
(Fig. 3), whereas 10 µM 2-ME2 induced RNS generation 
up to 169% (± 9%) vs. control (Fig. 3b).

Fig. 2  The percentage of cells 
undergoing apoptosis (A) and 
necrosis (B) after 24-h incuba-
tion of NB SH-SY5Y cells with 
2-ME2 at a concentration range 
from 100 pM to 10 µM. Values 
are presented as the mean ± SE 
from three independent experi-
ments. Data were analyzed 
with GraphPad Prism Software 
version 8.0.1 using bidirectional 
ANOVA with Dunnett's mul-
tiple comparison tests against 
control (*p < 0.1, **p < 0.01, and 
**** p < 0.0001)

Fig. 3  Induction of ROS (A) 
and RNS (B) after 6h incuba-
tion of NB SH-SY5Y cells with 
2-ME2 at a concentration range 
from 100 pM to 10 µM. Values 
are the mean ± SE calculated 
from at least three independent 
experiments, and expressed as a 
percentage of the control. Data 
were analyzed with GraphPad 
Prism Software version 8.0.1 
using one-way ANOVA with 
the following Dunnett’s multiple 
comparison tests against control 
(*p < 0.1, ***p < 0.001, and 
****p < 0.0001)
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Effect of 2‑ME2 on DNA Fragmentation

After induction of ROS and RNS, we examined if the 
nucleus might be targeted by 2-ME2. DNA fragmentation 
was analyzed by TUNEL assay. Terminal deoxynucleo-
tide transferase (TdT) attaches FITC-labeled deoxyuridine 
triphosphates (FITC-dUTP) to the free 3′ ends of single 
or double-stranded DNA breaks for fluorescence imaging. 
After 24 h of treatment with 2-ME2 at a concentration range 
of 100 pM to 10 μM, the NB SH-SY5Y cells were tested for 
DNA fragmentation. Figure 4 shows representative confocal 
images and mean RFU values.

TdT-labeled cells with DNA breaks had significantly 
greater RFU than controls (non-treated cells). For the NB 
SH-SY5Y cell line, the level of TdT-labeled cells in control 
(cells not treated with 2-ME2) was 1, whereas, for samples 

treated for 24 h with 2-ME2, the values were as follows: 100 
pM–1.1 (± 0.2), 100 nM–1.2 (± 0.3), 1 µM–1.3 (± 0.3), and 
10 µM–2.5 (± 0.3), relative to the control (Fig. 5).

2‑ME2 Effect on Nitro‑oxidative Stress Level as Assessed 
by Western Blot Analysis

As 2-ME2 mediated an increase in the level of RNS in NB 
SH-SY5Y cells, a potential influence of 2-ME2 on NOS 
protein isoforms was studied. NOS family enzymes convert 
L-arginine in the presence of nicotinamide adenine dinucleo-
tide phosphate (NADPH) and oxygen into nitrogen monox-
ide (NO). The levels of three NOS isoforms: nNOS, iNOS, 
and eNOS were studied in the NB SH-SY5Y cells using 
Western blot analysis. Positive controls for eNOS and iNOS 
were performed on Human Primary Aortic Endothelial Cells 

Fig. 4  Confocal microscopy 
images from the TUNEL assay. 
Detection of apoptotic cells 
based on DNA fragmentation 
labeling in the NB SH-SY5Y 
cell line. FITC and DAPI stain-
ing for the nucleus. Representa-
tive images and the mean RFU 
values are shown
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(HAEC) to exclude experimental artefacts (supplementary 
material).

24-h treatment of SH-SY5Y neuroblastoma cells with 
2-ME2 at concentrations ranging from 100 M to 10 µM did 
not affect eNOS and iNOS cellular protein levels (Fig. 6a 
and b).

However, the nNOS level changed depending on the con-
centration of 2-ME2 used and was as follows: 1.1 (± 0.8) for 
100 pM, 1.3 (± 0.4) 1 nM, 1.2 (± 0.5) 10 nM, 0.7 (± 0.2) 100 
nM, 1.0 (± 0.6) 1 µM, and 1.3 (± 0.7) for 10 µM, expressed 
as a fold of the control level (Fig. 6c).

