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Abstract
Parkinson’s disease (PD) is a neurodegenerative disease due to the degeneration of dopaminergic neurons (DNs) in the sub-
stantia nigra (SN). The liver X receptor (LXR) is involved in different neurodegenerative diseases. Therefore, the objective of 
the present review was to clarify the possible role of LXR in PD neuropathology. LXRs are the most common nuclear recep-
tors of transcription factors that regulate cholesterol metabolism and have pleiotropic effects, including anti-inflammatory 
effects and reducing intracellular cholesterol accumulation. LXRs are highly expressed in the adult brain and act as endog-
enous sensors for intracellular cholesterol. LXRs have neuroprotective effects against the development of neuroinflammation 
in different neurodegenerative diseases by inhibiting the expression of pro-inflammatory cytokines. LXRs play an essential 
role in mitigating PD neuropathology by reducing the expression of inflammatory signaling pathways, neuroinflammation, 
oxidative stress, mitochondrial dysfunction, and enhancement of BDNF signaling.
In conclusion, LXRs, through regulating brain cholesterol homeostasis, may be effectual in PD. Also, inhibition of node-like 
receptor pyrin 3 (NLRP3) inflammasome and nuclear factor kappa B (NF-κB) by LXRs could effectively prevent neuro-
inflammation in PD. Taken together, LXRs play a crucial role in PD neuropathology by inhibiting neuroinflammation and 
associated degeneration of DNs.
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Introduction

Parkinson’s disease (PD) is the second most common neu-
rodegenerative disease next to Alzheimer’s (AD). PD was 
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palsy [1]. The incidence of PD is about 1% in the general 
population, which increased to 2% in subjects over sixty; 
however, this percentage is highly augmented above the age 
of eighty [2]. Therefore, PD is regarded as an age-related 
disorder due to age-induced progressive neuronal loss [3]. 
PD is developing due to the progressive degeneration of 
dopaminergic neurons (DNs) in the substantia nigra (SN) 
of the midbrain [4]. The causes of PD are related to the 
alteration of genetic and epigenetic variants [5]. Environ-
mental toxins and stress are involved in triggering PD neu-
ropathology [6]. The pathognomonic feature of PD is the 
deposition of α-synuclein and aggregation of Lewy bodies 
[7]. In fact, α-synucleinopathy is not restricted to the SN but 
affects the entire central nervous system (CNS), including 
the autonomic nervous system which could be the initial site 
in the development and progression of PD [8]. The latent 
period between PD neuropathology and symptomatic PD 
may be many years [9]. Cardinal motor symptoms of PD 
include resting tremors, rigidity, bradykinesia, shuffling gait, 
and instability [10]. Besides, various non-motor symptoms, 
including sleep disturbances, apathy, anxiety, depression, 
neuropsychiatric disorders, dementia, autonomic dysfunc-
tion, sensory abnormality, and cognitive deficits, are devel-
oped [11]. Remarkably, non-motor symptoms may be the 
initial feature as they develop several years before classic 
motor symptoms and may be misdiagnosed with psychiatric 
disorders [12]. Various cellular disorders, including inflam-
mation, autophagy, mitochondrial dysfunction, endoplasmic 
reticulum (ER) stress, and microgliosis, are involved in PD 
neuropathology [13, 14].

PD is commonly associated with cardiometabolic distur-
bances, directly and indirectly affecting PD neuropathology 
[15]. It has been shown that metabolic syndrome and its 
components are linked with the development of PD [16]. A 
nationwide cohort study involving 17,163,560 subjects aged 
> 40 years in South Korea found that components of meta-
bolic syndrome like hypertriglyceridemia and low-density 
lipoprotein (LDL) were associated with PD risk [17]. The 
liver X receptor (LXR) involves lipid homeostasis and dif-
ferent cardiometabolic disorders [18]. LXR is also shown to 
engage with neurodegenerative diseases like AD [18, 19]. 
Therefore, the objective of the present review was to clarify 
the possible role of LXR in PD neuropathology.

Liver X Receptor

Nuclear receptors are the master body homeostasis regulator 
that controls most biological processes [20]. LXRs are the 
most common nuclear receptors of transcription factors that 
regulate cholesterol metabolism and are involved in different 
pathologies, including atherosclerosis, cancer, neurodegen-
erative diseases, chronic inflammation, and autoimmunity 

[20]. LXRs are closely related to other types of receptors 
like peroxisome proliferators activated receptors (PPARs), 
farnesoid X receptor (FXR), and retinoid X receptor (RXR) 
[21]. LXRs are of two types; LXRα was discovered in 1994 
and initially named an RLD-1 receptor, though LXRβ was 
discovered separately simultaneously and was known as 
RIP-15. Genes of LXRα and LXRβ were identified to be 
located on chromosome 11p11.2 and chromosome 19q13.3, 
respectively [22]. LXRs are expressed in different tissues 
with considerable overlap. LXRβ is expressed in all tis-
sues, so-called ubiquitous receptors (UR) though LXRs 
are mainly expressed in the liver, kidney, adipose tissues, 
intestine, spleen, lung, and macrophages [23]. Expression 
differences of these receptors suggest a different physi-
ological role. LXRs regulate immune response and mediate 
anti-inflammatory effects by promoting the expression of 
inflammatory genes and mediators in response to different 
microbial infections [24, 25]. LXRs inhibit dendritic cells 
and macrophage activity as well as migration and prolifera-
tion of lymphocytes [24, 25].

