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Abstract
The purpose of this study was to identify and validate new putative lead drug targets in drug-resistant mesial temporal lobe 
epilepsy (mTLE) starting from differentially expressed genes (DEGs) previously identified in mTLE in humans by tran-
scriptome analysis. We identified consensus DEGs among two independent mTLE transcriptome datasets and assigned them 
status as “lead target” if they (1) were involved in neuronal excitability, (2) were new in mTLE, and (3) were druggable. 
For this, we created a consensus DEG network in STRING and annotated it with information from the DISEASES database 
and the Target Central Resource Database (TCRD). Next, we attempted to validate lead targets using qPCR, immunohis-
tochemistry, and Western blot on hippocampal and temporal lobe neocortical tissue from mTLE patients and non-epilepsy 
controls, respectively. Here we created a robust, unbiased list of 113 consensus DEGs starting from two lists of 3040 and 
5523 mTLE significant DEGs, respectively, and identified five lead targets. Next, we showed that CACNB3, a voltage-gated 
 Ca2+ channel subunit, was significantly regulated in mTLE at both mRNA and protein level. Considering the key role of  Ca2+ 
currents in regulating neuronal excitability, this suggested a role for CACNB3 in seizure generation. This is the first time 
changes in CACNB3 expression have been associated with drug-resistant epilepsy in humans, and since efficient therapeutic 
strategies for the treatment of drug-resistant mTLE are lacking, our finding might represent a step toward designing such 
new treatment strategies.

Keywords Mesial temporal lobe epilepsy · mTLE · Transcriptome analysis · Unbiased drug target identification · Target 
validation · CACNB3

Introduction

Mesial temporal lobe epilepsy (mTLE) is a circuit disorder 
characterized by an enduring predisposition to generate epi-
leptic seizures from foci in the hippocampal formation, amyg-
dala, and/or temporal neocortex [1]. The disorder is debilitat-
ing, persistent, and linked with major comorbidities and social 
consequences [2]. Differential gene expression levels identified 
in mTLE patients [3–5] may cause altered expression levels 
of specific proteins, such as ion channels, leading to genera-
tion of seizures [6]. Focal seizures account for approximately 
60% of all adult cases, with TLE being the most common form 
causing focal seizure [7]. Despite intensive research, > 30% of 
mTLE patients are drug-resistant, which means that they do 
not achieve sustained seizure freedom with current antiseizure 

drugs (ASDs) [8]. The ASDs preclude seizure development 
by directly or indirectly controlling the ionic environment [9], 
but they do not cure epilepsy or block epileptogenesis. Due to 
the high unmet medical need in drug-resistant mTLE, there is 
a strong need for new drug targets to allow the development of 
better therapeutic strategies [3, 10].

We recently published a list of 3040 differentially 
expressed genes (DEGs) in mTLE [5]. With this study, we 
designed a drug-target discovery process that aims for dis-
ease modification rather than symptomatic relief of disease 
[10] by validation of new lead targets among the 3040 DEGs 
in human hippocampal and temporal lobe neocortical brain 
tissues on mRNA and protein level. However, 3040 DEGs 
are an overwhelming number to follow up on and easily 
result in biased selection (“cherry picking”) of genes already 
known by the investigator, thus overlooking new unknown 
targets [11].
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Here, we reduced the list of 3040 mTLE significant 
DEGs to 113 DEGs using an unbiased bioinformatics 
approach and used systematic bioinformatics selection cri-
teria to identify five lead targets. Next, we attempted to 
validate the selected lead targets using quantitative real-
time PCR (qPCR), immunohistochemistry (IHC), and West-
ern blotting performed on hippocampal and temporal lobe 
neocortical samples from mTLE patients and non-epilepsy 
control subjects. We show that CACNB3 (the β3 subunit 
of voltage-gated  Ca2+ channels (VGCCs)) is significantly 
regulated in mTLE at mRNA and protein level. Alterations 
in VGCC expression levels and functionality are associ-
ated with several pathophysiological processes, such as epi-
lepsy [12, 13], but this is the first time changes in CACNB3 
expression have been associated with drug-resistant epi-
lepsy in humans.

Methods

mTLE and Non‑epilepsy Control Subject Tissues

Hippocampal and temporal lobe neocortical tissues from 
17 mTLE patients were collected during brain surgery at 
the Departments of Neurology and Neurosurgery in Rig-
shospitalet, Copenhagen, as previously described [5]. An 
mTLE patient overview is presented in Table 1. Additional 
mTLE clinical data can be viewed in supporting informa-
tion Table SI1. The contribution from clinical variation 
among mTLE patients onto the Kjær et al. dataset was 
assessed by principal component analysis (Fig SI3-16). 
Sixteen freshly frozen paired hippocampal and temporal 
lobe neocortical tissue samples and six hippocampal and 
six temporal lobe neocortical paraffin-embedded unpaired 
samples, respectively, from non-epilepsy control subjects 
were obtained from the UK Brain Banks Network–Medi-
cal Research Council (UKBBN) (including The Edinburg, 
The London Neurodegenerative Diseases, and The Oxford 
Brain Bank), The Human Brain Bank, Semmelweis Uni-
versity, and The Netherlands Brain Bank (population and 
sample characteristics can be viewed in Table SI2). Cri-
teria for inclusion of non-epileptic control tissue were as 
closely matched as possible according to the following: 
(1) corresponding mean age at death (MAD) to the mTLE 
mean age at surgery (MAS), (2) matching sex distribution 
(SD) (females (F) and males (M)) among the groups, (3) no 
signs of autolysis upon histopathologic brain examination, 
and (4) no prior history of seizures (Table SI2).