2‑ME2 Mediated Regulation of Cytochrome C Release 
and Heat Shock Protein Levels (HSP60 and HSP 90) 
in Neuronal Cells

Mitochondrial malfunction affects various interconnected 
cellular pathways, leading to the damage to intracellu-
lar components and the release of cytochrome C. When 
cytochrome C is released into the cytosol, the mitochon-
drial apoptosis pathway is activated, leading to apoptotic cell 
death [34]. Therefore, an experiment was planned to evalu-
ate the effect of 2-ME2 on the cytosolic level of cytochrome 
C after 24 h of treatment of the cells.

The cytosolic cytochrome C protein levels in NB SH-
SY5Y cell line measured by Western blotting after 24h incu-
bation with 2-ME2 were as follows: 1.8 (± 0.5) for 100 pM, 
1.9 (± 1.1) for 1 nM, 2.8 (± 0.8) for 10 nM, 2.4 (± 0.4) for 
100 nM, 2.8 (± 0.03) for 1 µM, and for 1.6 (± 0.8) for 10 
µM, expressed as a fold of the control (Fig. 7a). An increase 
in the cytosolic level of cytochrome C may indicate that 
treatment of the cells with 2-ME2 caused the release of 
cytochrome C from the mitochondrial intermembrane space 
into the cytosol.

Molecular chaperones/co-chaperones are proteins that 
facilitate the folding of other proteins into a specific molecu-
lar shape that is functionally active. It has been shown that 
chaperones and co-chaperones regulate the function of PD-
related proteins by interacting with them. HSP90 and tiny 
heat shock proteins are known to be able to avert neuro-
degeneration. Understanding the crucial role of chaperones 
in the course of PD might help to use them as additional 
biomarkers for early detection of PD [35].

The changes of HSP60 protein levels in NB SH-SY5Y 
cell line assessed by Western blotting after 24 h incubation 
with 2-ME2 were as follows: 1.4 (± 0.4) for 100 pM, 1.1 
(± 0.3) for 1 nM, 1.7 (± 0.2) for 10 nM, 1.3 (± 0.2) 100 nM, 
1.2 (± 0.2) for 1 µM, and 1.2 (± 0.2), expressed as a fold of 
the control (Fig. 7b).

The changes of HSP90 protein levels in NB SH-SY5Y 
cell line assessed by Western blotting after 24 h incubation 
with 2-ME2 were as follows: 0.9 (± 0.5) for 100 pM, 0.5 
(± 0.2) for 1 nM, 0.9 (± 0.7) for 10 nM, 0.9 (± 0.8) 100 nM, 
1.0 (± 0.7) for 1 µM, and 1.4 (± 0.3) for 10 µM, expressed 
as a fold of the control (Fig. 7c).

Clinical Study Results

Analysis of Plasma from Patients with PD

In light of the neurotoxic activity of 2-ME2, as observed in 
PD in vitro model, we decided to investigate a translational 
value of the obtained results. The concentrations of estro-
gens and their selected derivatives were determined in the 
plasma of PD patients by the LC–MS/MS method (Table 1 
and Fig. 8a).

Furthermore, the concentration of  H2O2 was determined 
by the stopped-flow analytical method. The median con-
centration of  H2O2 in the blood plasma of PD patients was 
1.67 ×  10−5mol/dm3 (min = 1.32 ×  10–6, max = 8.53 ×  10–5, 
Q1 = 7.23 ×  10–6, Q3 = 3.99 ×  10–5) while the level of  H2O2 
in healthy control was below the quantification threshold. 
i.e. below  10–7 mol/dm3 (Fig. 8b).