Inflammation and cholesterol homeostasis are closely 
related to regulating inflammation and immune response 
[24, 25]. Besides, LXRs have a crucial anti-tumor role and 
regulate cancer biology by regulating natural killer T cell 
responses [26]. LXRs have pleiotropic effects on the tumor 
microenvironment [26]. Of note, LXRs are essential in cho-
lesterol metabolism, and cholesterol derivatives, including 
oxysterols and desmosterol, act as LXRs activators [27]. 
Activation of LXRs provokes LXR heterodimerization 
with RXR leading to activation of LXR response element 
with subsequent gene activation involved in glucose and 
lipid metabolism [28, 29]. LXRs regulate abnormal intra-
cellular sterol by activating the expression of ATP-binding 
cassette (ABC), carbohydrate response element binding 
protein (ChREBP), and sterol regulatory element binding 
protein 1c (SREBP1c) that control lipogenesis [30]. Further-
more, LXRs regulate low-density lipoprotein (LDL) expres-
sion and increase uptake of cholesterol and LDL particles 
through induction expression of LDL receptor (LDLR) and 
inducible degrader of LDLR (IDOL) [31]. Of interest, LXRs 
are regarded as a potential link between the immune system 
and cholesterol homeostasis [32].

It has been observed that LXRs are involved in the patho-
genesis of atherosclerosis through the induction of hyper-
lipidemia. LXRα knockout mice develop fatty liver when 
fed on a high-fat diet, though LXRβ knockout mice did not 
develop lipid disorders when fed on a high-fat diet [33, 34]. 
These verdicts suggested a differential role of LXRs on lipid 
metabolism. As well, LXRs contribute to the regulation of 
brain cholesterol metabolism [19]. LXRs knockout mice 
develop neurodegeneration due to cholesterol-induced syn-
aptic dysfunction and neuronal loss [35]. Of interest, adi-
ponectin attenuates the development of neurodegeneration 
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through the activation of LXRs [36]. In general, LXR ago-
nists can potentially manage AD, inflammation, diabetes, 
and atherosclerosis [37].

Furthermore, LXRs improve insulin sensitivity and 
attenuate obesity-induced insulin resistance by controlling 
gene expression involved in glucose metabolism in the liver 
and adipose tissues [38]. Aberrant expression of LXRs in 
the macrophages is developed under the effect of oxidized 
cholesterol like 7-ketocholesterol leading to atherosclerosis 
[39, 40]. Thus, inhibition of 7-ketocholesterol could be a 
possible pathway in treating atherosclerosis [41]. Notably, 
LXR agonists may lead to increase production of triglyc-
eride and VLDL [42]. Besides, hyperglycemia in diabetes 
induces the expression LXRs, causing hypertriglyceridemia 
[43]. This undesirable effect of LXRs agonists is due to 
the competition of LXRs with PPARα on heterodimeriza-
tion with a limited pool of RXR [43]. However, potent and 
selective LXR agonists like N, N-dimethyl-3β-hydroxy-
cholenamide (DMHCA) decrease atherosclerosis in ApoE-
deficient mice without the development of liver steatosis 
and hypertriglyceridemia [37]. LXR agonists significantly 
regulate inflammatory mediators in endothelial cells, vascu-
lar smooth muscle cells, and macrophages [44]. LXR ago-
nists improve vascular smooth muscle cells by increasing 
the expression of alpha-smooth muscle actin (α-SMA) and 

reducing the expression of angiotensin 1 receptor (AT1R) 
[44]. Furthermore, LXR agonists promote the functional 
capacity of endothelial cells by increasing the expression of 
ABCA1 and STEAROYL-CoA desaturase-1 (SCD-1) and 
reducing the expression of adhesion molecules and pro-
inflammatory cytokines. In macrophages, LXR agonists 
increase the expression of ABCA1 and mer tyrosine kinase 
receptor with reduced expression of IL-6, cyclooxygenase 2 
(COX-2), inducible nitric oxide synthase (iNOS), and matrix 
metalloproteinase 9 (MMP-9) [44] (Fig. 1).

Taken together, LXRs have pleiotropic effects, including 
anti-inflammatory effects, reduced intracellular cholesterol 
accumulation, immune regulation, anti-proliferative effects, 
and anti-tumor effects, and prevent development of endo-
plasmic reticulum stress (Fig. 2).

Brain Cholesterol and LXRs

The brain has an advanced cholesterol concentration com-
pared to any other organ in the body; it has 25% of the total 
cholesterol in the body [45]. Brain cholesterol chiefly exists 
as an unesterified form [46]. Blood cholesterol cannot cross 
blood brain barrier (BBB); hence, brain de novo cholesterol 
biosynthesis is the foremost source of brain cholesterol [47]. 

Fig. 1   The potential effect of liver X receptor (LXRs) agonists: LXR 
agonists advance vascular smooth muscle cells by increasing the 
expression of alpha-smooth muscle actin (α-SMA) and decreasing the 
expression of angiotensin 1 receptor (AT1R). LXR agonists encour-
age the functional capacity of endothelial cells by increasing the 
expression of ATP-binding cassette A1 (ABCA1) and STEAROYL-

CoA desaturase-1 (SCD-1) and reducing the expression of adhesion 
molecule and pro-inflammatory cytokines. In macrophages, LXR 
agonists upsurge expression of ABCA1 and mer tyrosine kinase 
receptor with reduced expression of IL-6, cyclooxygenase 2 (COX-2), 
inducible nitric oxide synthase (iNOS), and matrix metalloproteinase 
9 (MMP-9)
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Though, evidence from preclinical studies demonstrated that 
lipoprotein-bound cholesterol can cross BBB [48]. Particu-
larly, scavenger receptor type B1 (SR-B1) expressed on cer-
ebral capillary endothelial cells plays a vital role in choles-
terol uptake from LDL and HDL [48]. Additionally, brain 
endothelial cells can uptake LDL via LDLR [49]. These 
pathways donate to a minor route for cholesterol transport 
from peripheral circulation into the brain.