The use of resected mTLE patient tissue, non-epilepsy 
control subject tissues from brain banks, and following pro-
cedures were approved by the local Ethical Committee in 
Copenhagen (H-2–2011-104). Written informed consent was 
obtained from all subjects prior to each surgery.

Selection of DEGs by Consensus

As previously described, we identified 3040 DEGs between 
hippocampal and temporal lobe neocortical tissue in mTLE 
patients (FDR 5%) (GEO accession number: GSE134697) 
[5]. Another study by Guelfi et al. reported 5523 DEGs 
(FDR 5%) in temporal lobe neocortical tissue between a 
group of patients with mTLE and hippocampal sclerosis and 
a control group of non-epilepsy control subjects [4].

To select a subset of reliable DEGs from our study, 
we benchmarked our list of DEGs in relation to the genes 
reported by Guelfi et al., which allowed us to obtain a thresh-
old that maximizes the overlap between the two datasets. 
The benchmarking strategy was as follows: we selected the 
top 500 DEGs from our study based on the S curve on the 
volcano plot (Fig SI18) and subsequently ranked them by 
their S score (Fig SI18). Next, we inspected the cumulative 
occurrence of these top 500 genes among the 5523 DEGs 
reported by Guelfi et al. [4], sorted by absolute log fold 
change (Log2FC), and then visually chose the first break 
of the curve as cut-off. The genes comprised on the cut-off 
list of DEGs were extracted, and the Log2FC associated to 
them according to the study by Kjær et al. was compared to 
the Log2FC reported by Guelfi et al. (Fig SI19). Genes that 
were regulated in opposite directions among studies were 
excluded from further analysis, while those that agreed on 
direction of regulation were named consensus DEGs.

STRING Analysis

Cytoscape stringApp [14] was used to retrieve the STRING 
[15] network (version 10.5 using default settings) for the 
consensus DEGs (Fig SI20). Proteins in the STRING net-
work, which were classified as kinases, G protein–coupled 
receptors (GPCRs), and ion channels, were annotated with 
target development level information from TCRD (http:// 
junip er. health. unm. edu/ tcrd/) [16] and with known associa-
tions to epilepsy from the DISEASES database [17].

Selection Criteria for Lead Targets

Protein function was manually extracted from GeneCards 
[18] based on the “summaries of query gene” attribute 
(Table SI5), and STRING modules where more than half 
of the proteins are involved in excitatory and/or inhibi-
tory neuronal mechanisms were manually selected. Pro-
teins from all other modules were excluded despite being 
statistically significant. Proteins comprised in remaining 
modules were manually selected if their involvement in 
mTLE was new and their function was involved in excita-
tory and/or inhibitory neuronal mechanisms. Lead targets 

http://juniper.health.unm.edu/tcrd/
http://juniper.health.unm.edu/tcrd/
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among short listed kinases, GPCRs, and ion channel were 
identified if they either/or (a) had an FDA-approved drug 
targeting them (TCRD classification, Tclin), (b) had a 
chemical compound modulating them (TCRD classifi-
cation, Tchem), (c) had been biologically characterized 
(TCRD classification, Tbio), or was not biologically 
characterized (TCRD classification, Tdark) [16].

qPCR

See “Method SI1” in supporting information for details.

IHC

See “Method SI2” in supporting information for details.

Western Blots

See “Method SI3” in supporting information for details.

Results

In this paper, we first present a consensus list of DEGs based 
on two transcriptomics studies, perform a network analysis 
of these to identify neuro-related network modules, and use 
these to compile a list of lead targets that we follow up with 
experimental validation (Fig. 1).

Selection of DEGs by Consensus

To identify a set of consensus genes that were consistently 
regulated among the Kjær et al. and the Guelfi et al. mTLE 
transcriptome datasets, we created a benchmark plot (Fig 
SI17A) that allowed us to obtain a threshold that maxi-
mized the overlap between the two datasets. We identified 
116 DEGs in the Kjær et al. ranking among the 1485 DEGs 
in the Guelfi et al. ranking (Fig SI17A). Next, we extracted 
the list of 1485 DEGs, and the Log2FC associated to them 
according to the study by Kjær et al. was compared to the 
Log2FC reported by Guelfi et al. The comparison led to 
exclusion of three genes from further downstream analysis 
due to inconsistency in direction of gene regulation among 
the datasets (Fig SI19). The high agreement on DEG direc-
tion of regulation among the datasets (97.4%) indicates that 
the 113 DEGs represented on the consensus list are remark-
ably robust, since by chance we would expect only 50% 
agreement. The function of the 113 DEG gene products is 
presented in supporting information Table SI5.