Additionally, the comparison of 2-ME2 levels between 
men and women was conducted. A statistically significant 
difference was found between the 2-ME2 levels of healthy 
women (Me = 1.2) and female PD patients (Me = 2.73) as 

Fig. 5  DNA strand breaks in NB SH-SY5Y cells after treatment with 
100 pM–10 μM 2-ME2. Values are the mean ± SE from three inde-
pendent experiments, expressed as fold change as compared to the 
control. The data were analyzed using GraphPad Prism, Inc., version 
8, USA, by performing a one-way ANOVA with the following Dun-
nett's multiple comparison test against control. ****p < 0.0001 vs. 
control
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well as between the male control group (Me = 1.85) and 
male PD patients (Me = 2.94). Interestingly, according to 
statistics, healthy males exhibit a higher concentration of 
2-ME2 than healthy women (Fig. 8c).

Discussion

2‑ME2 Acts as a Neurotoxin Towards NB SH‑SY5Y 
Cells

The NB SH-SY5Y cell line is exploited as a prominent 
in vitro model in PD research. This line is actually a sub-
line of the SK-N-SH cells, which was established in 1970 
as derived from a bone marrow biopsy of a 4-year-old girl 
with metastatic neuroblastoma and was subjected to three 
rounds of clonal selection [36]. Initial evaluation of the 
neuroblastoma SH-SY5Y cell line demonstrated moder-
ate dopamine–hydroxylase activity and low levels of cho-
line acetyl-transferase, acetyl-cholinesterase, and butyryl-
cholinesterase, as well as tyrosine hydroxylase activity and 
nor-adrenaline (NA) release [36, 37]. Tyrosine hydroxylase 

transforms tyrosine to L-DOPA, the precursor of dopamine 
(DA), and then, dopamine–hydroxylase subsequently turns 
DA to NA [38]. As a consequence, the SH-SY5Y cell line 
has a catecholaminergic phenotype, as it possesses the enzy-
matic machinery to produce both DA and NA. Although 
these characteristics do not categorize SH-SY5Y cells as 
solely dopaminergic, this cell line has been regularly utilized 
as an experimental model for PD research [37, 39–41]. In the 
vast majority of published studies, retinoic acid (RA)–differ-
entiated NB SH-SY5Y cells were not utilized. Until recently, 
the RA differentiation process has been used to drive the 
cell line toward a dopaminergenic phenotype. However, the 
origin and treatment of the cells may account for variance in 
the differentiation protocol’s outcome. In addition, the use 
of pharmaceutical agents in order to transform the cell line 
into a more dopaminergic or so to say, neuronal population 
may affect traits unrelated to the goal phenotype and produce 
ambiguous outcomes [37]. Because of the above, we decided 
to carry out the experiments using non-differentiated NB 
SH-SY5Y cells.

The route of E2 metabolism involves sequential hydroxy-
lation and methylation [42]. The oxidation at carbon 2 within 

Fig. 6  The effect of 2-ME2 on 
NOS level in NB SH-SY5Y 
cells. A No change in eNOS 
levels in NB SH-SY5Y cells 
treated with 100 pM–10 µM 
2-ME2, as measured by West-
ern blotting. B Western blot 
analysis reveals no change in 
iNOS levels in NB SH-SY5Y 
cells treated with 100 pM–10 
µM 2-ME2. C The effect of 
100 pM–10 µM 2-ME2 on 
nNOS levels in NB SH-SY5Y 
cells was evaluated by Western 
blotting. Utilizing Quantity One 
4.6.6, densitometric analysis 
of the nNOS/β-actin ratio was 
conducted. The immunoblots 
displayed are representative 
of a single-membrane experi-
mental analysis. Values are the 
mean ± SD from three separate 
experiments
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the aromatic A ring of estradiol is catalyzed by cytochrome 
P450 isoform 1A1 and yields 2-OH-E2 at first. The COMT 
enzyme, which is found in multiple organs including the 
brain, then replaces the hydroxyl group previously added 
to 2-OH-E2 with a methoxy group, resulting in a 2-ME2 

molecule [42–44]. According to Zachcaria et al., 2-OH-E2 
acts as a direct substrate for 2-ME2 synthesis. However, cell 
treatment with 2-OH-E2 does not necessarily have similar 
effects to the treatment with 2-ME2. The reason for that is 
the possibility of an alternative intracellular transformation 