Brain cholesterol is primarily present in the astrocytes 
and glial cells [50]. In the adult brain, cholesterol is pri-
marily produced by glial cells and taken up by neurons. 
Astrocytes synthesize cholesterol which is transported with 
the assistance of ApoE via ATP-binding cassette (ABCA1) 
to neurons. Cholesterol in the neurons is metabolized to 
24S-hydroxycholesterol (24S-OH), which is transported to 
astrocytes and inhibits cholesterol biosynthesis. Some of 
24S-OH are regulated by LXRs and excreted via ABCA1 
to synthesize cholesterol in the neurons. Though, another 
part of 24S-OH is eliminated the systemic circulation [50, 
51] (Fig. 3). Cholesterol biosynthesis in the brain is con-
trolled by HMG-CoA reductase, which is a rate-limiting 
enzyme in the synthesis of cholesterol [47]. Brain choles-
terol has a long half-life of up to five years compared to  

days of peripheral cholesterol [52, 53]. Brain cholesterol 
is metabolized to oxysterol by a 24-hydroxylase enzyme 
which is extremely expressed by neurons [54]. Oxysterol 
can pass into the systemic circulation and excrete by 
urine which mirrors the rate of brain cholesterol metabo-
lism [54]. Neuronal cholesterol via ABC transporters is 
excreted to the adjacent neurons [32]. Excreted neuronal 
cholesterol binds ApoA-I in the cerebrospinal fluid (CSF) 
and via SR-B1 passes into the systemic circulation [55]. 
Astrocytes are intricate in synthesizing and releasing LPs 
in the brains [56], which can pass to the CSF [56]. Dis-
similar brain enzymes counting phospholipid transfer 
protein, cholesteryl ester transfer protein (CETP), and 
lecithin-cholesterol acyltransferase (LCAT) are involved 
in the maturation of brain LPs [19]. There are many types 
of LPs in the brain, though ApoA and ApoE are the main 
types in the brain [57]. Brain LPs form HDL-like parti-
cles and play a role in regulating membrane cholesterol 
of neurons [58]. Astrocytes, microglia, and oligodendro-
cytes synthesize ApoE during neuronal injury; it plays an 
important role in lipid transport between glial cells and 
neurons [23]. However, ApoA is not formed by the brain 
but it is transported from circulating HDL via SR-B1 [59]. 

Fig. 2   Potential functional role of LXRs: LXR agonists could be a 
promising therapeutic target in cancer, prostatic carcinoma, Goodpas-
ture disease (GBM), rheumatoid arthritis (RA), systemic lupus ery-
thematosus (SLE), and irritable bowel disease (IBD). LXR agonists 

produce their effects by pleiotropic effects including anti-inflamma-
tory effects, reduced intracellular cholesterol accumulation, immune 
regulation, anti-proliferative effects, anti-tumor effects, and preven-
tion of the development of endoplasmic reticulum stress
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ApoE acts as a ligand for LDL-related protein 1 (LRP1) 
and LDLR for cholesterol transport [60].

Furthermore, LXRs are important in regulating brain 
cholesterol [23]. LXRs are exceedingly expressed in 
different tissues including the brain; they are activated 
by oxysterols, mainly 24S-hydroxycholesterol [61]. 
LXRs augment the expression of ATP-binding cassette 
transporters, including ABCG1 and ABCA1, which 
mediate the efflux of cholesterol and phospholipids from 
astrocytes [55]. LXR agonists improve cholesterol efflux 
from astrocytes to neurons [56]. LXRs have been shown 
to modulate brain cholesterol homeostasis at various 
stages. The neuronal cholesterol concentrations have, 
thus, been demonstrated to be modulated at three levels; 
cholesterol uptake by neurons is negatively regulated by 
LXRs, via the degradation of the LDL receptor by an 
inducible degrader of LDLR (IDOL). LXR activation 
by a synthetic agonist stimulated neuronal cholesterol 
efflux, and LXRs control the cholesterol supply from 
astrocytes to neurons. The latter pathway is the main 
source of cholesterol for neurons [23]. Thus, both 24S-OH 
and GW683965A (a synthetic LXR-agonist) upregulate 
ABCA1 and ABCG1 in astrocytes, which promotes 
cholesterol efflux from this cell type. APOE expression is 
also increased, which mediates the cholesterol transport 
toward neurons. In oligodendrocytes and Schwann cells, 
which provide cholesterol to the myelin sheath, LXR can 
control both cholesterol homeostasis and myelination 
processes [23, 55, 62]. These findings exemplified that 
the brain has sole cholesterol metabolism varied from 
that of circulating cholesterol. Likewise, there is an  

important interaction between astrocytes and neurons in 
ruling brain cholesterol metabolism (Fig. 3).

LXRs and Neurodegeneration

Cholesterol has a key role in synaptogenesis and neurotrans-
mitter release; thus, defective brain cholesterol metabolism 
is linked with the progression of neurodegenerative disor-
ders [63]. Brain cholesterol homeostasis is maintained by 
in situ cholesterol biosynthesis and conversion to 24S-OH 
which passes through BBB into the systemic circulation 
[64]. Higher circulating 24S-OH level is increased in AD, 
suggesting brain cholesterol’s role in the pathogenesis of 
neurodegenerative diseases [64]. Dysregulation of brain 
cholesterol metabolism induces the expression of the pro-
inflammatory renin-angiotensin system (RAS) [65]. Hyper-
cholesterolemia increases 27S-OH levels, a peripheral 
cholesterol metabolite that can cross BBB and promote the 
expression of brain RAS in AD patients [65]. These verdicts 
proposed the association between cholesterol dyshomeosta-
sis and the pathogenesis of neurodegenerative disorders.

LXRs are highly expressed in the adult brain, regulate 
cholesterol homeostasis, and act as endogenous sensors for 
intracellular cholesterol [19]. In vitro study demonstrated 
that LXR agonists improve neuronal differentiation [66]. 
LXRs have neuroprotective effects against the develop-
ment of neuroinflammation in different neurodegenerative 
diseases by inhibiting the expression of pro-inflammatory 
cytokines [66]. The anti-inflammatory effect of LXRs 
is mediated by the expression of ubiquitin-like modifier 

Fig. 3   Brain cholesterol homeo-
stasis: Astrocytes synthesize 
cholesterol which is transported 
with the assistance of ApoE via 
ATP-binding cassette (ABCA1) 
to neurons. Cholesterol in 
the neurons is metabolized to 
24S-hydroxycholesterol (24S-
OH), which is transported to 
astrocyte and inhibit cholesterol 
biosynthesis. Some of 24S-OH 
are regulated by the liver X 
receptor (LXR) and excreted via 
ABCA1 to synthesize choles-
terol in the neurons. However, 
the other part of 24S-OH is 
eliminated from the systemic 
circulation
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proteins, which inhibit the expression of pro-inflammatory 
cytokines [67], suggesting the indirect anti-inflammatory 
effect of LXRs. LXRs promote neurogenesis of midbrain 
and dopaminergic neurons [66], so LXR agonists may be 
an effective therapeutic strategy against neurodegenerative 
disorders, including PD.