Fig. 7  The influence of 2-ME2 
on cytosolic cytochrome C 
level and HSP in NB SH-SY5Y 
cells. A Western blot analysis 
was used to determine the 
impact on the cytosolic level of 
cytochrome C by treating NB 
SH-SY5Y cells with 100 pM to 
10 µM 2-ME2. B Western blot-
ting was utilized to determine 
the influence of 2-ME2 concen-
trations ranging from 100 pM 
to 10 µM on HSP 60 levels in 
NB SH-SY5Y cells. C Western 
blotting was used to investigate 
the influence of 2-ME2 concen-
trations ranging from 100 pM to 
10 µM on HSP90 levels in NB 
SH-SY5Y cells. Using Quantity 
One 4.6.6 software, densito-
metric analyses of the ratios 
cytochrome C/β-actin, HSP 
60/β-actin, and HSP 90/ β -actin 
were conducted. The immunob-
lots displayed are representative 
of a single membrane. Values 
represent the mean ± SD from 
three independent experiments

Table 1  Descriptive statistics of 
the analyzed metabolites in the 
blood plasma of PD patients (1) 
compared to the healthy control 
(2) in ng/mL. Determination 
by LC–MS/MS. Statistical 
analysis was performed with 
Mann–Whitney U test. The 
value of p < 0.05 was considered 
statistically significant and is 
presented in bold

Derivative Me Min Max Q1 Q3 Statistical test result

1 2 1 2 1 2 1 2 1 2

E1 0.79 0.8 0.73 0.67 0.9 0.84 0.9 0.74 0.95 0.82 U = 60.5; p = 0.52
2-OH-E1 0 0.58 0 0.39 0 0.93 0 0.43 0 0.79 U = 0; p < 0.001
2-ME1 0.23 0.25 0.2 0.13 0.3 0.46 0.3 0.22 0.24 0.39 U = 44.5; p = 0.12
E2 0.49 0.41 0.41 0.35 0.59 0.48 0.59 0.38 0.52 0.44 U = 26; p = 0.009
2-OH-E2 0.15 1.45 0.12 1.24 0.23 1.9 0.23 1.31 0.16 1.53 U = 0; p < 0.001
2-ME2 2.93 1.34 1.93 0.95 4.61 2.04 4.61 1.2 4.13 1.89 U = 4; p < 0.001
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of 2-OH-E2 into quinine derivatives of high reactivity in 
the biological system. 2-ME2 is metabolically rather inert; 
however, it has been proven to have various interesting bio-
logical activities, among others protecting the cell against 
carcinogenesis. That is why effective endogenous methyla-
tion of 2-OH-E2 to 2-ME2 is so critical for proper cellular 
metabolism and survival [45].

In our research model, concentrations corresponding 
to the physiological and pharmacological levels of 2-ME2 
were used. After 24 h treatment of the NB SH-SY5 line, a 
decrease in cell viability was observed only at 2-ME2 con-
centrations corresponding to the pharmacological range, 
which has been previously confirmed by our team in a 
similar experimental model [12]. Zhang et al. also demon-
strated decreased viability of SH-SY5Y cells after exposure 
to 2-ME2 [46].