Of note, LXRs improve cholesterol efflux, transport, 
absorption, excretion, and gene expression in astrocytes 
but not in neurons according to the findings from in vitro 
study [68, 69]. LXR agonists reduce senile plaque forma-
tion by increasing Aβ clearance [69]. However, loss of 
LXRs in mice triggers the development and progression 
of neurodegeneration by inducing dysregulation of cho-
lesterol metabolism and age-mediated neuropathological 
changes [70] suggesting a neuroprotective role of these 
receptors. Deficiency of LXRs in experimental mice leads 
to hypoxia, mainly in the SN. Hypoxia and blood vessel 
changes due to the depletion of LXRs induce neuropatho-
logical changes and microvascular dysfunction, a risk fac-
tor involved in neurodegeneration [71]. An experimental 
study revealed that LXR agonists attenuate brain injury in 
ischemic stroke [72].

Mouzat et al. [73] illustrated that LXRs play a neuro-
protective role against the development of amyotrophic 
lateral sclerosis (ALS) by inhibiting neuroinflammation 
and promoting the survival of motor neurons. LXR agonist 
GW3965 attenuates neuroinflammation and regulates brain 
cholesterol metabolism in AD by increasing ApoE expres-
sion, inhibiting astrogliosis, restoration of microvascular 
morphology, and inhibiting accumulation of Aβ in the blood 
vessels [71]. Expression of ApoE, which controls cholesterol 
transport and metabolism, is regulated by LXRs [74]. ApoE 
is released from astrocytes and acts on neurons expressing 
LDLR. ApoE regulates and controls cholesterol transport 
in specific brain regions like SN [75]. Therefore, a defect 
in ApoE expression induces abnormal cholesterol homeo-
stasis and the development of neurodegeneration. In ApoE 
knockout mice, lipid droplets accumulate in astrocytes of SN 
and globus pallidus [76]. Lipid droplets participate in vari-
ous cellular functions including cell signaling, inflamma-
tion, and the development of metabolic diseases. However, 
the presence of lipid droplets in the CNS is linked with the 
development of neurodegeneration [76].

In addition, LXR agonists trigger the expression of genes 
involved in activating cholesterol efflux [77]. As well, ABC 
transporters reduce cholesterol accumulation in the astroglial 
cells mainly perivascular astrocytes [78]. Of interest, astro-
cytes regulate the expression of LDLR in brain endothe-
lial cells and neurons [79]. Therefore, mutations of LXRs 
disturb BBB permeability causing neuronal injury and the 
development of neurodegeneration [80]. These findings pro-
posed that LXRs regulate cholesterol brain biosynthesis via 
control expression of ApoE and ABC transporters.

LXRs are intricate with AD pathogenesis; the experi-
mental study showed that administration of LXR agonist 
T0901317 reduces deposition of Aβ1–40 and Aβ1–40 in mice 
[81]. LXR agonists have been reported to reduce senile 
plaque formation, increase Aβ clearance, and improve cog-
nitive performance in AD model mice [81]. Inhibition of Aβ 
by LXR agonists is cell-specific and more neuronal com-
pared to non-neuronal cells [67]. LXRs inhibit the expres-
sion of NF-κB and abnormal immune response in AD [82]. 
In vitro study, LXR agonist GW3965 reduces astrogliosis 
and improves synaptic plasticity [83]. Endogenous LXR 
ligands decrease AD-mediated pathology [84], and genetic 
loss of LXRs in transgenic mice promotes Aβ load. LXRs 
inhibit the inflammatory response in cultured glial cells to 
Aβ fibrillary [84]. As well, LXRs improve the phagocytic 
activity of microglia for Aβ fibrillary [84]. Thus, the signal-
ing of LXRs seems protective against AD’s development 
and progression. LXRs decrease tau protein phosphorylation 
in AD patients [85]. The exact and molecular mechanisms 
of LXRs against AD pathogenesis are not well elucidated. 
Adighibe et al. [86] revealed that genetic variability of LXRs 
is associated with an increase in AD risk.

LXR agonist GW3965 can reduce Aβ formation and 
reverse cognitive deficits in AD model mice by increasing 
expression of ApoE expression and Aβ clearance [87]. Of 
interest, the reversal of cognitive deficit occurs by using 
LXR agonists despite the presence of Aβ in mice [88], 
suggesting that activation of ABCA1 could be a possible 
mechanism. In addition, LXR agonists promote Aβ clear-
ance via induction microglia phagocytosis and enzymatic 
degradation [89]. However, increasing ApoE following LXR 
agonists may increase PGF2α, which antagonizes the action 
of LXRs on Aβ clearance and phagocytosis [90]. Moreover, 
LXR agonists increase cholinergic neurons, synaptic func-
tion, and cognitive performance in AD model mice [91]. 
These findings suggest that LXRs play a critical role against 
the development and progression of AD.

Furthermore, dysregulation of cholesterol metabolism is 
linked with the development of ALS [92]. Evidence from 
clinical findings showed that cholesterol dyshomeostasis is 
associated with ALS [93]. Increasing CSF cholesterol level 
and 25-OH cholesterol were shown to be correlated with 
ALS severity [94, 95]. LXR knockout mice had progressive 
neuronal loss with a similar phenotype of ALS [96]. LXR 
receptors are regarded as genetic modulators of ALS through 
the modulation of energy metabolism [97]. A case-control 
study involved 438 ALS patients compared to 330 healthy 
controls showed that genetic variation of ALS genes is asso-
ciated with 30% of increasing disease severity and duration 
[97]. Zakyrjanova et al. [98] found that 25-OH cholesterol 
reduces neuromuscular junction activity by inhibiting LXRs. 
Therefore, LXRs seem to be protective against the develop-
ment and progression of ALS.
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Furthermore, LXRs and dysregulation of cholesterol 
homeostasis are associated with the pathogenesis of multi-
ple sclerosis (MS) [99]. LXRs regulate myelination of nerve 
sheath [100]; thus, defects in LXRs promote the pathogen-
esis of MS. It has been shown that LXRs are activated by 
27S-OH and other oxysterol in MS lesions [101]. A cohort 
study involving MS patients showed that mRNA of LXRs 
was increased in peripheral blood mononuclear cells [102] 
as a compensatory mechanism to counteract immunoinflam-
matory response. Genetic mutation of LXRs is linked with 
the development of MS [103], and the use of LXR agonists 
could be effective in managing MS.

In sum, LXRs have neuroprotective effects against vari-
ous types of neurodegenerative disorders and the use of LXR 
agonists might be effective in this regard (Fig. 4).

LXRs and PD

It has been shown that LXRβ plays a protective role 
against the development of PD through the modulation 
of inflammatory changes in the DNs of the SN [104]. 
An experimental study demonstrated that LXR ago-
nist GW3965 protects DNs in the SN from the effect of 
MPTP-induced microglia hyperactivation in mice [104]. 
LXRβ also promotes the survival of DNs of the SN [105]. 

Deletion of LXRβ induces the development of PD and 
other neurodegeneration in mice following six months of 
age by overactivation of microglia and development of 
neuroinflammation [106], suggesting a protective role of 
LXRβ against the development and progression of PD by 
inhibiting microglia activation.

The deficiency of LXRβ increases vulnerability to the 
neurotoxic effect of MPTP, and the use of LXRβ agonists 
reduces astrocyte activation in the SN [104]. LXRβ is highly 
expressed in DNs and glial cells; therefore, the protection 
of DNs in experimental PD is not through a direct effect 
on the DNs but indirectly by inhibiting microglia activa-
tion [104]. Therefore, LXRβ agonist attenuates microglia 
activation-induced neuroinflammation and loss of DNs in 
MPTP-induced PD [84]. LXRβ agonist TO901317 reduces 
inflammatory markers and improves mouse locomotor func-
tion in MPTP-induced PD by reducing neuroinflammation 
[107]. As well, LXRβ agonist prevents activation of the pro-
apoptotic pathway and development of DNs apoptosis in 
MPTP-induced PD in mice [108]. However, Marwarha et al. 
[109] illustrated that LXRβ agonist increases α-synuclein 
expression. LXRβ promotes midbrain neurogenesis, and 
activation of LXRβ by oxysterol improves the differentia-
tion of DNs in the SN [66]. Oxysterols like 24S-OH plasma 
levels are reduced in PD patients; however, a cohort study 
showed normal 24S-OH plasma levels in PD patients [64]. 

Fig. 4   Role of LXRs in neurodegenerative diseases
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Both 24S-OH and 27S-OH were increased in the CSF cor-
related with duration and PD severity [64].

Abnormal brain cholesterol homeostasis promotes aggre-
gation of α-synuclein, leading to cell membrane disruption 
and DNs loss. Besides, α-synuclein promotes neuronal 
cholesterol efflux [110, 111]. Furthermore, ApoE enhances 
α-synuclein aggregation causing cognitive impairment in 
mice [112]. Therefore, LXRs, through modulation of ApoE 
and brain cholesterol homeostasis, may lead to controversies 
regarding their effects on PD. These findings indicated that 
LXRs have a neuroprotective effect against PD neuropathol-
ogy. However, the underlying mechanisms of LXRs in PD 
are not fully elucidated.

Mechanistic Role of LXRs in PD

LXRs and Inflammatory Signaling Pathways in PD

NF‑κB

NF-κB is a DNA-binding protein essential for the tran-
scription of chemokines and pro-inflammatory cytokines. 
NF-κB is inhibited by an inhibitor of κB (IκB) which seques-
ter NF-κB in the cytosol and prevent its localization [113]. 
Though, cytokines inhibit IκB with subsequent activation 
of NF-κB and promulgation of inflammatory disorders 
[114, 115]. It has been shown that NF-κB intricate in the 
pathogenesis of PD via induction of inflammation-mediated 
degeneration of DNs in the SN [116]. Notably, immune dys-
regulation promotes activation of NF-κB with consequent 
neuronal injury, neuroinflammation, and development of PD 
[116]. Findings from postmortem studies revealed a poten-
tial role of NF-κB in the degeneration of DNs in the SN. 
Activation of NF-κB with induction of neuronal apoptosis 
was established in PD patients compared to the controls 
[117]. Selective inhibition of NF-κB prevents degeneration 
of DNs in the SN in a mouse model of PD [118]. Likewise, 
targeting of NF-κB pathway in the murine PD model may 
avert PD progression [119]. Different drugs and herbals like 
pioglitazone, salmeterol, and curcumin delay the degenera-
tion of DNs in the SN by inhibiting NF-κB which is con-
cerned with the progression of neuroinflammation in PD 
[119]. As well, α-synuclein released from injured DNs trig-
gers activation of NF-κB and release of pro-inflammatory 
cytokines in a positive-loop manner [120]. These findings 
proposed that NF-κB could be a therapeutic target in the 
management of PD. Peculiarly, the Aβ1–42 level in the CSF 
is reduced and not correlated with motor dysfunction in PD 
patients compared to the controls [121]. In addition, the 
Aβ1–42 level in the CSF is augmented and interrelated with 
the severity of PD [122]. Nevertheless, Aβ1–42 inhibits BBB 
P-glycoprotein via induction of NF-κB with clearance of 

Aβ1–42 [123]. Consequently, NF-κB not only induces DNs 
degeneration in the SN but also increases the PD severity 
through the accumulation of Aβ1–42 and α-synuclein.