One of the cytostatic mechanisms of action of 2-ME2 in 
the experimental models is the arrest of cells in the subG1 
phase, which suggests the induction of apoptosis. Addition-
ally, 2-ME2 was also found to increase the cell quantity in 
the subG1 phase in other neural cells [11, 47]. The increase 
in the number of apoptotic cells noted across a panel of 
concentrations corresponding to both pharmacological and 
physiological levels was observed. There is little research 
into the induction of apoptosis by 2-ME2 in neural, healthy, 
or neoplastic cells. Our team previously demonstrated the 
induction of apoptosis in SH-SY5Y cells [12] and in mouse 
HT22 hippocampal cells [9]. Also. previously mentioned 
Zhang et al. showed an increase in the number of apop-
totic cells in the SH-SY5Y line incubated with pharmaco-
logical levels of 2-ME2 [46]. Moreover, 2-ME2 was proven 
to induce apoptosis in cellular models of tumors such as 

melanoma [48], osteosarcoma [9, 10], prostate [49–51], or 
breast cancer [52–54]. In addition, as observed in the in vivo 
studies, 2-ME2 did not protect hilar hippocampal neurons 
from the excitotoxicity induced by kainic acid [55].

Multiple interrelated cellular pathways are affected by 
mitochondrial dysfunction, resulting in intracellular com-
ponent damage and the release of cytochrome C. When 
cytochrome C is released, the mitochondrial apoptosis 
pathway is initiated, resulting in apoptosis. The results indi-
cated a rise in the level of cytochrome C, which may suggest 
that cytochrome C was released from the mitochondria into 
the cytosol due to 2-ME2 activity. Moreover, 2-ME2 was 
found to stimulate cytochrome C release in many cancer 
cells including prostate cancer cells [56], pancreatic cancer 
cells [57], human chondrosarcoma cells [58], human acute 
T lymphoblastic leukemia CEM cells [59], and fibroblasts 
[60]. The above-mentioned studies clearly indicate that the 
intrinsic apoptotic pathway is involved in 2-ME2-dependent 
apoptosis.

2‑ME2 Induces Nitro‑oxidative Stress in NB SH‑SY5Y 
Cells

The induction of oxidative stress is a factor common to 
the development of both neurodegeneration and cancer 
[61–63], and one of the mechanisms of 2-ME2 is the 
induction of ROS and RNS in many cell lines [9, 11, 12, 
46, 64–68]. In the above study, it was revealed that in NB 
SH-SY5Y cells treated with 2-ME2, the levels of ROS and 
RNS at concentrations corresponding to pharmacological 
levels were increased. With the use of fluorophotomet-
ric analysis, induction of ROS in the SH-SY5Y line was 

Fig. 8  A Comparison of plasma 
estrogens and their deriva-
tives levels in PD patients with 
healthy controls using LC–MS/
MS analysis. Statistical analysis 
was performed with Mann–
Whitney U-test. **p = 0.009, 
****p < 0.001. B Comparison 
of plasma  H2O2 levels in PD 
patients with healthy controls 
using stopped-flow analysis. 
Statistical analysis was per-
formed with Mann–Whitney 
U-test. ****p < 0.0001. C 
Comparison of plasma 2-ME2 
levels in females and males 
using LC–MS/MS analysis. Sta-
tistical analysis was performed 
with Mann–Whitney U-test. 
**p < 0.01 and *p < 0.1
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detected within the range of pharmacological concentra-
tions [46]. In the case of RNS induction, at physiologically 
and pharmacologically relevant concentrations of 2-ME2, 
elevated levels of NO were determined [12].

HSP90 inhibits the aggregation of α-synuclein (α-syn) 
in an in vitro experiment [69]. Moreover, inhibiting HSP90 
decreased oligomeric α-syn, which in turn increased dopa-
mine in PD [70]. In a cellular model of PD, the HSP90 
inhibitor, geldanamycin, was reported to diminish the 
production of α-syn aggregates and α-syn-induced toxic-
ity [71]. After inducing apoptosis in NB SH-SY5Y cells, 
Hsp90 enhances the cell survival rates [72]. In the present 
study, for the first time, we have demonstrated 2-ME2—
depended increased level of HSP 90 in NB SH-SY5Y 
cells. Previously, 2-ME2 was found to induce HSP90 
in cancer cell lines such as osteosarcoma 143B [73], or 
breast cancer MCF-7 [74]. In addition, mitochondrial toxin 
1-methyl-4-phenylpyridinium (MPP +), the most effective 
and widely used toxin for the development of an in vitro 
PD model, also induced HSP 90 in SH-SY5Y cells [75]. 
Based on the above, inhibiting HSP90 could be a possible 
treatment method or preventive measure against PD [35].