LXRs had been reported to inhibit neuroinflammation 
in PD by reducing the expression of NF-κB [107]. Nota-
bly, NF-κB mediates the inhibitory effects of IL-1β on the 
ABCA1 expression with subsequent alteration of brain 
cholesterol homeostasis [124]. Lei et al. [125] showed that 
LXR agonists inhibit the expression of NF-κB in the reti-
nal inflammatory response. In vitro study demonstrated that 
LXR agonists attenuate LPS-induced IL-8 production and 
NF-κB activation [126]. In addition, LXR agonists reverse 
NF-κB by improving IκBα [126]. Of interest, activating 
LXRs prevents cognitive dysfunction through the modu-
lation of hippocampal synaptic plasticity and macrophage 
polarization by inhibiting the expression of NF-κB [127]. 
These observations suggest that LXRs through inhibition of 
the NF-κB signaling pathway prevent the progression of PD 
and associated neuroinflammation (Fig. 5).

NLRP3 Inflammasome

NLRP3 inflammasome is the nucleotide-binding domain and 
the leucine-rich repeat-containing family, and pyrin fam-
ily can form a multiprotein complex. The chief function of 
NLRP3 inflammasome is the activation of caspase-1 and 
the maturation of IL-1β and IL-18 [106]. NLRP3 inflam-
masome is activated by different stimuli counting alternative 
and non-canonical pathways [128]. NLRP3 inflammasome 
is activated by NF-κB and sphingosine-1 phosphate [129].

NLRP3 inflammasome is involved in the pathogenesis 
of PD [130]. NLRP3 inflammasome induces the release 
of pro-inflammatory cytokines and the progress of neu-
roinflammation and degeneration of DNs by induction of 
pyroptosis [130, 131]. In addition, accumulation of the 
α-synuclein stimulates activation of the microglia with 
subsequent expression of NLRP3 inflammasome in the SN 
[130]. Furthermore, systemic activation of NLRP3 inflam-
masome encourages the accumulation of α-synuclein and 
degeneration of dopaminergic neurons in the SN [132]. 
A case-control study included 67 PD patients compared 
to 24 healthy controls and exhibited that plasma levels of 
α-synuclein, NLRP3 inflammasome, caspase-1, and IL-1β 
were increased in PD patients compared to healthy controls 
[132]. Thus, α-synuclein, NLRP3 inflammasome, and IL-1β 
plasma levels could serve as biomarkers to screen PD sever-
ity and progression. Diverse studies revealed that higher lev-
els of pro-inflammatory cytokines in the CSF and plasma 
sustenance the interface between the brain and immune sys-
tem with the progress of neuroinflammation and degenera-
tion of DNs in PD [133, 134]. IL-1β plasma level, a main 
component of NLRP3 inflammasome, is increased in PD 
patients [135]. These clarifications anticipated that systemic 
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inflammation via induction of neuroinflammation might lead 
to the degeneration of DNs and the development of PD. 
Moreover, increasing of α-synuclein plasma level which is 
a major constituent of Lewy bodies had been reported to be 
increased in PD patients compared to the healthy controls 
[136]. In turn, α-synuclein can activate NLRP3 inflamma-
some with subsequent release of IL-1β with the progress of 
systemic inflammation and neuroinflammation [137].

Different studies reported that LXRs inhibit the expres-
sion and activation of NLRP3 inflammasome [125, 138]. 
Activation of LXRs by ginsenosides from Panax ginseng 
reduces NLRP3 inflammasome-induced liver apoptosis 
in mice [138]. LXR agonist TO90 downregulates NLRP3 
inflammasome and linked activation of IL-1β and caspase-1 
in mice [125]. LXR agonists attenuate NLRP3 inflamma-
some-induced peritonitis in experimental mice [139]. Hu 
et al. [140] observed that LXR agonists reduce inflammatory 
disorders in different diseases by inhibiting the expression 
of NLRP3 inflammasome (Fig. 5).

Neuroinflammation

Neuroinflammation is a process related to the onset of sev-
eral neurodegenerative disorders, and it is an essential con-
tributor to the pathogenesis and progression of PD [141]. 

Several damage signals appear to induce neuroinflammation, 
such as infection, oxidative agents, redox iron, and oligomers 
of misfolded proteins [142]. Neuroinflammation is responsi-
ble for an abnormal secretion of pro-inflammatory cytokines 
that trigger signaling pathways that activate PD neuropa-
thology [141, 142]. Evidence exists that PD pathogenesis 
is not restricted to the neuronal compartment but includes 
interactions with immunological cells in the brain, such as 
astrocytes, microglia, and infiltrating immune cells from the 
periphery, which could contribute to the modification of the 
process of neuroinflammation in PD [143]. Increased BBB 
permeability and neurovascular dysfunction have been asso-
ciated with severe conditions in PD [144]. This effect could 
be associated with infiltrating inflammation molecules to the 
middle brain, microglia activation, and death of DNs [144]. 
The systemic inflammatory response in PD seems to be pro-
moted by peripheral lymphocyte activation and augmented 
levels of pro-inflammatory cytokines [145].

Moreover, neuroinflammation plays an important key 
role in the pathogenesis of PD. For example, some pro-
inflammatory cytokines, such as IL-1β, tumor necrosis 
factor (TNF)-α, and others, can be found at higher levels 
in cerebrospinal fluid samples of patients affect with PD 
compared to age-matched controls [146]. Further supporting 
the involvement of inflammation, activated microglia can 

Fig. 5   Role of LXRs in Parkinson’s disease neuropathology
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be detected in the brains from living PD patients and post-
mortem samples from people affected by PD [146].

It has been shown that activation of LXRs attenuates the 
development and progression of PD [107]. In vivo model 
of PD using the neurotoxin MPTP revealed that TO901317 
administration reduces all of the inflammatory markers intri-
cate in PD such as iNOS and COX2, IκB-α, and NF-κB 
[147]. Consequently, LXR agonists induce transcriptional 
activity of LXR target genes, attenuating the astrogliosis 
and microgliosis induced by neuroinflammation and are 
widely used in different neurodegeneration animal models 
[147]. Therefore, TO901317, LXR synthetic agonist, could 
be a new target in PD [107]. Furthermore, administration 
of TO901317 prevents the death of DNs by decreasing pro-
apoptotic protein which is important in apoptosis [108]. 
Pre-treatment with TO901317 significantly reduced NF-κB 
p65 and prevented IκBα degradation in SH-SY5Y in vitro 
model [107]. Taken together, LXR agonist can modulate the 
neuroinflammatory pathway involved in PD and can also 
ameliorate motor function. Therefore, LXR agonists could 
be studied as a possible pharmacological target in PD.