The obtained 2-ME2-mediated induction of HSP 90 
correlates with the elevated level of nNOS in NB SH-
SY5Y cells. It is suggested that Hsp90 directly enhances 
nNOS-catalyzed NO synthesis, which is largely depend-
ent on the augmentation of calmodulin binding to nNOS. 
In addition, Hsp90 is necessary for heme binding and the 
production of catalytically active nNOS [76, 77]. 2-ME2 
was found to induce nNOS in not only cancerous cell 
lines such as osteosarcoma 143B [9, 10, 14], and MG63.2 
[73], glioblastoma SW1088 [31], but also in mouse hip-
pocampal HT22 cells [9], leading to the elevation of NO 
and a resultant cell death [9]. It is quite appealing that 
2-ME2 induces only nNOS, while it does not affect iNOS 
nor eNOS. In accordance with the study presented above, 
neither of these isoforms was induced by 2-ME2 in both 
osteosarcoma and melanoma cell models [9, 78]. Unlike 
eNOS and iNOS, nNOS is a larger protein with a PDZ 
domain at its N-terminus, a consensus sequence of about 
90 amino acids [79]. PDZ domain proteins are essential 
for cellular migration and ion channel surface retention. 
They can also function as scaffolds for the recruitment of 
structural and regulatory components to the cell membrane 
[80]. The domain appears to be a key element in nNOS 
transport to various intercellular compartments [79]. PDZ 
is required for nuclear recruitment of nNOS, hence favor-
ing NO production [81], and furthermore, PDZ proteins 
are required for neural signaling [80]. Local NO produc-
tion and its reactive byproducts such as nitrogen dioxide 
and peroxynitrite, are most likely contributing to DNA 
damage [82, 83]. We previously demonstrated that the gen-
eration of NO derivatives is at least primarily reliant on 

selective nNOS overexpression and plays a crucial role in 
the 2-ME2-mediated cell death mechanism [14].

HSP60 is a cytoplasmic and mitochondrial protein 
engaged in the folding, refolding, transportation, and trans-
location of proteins. Depending on its cellular location, HSP 
60 can play both pro- and anti-apoptotic roles. Furthermore, 
central nervous system (CNS) damage also results in the 
extracellular release of HSP 60, which activates microglia 
and subsequently the innate immune system. Current data 
indicate that inflammatory responses expressed by glial reac-
tions are widely regarded as significant aspects of PD [84]; 
therefore, the HSP 60 level in NB SH-SY5Y cells after incu-
bation with 2-ME2 was analyzed.

In the above studies, an increase in the level of HSP 60 
in NB SH-SY5Y cells under the influence of 2-ME2 at both 
physiological and pharmacological concentrations was 
demonstrated. Elevated HSP 60 level was also observed in 
another PD cellular model, i.e., in PC12 cells treated with 
6-hydroxydopamine in order to induce cellular degradation 
[84]. Previously, our team has also confirmed the induction 
of HSP60 in SW1088 grade III glioma cells [31]. HSP 60 
can be released by CNS cells experiencing necrotic or apop-
totic cell death in order to activate microglia [85].

DNA damage occurs in the neuronal genome, most 
likely as a result of significant oxidative stress in the brain 
[86–88]. Additionally, we previously demonstrated that 
RNS produced by 2-ME2 are DNA damage inducers due 
to their affinity for the guanine base of DNA [14]. Herein, 
2-ME2-mediated DNA strand breaks of NB-SH-SY5Ycells 
were demonstrated. So far 2-ME2 was found to induce DNA 
impairment in osteosarcoma 143B cells [10] and SW1088 
grade III glioma cells [31].

Estradiols and  H2O2 as Fast and Economical Tool 
for PD Diagnostics at the Early Stage of the Disease

Behl et al. demonstrated that E2 and certain estradiol deriva-
tives can prevent intracellular  H2O2 accumulation and, even-
tually, degeneration of primary neurons, clonal hippocampal 
cell, and cells in the organotypic hippocampus. Interestingly, 
the neuroprotective antioxidant effect of estrogens depends 
on the presence of the hydroxyl group at the C3 position 
on the A ring of the steroid molecule, but is independent 
of estrogen receptor activation [89]. However, only clinical 
studies carried out in the course of work on this project, 
allowed to determine the relationship between the concentra-
tion of estrogens and their selected derivatives: hydroxy and 
methoxy estrogens, correlating with the induction of  H2O2 
and their role in the diagnosis of PD.

The determination of 2-OH-E2 and more importantly, 
2-ME2, may be applied as biomarkers for the diagnosis of 
the neurodegenerative process in PD. It is unclear whether 
there are similar relationships in other neurodegenerations, 
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so it definitely requires further research. In addition, the in 
the plasma of people with PD much higher concentrations of 
 H2O2 were measured in comparison to healthy volunteers. The 
studied samples obtained from patients showed a reduced level 
of hydroxylated estradiol derivatives in favor of methylated 
derivatives and a high level of  H2O2. The above data shows 
that the decreased level of the above-mentioned hydroxyestar-
diols and the increased level of the 2-ME2, correlating with 
the level of  H2O2 can serve as a biomarker for the diagnosis 
of PD. Furthermore, as we previously indicated, 2-ME2 may 
serve as a diagnostic and tracking biomarker in lung cancer 
patients [32]. Similar to our results, the reduced excretion 
of 2-ME2 in the urine of endometrial cancer patients was 
observed by Zhao et al. [90]. The findings suggest that the 
metabolic pathway of estrogens is linked to carcinogenesis 
and may give useful biomarkers, such as 2-ME2, for assessing 
the risk of estrogen-induced breast cancer [90]. Both studies 
determined decreased level of 2-ME2 in cancerous patients 
[32, 90], which may indicate that the methylation pathway 
may play a significant role in cancers [90]. Interestingly, the 
research of Pérez-Sepúlveda et al. demonstrate that 2-ME2 
levels in early pregnancy may also be useful to foresee the 
eventual development of preeclampsia (PE), as plasma 2-ME2 
levels were lower in women who subsequently had PE at 11 
to 14 weeks of pregnancy [91, 92]. On the other hand, endog-
enous 2-ME2 blood levels in malignant melanoma (MM) are 
not effective as a diagnostic or prognostic indication as there 
was no connection between 2-ME2 serum levels and early or 
advanced-stage illness in individuals with MM [93]. Here, for 
the first time, a 2-ME2 serum concentration was established 
in neurological disease, and in contrast to cancers and PE, its 
levels are elevated. More specifically, the results obtained on 
the SH-SY5Y cell line are confirmed by the outcome of the 
patients. From the above, it can be concluded that 2-ME2 may 
play its own role in neurodegeneration.

What is more, the obtained results clearly suggest a higher 
level of 2-ME2 in healthy men in comparison to women. 
According to epidemiological data, men more often suffer 
from PD than women [94, 95]. Our findings may explain a 
possible susceptibility of men to PD development. Clearly, 
additional research is necessary to determine the default 
2-ME2 level in men, as well as to determine if this level var-
ies with age and if it is associated with the future develop-
ment of PD. Intriguingly, studies have already demonstrated 
a correlation between the incidence of PD in men and milk 
consumption [96, 97].

Conclusions

The pathways leading to the development of neurodegenera-
tive disease and the death of cancer cells may overlap [20, 
21]. The main factors of neurodegeneration are suggested 

to play a key role in regulating tumor growth [63]. The PD 
patients show some resistance towards cancer [20, 21, 98], 
and this phenomenon actually drew the authors’ attention 
to the problem of neurodegeneration pathomechanism and 
lower cancer incidence as observed in the course of PD [99].