Endoplasmic Reticulum Stress and LXR

It has been revealed that endoplasmic reticulum (ER) stress 
and unfolded protein response (UPR) were linked with PD 
neuropathology [148]. ER controls the quality of proteins 
and maintains protein homeostasis via modulating intracel-
lular calcium levels and the folding of proteins synthesized 
in the cells. The buildup of misfolded proteins in the ER 
lumen triggers ER stress’ progress with the activation of 
UPR as a compensatory mechanism to improve the degra-
dation of the misfolded protein [148]. However, in severe 
ER stress, the activated cellular signaling leads to advanced 
neuronal injury and the development of PD [13]. Likewise, 
ER stress induces intracellular Ca2+ homeostasis dysregu-
lation by stimulating inflammasomes and autophagy [149]. 
These verdicts implicate ER stress in the development and 
progression of PD neuropathology. In the experimental PD 
model, neurotoxins such as MPTP and 6-hydroxydopa-
mine (6-OHDA) induce the degeneration of DNs through 
induction ER stress [150]. Brain endogenous morphine bio-
synthesis was reported to be impaired in PD patients, and 
exogenous morphine attenuated 6-OHDA-induced cell death 
in vitro. However, the mechanisms underlying neuroprotec-
tion of morphine in PD are still unclear [151]. Morphine 
attenuated the 6-OHDA-induced ER stress in SH-SY5Y 
cells [151]. Of note, the LXR and lipid-sensor pathways 
represent a research avenue to identify targets to prevent 
debilitating complications affecting the peripheral nerv-
ous system in obesity [152]. Treatment with LXR agonist 
GW3965 decreased the mRNA levels of ER stress markers 
in palmitate-treated dorsal root ganglion explants [152]. A 

preclinical study revealed that LXR agonist protects DNs 
in the SN in a mouse model of PD by reducing ER stress 
[104]. Furthermore, endogenous LXR ligands promote neu-
rogenesis and survival of DNs by inhibiting ER stress [153]. 
Therefore, ER stress is highly intricate with PD neuropathol-
ogy, and inhibition of ER stress by LXR agonists may reduce 
the severity of PD.

Oxidative Stress, Mitochondrial Dysfunction, 
and LXRs

Oxidative stress has been reported to play a critical role in 
PD neuropathology [154]. At the cellular level, PD is linked 
to surplus production of ROS due to changes in catecho-
lamine metabolism, alteration in mitochondrial electron 
transporter chain (METC) function, and enhancement of 
iron deposition in the SN [154]. The failures of normal cel-
lular processes that occur in relation to the aging process 
are also supposed to add to the increased susceptibility of 
DNs [155]. Oxidative stress is the fundamental mechanism 
leading to cellular dysfunction and ultimate cell death. ROS 
are constantly produced in vivo by all body tissues, though 
oxidative stress occurs when there is an imbalance between 
ROS production and cellular antioxidant activity. ROS can 
affect mitochondrial DNA, which can cause modulations in 
the synthesis of METC components like adenosine triphos-
phate (ATP) production as well as the leakage of ROS into 
the cell’s cytoplasm. Selective degeneration of the DNs of 
the SN may be a source of oxidative stress. Also, the auto-
oxidation of dopamine produces electron-deficient dopamine 
quinones which modify a number of PD-related proteins, 
such as α-synuclein and parkin [156]. Dopamine quinones 
can be oxidized to aminochrome, whose redox-cycling 
leads to the generation of the superoxide radical and the 
depletion of cellular NADPH [156]. This oxidative process 
alters mitochondrial respiration and induces a change in the 
permeability transition pores in brain mitochondria. Mito-
chondrial dysfunction is closely related to increased ROS 
formation in PD [157]. Oxidative phosphorylation is the 
main mechanism providing energy to power neural activity 
in which the mitochondria use their structure, enzymes, and 
energy released by the oxidation of nutrients to form ATP. 
Consequently, this metabolic pathway is the main source 
of superoxide and hydrogen peroxide, which, at the same 
time, lead to the propagation of free radicals contributing 
to PD [157].

Various studies highlighted that LXRs attenuate the 
development and progression of oxidative stress [158, 159]. 
Genetic ablation of both LXR isoforms in mice provokes 
significant locomotor defects correlated with enhanced anion 
superoxide production, lipid oxidization, and protein carbon-
ylation in the sciatic nerves [158]. Exposure of H9c2 cells 
to high glucose alone not only caused a significant increase 
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in apoptosis and ROS generation but also led to a decrease 
in mitochondrial membrane potential, release of cytochrome 
c, decrease in Bcl-2, increase in Bax expression, and the 
activation of caspase-3, caspase-9, poly (ADP-ribose) pol-
ymerase (PARP), and nuclear factor (NF)-κB. However, 
pre-treatment with T0901317, a potent agonist of LXR, 
effectively decreased apoptosis and reduced the levels of 
ROS [159]. In vitro study demonstrated that oxidative stress 
downregulates the expression of LXR [160].

Furthermore, LXRs attenuate PD and other neurodegen-
erative disorders by regulating brain cholesterol metabolism 
and generation of ROS [161]. Likewise, LXRβ agonists pro-
tect DNs in mouse PD model by regulating mitochondrial 
dysfunction in microglia [104]. In addition, the regulation of 
mitochondrial dysfunction by LXRs maintains normal brain 
cholesterol homeostasis [162]. These findings suggest that 
LXRs play an important role in preventing mitochondrial 
dysfunction and oxidative stress, which are involved in the 
pathogenesis of PD.