2-ME2 is known for its anticancer activity [100–103]; 
however, there are data suggesting its neurotoxicity [11, 99]. 
Herein, the cytotoxic activity of 2-ME2 toward the NB SH-
SY5Y cell line in the neurodegeneration cellular model was 
demonstrated. 2-ME2 induced apoptosis in NB SH-SY5Y 
cells by cytochrome C release and regulation of HSP60. 
Moreover, 2-ME2 generated ROS and RNS in NB SH-SY5Y 
which resulted in DNA breakage. The increased level of 
HSP90 and HSP90-regulated nNOS [104] were determined 
and proved to be responsible for oxidative stress generation.

Subsequently, for the first time, we verified the plasma 
levels of estrogens and their derivatives in PD patients to 
provide a translational relevance for our study. The obtained 
results clearly indicate an increased level of 2-ME2 and 
 H2O2 in the blood of patients with a simultaneous decrease 
in the level of 2-OHE2. We observed an inverse relationship 
between 2-OHE2 and 2-ME2 concentrations, which may 
suggest rapid metabolism of 2-OHE2 to 2-ME2 and simulta-
neous oxidative stress generation. Our results on the NB SH-
SY5Y cell line, which is an in in vitro model for PD, clearly 
indicate that 2-ME2 induces, in particular, nitro-oxidative 
stress, which leads to cell death. Moreover, in the plasma 
of PD patients, 2-ME2 is in higher concentrations than in 
healthy controls. Such results suggest that 2-ME2 may be the 
cause of neuronal damage in these patients, which underlies 
the development of PD. Therefore, we suggest that elevated 
concentrations of 2-ME2, as a neurotoxic metabolite of E2 
naturally occurring in the body, may represent a biomarker 
for PD.

Definitely, more extended research is required on a larger 
group of patients and also in other forms of Parkinsonism. 
Because the participants in the above study had H&Y scores 
II or III, determining the level of 2-ME2 in early PD and the 
link with PD progression is impractical to solve. As a result, 
we are undertaking additional analyses on a larger sample of 
patients to investigate the connection between disease pro-
gression and the level of 2-ME2 in the early stages of PD 
H&Y score I. An analysis of a larger number of patients with 
PD in the very early or late stage of the disease will allow 
us to assess the diagnostic potential of the novel biomarkers 
which we are proposing. Another limitation of the presented 
research is the lack of data pertaining to other neurodegen-
erations and potential reflection of the intracellular neuro-
degenerative processes in general. Furthermore, the pres-
ence of patients with advanced stages of the disease would 
help to answer the question of whether it is an increase in 
methoxy estrogens has a linear character over time. Moreo-
ver, the group of premotor phase patients, e.g., with RBD 
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(REM-sleep behavior syndrome) would be required which is 
by far the most sensitive clinical biomarker of the prodromal 
phase of synucleinopathies.

Based on the above, we suggest that plasma hydroxy and 
methoxy estrogens, as well as  H2O2, may be applied as clini-
cal biomarkers for PD diagnosis and treatment. We strongly 
believe that our results will provide a widely available PD 
diagnostic tool for relatively easily identifying neurodegen-
eration symptoms, which would enable to diagnose patients 
at an early stage of PD and allow early treatment with mod-
ern drugs. Moreover, as we have previously stated, 2-ME2 
may act as a diagnostic and monitoring biomarker in patients 
with lung cancer [32].Here, for the first time in neurologi-
cal disease, a 2-ME2 serum concentration was determined. 
Notably, the clinical application of our findings would not 
pose much of a challenge, as it primarily entails the deter-
mination of specific estrogen metabolites in patients' blood 
making it a practical minimally invasive diagnostic method 
that is also relatively fast and inexpensive. The described 
research is the subject of the patent application “The use of 
hydrogen peroxide and 17β-estradiol and its metabolites as 
biomarkers in the in vitro diagnosis of neurodegenerative 
diseases,” no. P.441360.
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