Brain‑Derived Neurotrophic Factor and LXRs

Brain-derived neurotrophic factor (BDNF) belongs to neu-
rotrophins, a family of proteins that support the function of 
CNS. BDNF is synthesized mainly in CNS and non-neuronal 
peripheral cells such as T and B lymphocytes, monocytes, 
vascular endothelial, smooth, and skeletal muscle cells 
[163]. BDNF expression was confirmed in the hippocampus, 
frontal cortex, midbrain, amygdala, hypothalamus, striatum, 
pons, and medulla oblongata [164]. BDNF plays a key role 
in the development of the nervous system by affecting cell 
differentiation, neuronal development, growth and survival, 
neurogenesis, synaptogenesis, and synaptic plasticity [163, 

164]. The pre-proBDNF precursor is synthesized in the 
endoplasmic reticulum and then transported to the Golgi 
apparatus, where the preregion sequence is cleaved to pro-
duce the proBDNF isoform. Then, proBDNF may be con-
verted into mature BDNF in the trans-Golgi network by the 
subtilisin-kexin family of endoproteases such as furin or in 
intracellular vesicles by convertases [165]. ProBDNF and 
BDNF exert their biological activity by binding to two types 
of cell surface receptors, the Trk tyrosine kinases, and the 
p75 neurotrophin receptor (p75NTR) [166]. The neuropro-
tective effect of BDNF results from activation of the TrkB 
pathway, which leads to attenuation of apoptosis, glutamate, 
and nitric oxide (NO) neurotoxicity and cell damage caused 
by oxidative stress. An increase in oxidative stress, glutamate 
neurotoxicity, NO production, and the process of apoptosis 
are observed in PD [167, 168]. Preclinical findings revealed 
that BDNF expression was reduced in animal model of PD 
[169, 170]. A case control study that included 47 PD patients 
and 23 healthy controls revealed that BDNF serum level 
was reduced significantly in the early stage of PD patients 
compared to controls [171]. Later on, with the progression 
of PD severity, BDNF serum level was increased and cor-
related with disease severity [171]. It has been shown that 
LXRs promote ventral midbrain neurogenesis in vivo and in 
human embryonic stem cells by increasing the expression of 
BDNF [66]. As well, BDNF promotes cholesterol biosynthe-
sis and encourages the accumulation of presynaptic proteins 
in cholesterol-rich lipid rafts by increasing of expression 
of LXRβ [172]. This finding indicated that BDNF plays a 
critical role in the modulation of cholesterol homeostasis in 
glial and neuronal cells through LXR-dependent pathway. 
Furthermore, preclinical study demonstrated that LXR ago-
nist promotes BDNF expression in the neurons [173]. These 

Table 1   The effects of liver X receptors (LXRs) agonists on Parkinson’s disease (PD) neuropathology

Study type Findings Ref.

Experimental studies TO901317, LXR synthetic agonist reduces the expression of NF-κβ in the PD mouse model.
Pre-treatment with TO901317 significantly reduced NF-κB p65 and prevented IκBα degrada-

tion in SH-SY5Y in vitro model.

Paterniti et al. [107]

Experimental study LXR agonists attenuate NLRP3 inflammasome-induced peritonitis in experimental mice. Yu et al. [139]
Experimental study LXR agonist TO90 downregulates NLRP3 inflammasome and linked activation of IL-1β and 

caspase-1 in mice.
Lei et al. [125]

Experimental study LXR agonists induce the transcriptional activity of LXR target genes and attenuate neuroin-
flammation in mice.

Riddell et al. [147]

In vitro study LXR agonist GW3965 decreased the ER stress markers in palmitate-treated dorsal root 
ganglion explants.

Gavini et al. [152]

In vitro study LXR ligands promote neurogenesis and survival of DNs by inhibiting ER stress. Theofilopoulos et al. [153]
In vitro study Pre-treatment with T0901317, a potent agonist of LXR, effectively decreased apoptosis and 

reduced the levels of ROS.
Cheng et al. [159]

Experimental study Likewise, LXRβ agonists protect DNs in mouse PD models by regulating mitochondrial 
dysfunction in microglia.

Dai et al. [104]

In vitro study LXRs promote neurogenesis in vivo and human embryonic stem cells by increasing the 
expression of BDNF.

Sacchetti et al. [66]
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observations suggest that LXR agonists through modulation 
of BDNF expression could be effective in managing PD.

Therefore, inhibition of NLRP3 inflammasome and 
NF-κB by LXRs could effectively prevent neuroinflamma-
tion in PD. Taken together, LXRs play a crucial role in PD 
neuropathology by reducing the expression of inflammatory 
signaling pathways, neuroinflammation, oxidative stress, 
mitochondrial dysfunction, and enhancement of BDNF 
signaling. However, the present study had many limitations, 
including a paucity of clinical studies and most of the cur-
rent findings obtained from preclinical studies that corre-
spond not merely human applications. Thus, clinical trials 
to determine the effects of LXR agonists on PD neuropathol-
ogy are recommended in this regard (Table 1).

Conclusions

PD is the second most common neurodegenerative disease 
due to the progressive degeneration of DNs in the SN. LXRs 
are the most common nuclear receptors of transcription fac-
tors that control cholesterol metabolism and have pleio-
tropic effects, including anti-inflammatory effects, reduced 
intracellular cholesterol accumulation, immune regulation, 
anti-proliferative effects, anti-tumor effects, and prevention 
development of endoplasmic reticulum stress. LXRs have 
neuroprotective effects against the development of neuroin-
flammation in different neurodegenerative diseases. LXRs 
regulate cholesterol brain biosynthesis via control expres-
sion of ApoE and ABC transporters. Inhibition of NLRP3 
inflammasome and NF-κB by LXRs could effectively pre-
vent neuroinflammation in PD. Taken together, LXRs play 
a crucial role in PD neuropathology by inhibiting neuroin-
flammation and associated degeneration of DNs. Therefore, 
clinical trials to determine the effects of LXRs agonists on 
PD neuropathology are suggested in this regard.
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