STRING and Druggability Analysis

The STRING network of the 113 consensus DEGs consists 
of 25 modules with at least two proteins each (Fig SI20). 
Twenty-four proteins had no interactions with any of the 
other proteins and were thus not considered in the subse-
quent analyses. Of the 25 modules, 11 had more than half of 
their proteins involved in excitatory and/or inhibitory neu-
ronal mechanisms (Fig SI20; Table SI5). These modules 
comprised a total of 34 proteins of which 23 were new in 
terms of epilepsy and one was new in terms of mTLE. Ten 
of the 24 proteins were excluded due to their lack of involve-
ment in excitatory and/or inhibitory neuronal mechanisms.

Selection of Lead Targets

Among the 14 shortlisted proteins, CACNB3, KCNH5, 
KCNH7, HTR3B, and ZBTB20 were related to seizure gen-
eration in the brain [19–23], although their association to 
drug-resistant mTLE was largely unknown. The fact that these 
proteins are all ion channels also increased our confidence that 
they represented attractive seizure modulating drug targets 
in mTLE, since multiple currently marketed ASDs work by 
modulating ion channels. According to the TCRD [16, 24], 
the lead targets ranked as follows: KCNH5 and KCNH7 are 
even targets of FDA-approved drugs (Tclin), a chemical inhib-
itor of HTR3B exists (Tchem), while CACNB3 has been func-
tionally characterized (Tbio) [16] (Fig SI17B; S21). We chose 
to include ZBTB20 as an exception, although it is neither a 
kinase, a GPCR, or an ion channel, because it was upregulated Fig. 1  Lead target identification diagram. See text for details
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and thus constituted a possible desirable drug target [10], in 
addition to being linked to neurodevelopmental disorders [25].

Validation of Lead Targets

qPCR on paired samples from 17 mTLE patients vali-
dated the previous transcriptome finding [5] that CACNB3, 
KCNH5, KCNH7, and HTR3B had lower expression levels 
and that ZBTB20 had a higher expression level, respectively, 
in mTLE hippocampus compared to mTLE temporal lobe 
neocortex (Fig. 2A–E).

Next, we compared hippocampal expression level differ-
ences between mTLE and non-epilepsy control subjects since 
seizures most often originate from the amygdala-hippocampal 
complex [26]. CACNB3 showed an expression level that was 
significantly lower in the mTLE hippocampus compared to the 
hippocampal control tissue while the opposite was observed 
for KCNH5 (Fig. 2A, B). These results indicated that CACNB3 
expression level differences were related to disease while 
KCNH5, KCNH7, HTR3B, and ZBTB20 expression level dif-
ferences were related to brain region rather than disease. To 
gain further insight into the source of variation in the qPCR 
data, we conducted two-way analysis of variance. The result 
indicated that CACNB3 regulation was significantly related to 
mTLE (source of variation, 14.95%; p-value, 0.005). In addi-
tion, the interaction between mTLE and brain region accounted 
for 7.27% of the total variation (p-value: 0.043), while the small 
percent for brain region had an insignificant p-value (source of 
variation, 0.056%; p-value, 0.856) (Fig. 2F).

Further, we calculated the mRNA expression ratios 
between the temporal lobe neocortex and the hippocampus 
for the two sample groups (Fig SI32). We did this to quan-
tify the regional differences among mTLE patients and non-
epilepsy control subjects. This analysis revealed that also the 
difference in expression of CACNB3 between the two brain 
regions was significantly affected by mTLE.

To further explore whether our findings translated into 
results at the protein level, we conducted IHC analysis. 
Surprisingly, the deeper insight at protein level showed sig-
nificant increased CACNB3 expression levels (immunore-
activity) in all temporal lobe neocortical layers compared to 
non-epilepsy control subjects, while KCNH5 and KCNH7 
had showed increased expression levels in the first layer only 
(Fig. 3A; Fig SI21-25).

We detected no significant differences in KCNH5, 
KCNH7, HTR3B, CACNB3, and ZBTB20 hippocampal 
expression levels between mTLE and non-epilepsy control 
subjects (Fig SI26-31). Since the temporal lobe neocortical 
layer 1 only contains few neurons [27] (Fig SI1C), we rea-
soned that a significantly increased CACNB3 expression level 
affecting all molecular layers would have the greatest impact 
on brain function and therefore constituted the strongest lead 
target for mTLE involvement. Hence, we conducted Western 

blot on hippocampal and temporal lobe neocortical tissues, 
respectively, from mTLE and non-epilepsy control subjects, to 
possibly confirm the IHC CACNB3 finding. The Western blot 
result confirmed a significant decrease in CACNB3 expres-
sion level in mTLE hippocampus compared to temporal lobe 
neocortex (Fig. 4A; Table SI2) using a non-epilepsy cohort 
with an increased number of control subjects in the group 
compared to IHC analysis.

However, temporal lobe neocortical CACNB3 expression 
levels were also increased in non-epilepsy control subjects, 
questioning whether the mTLE CACNB3 increased expres-
sion levels were caused by brain region differences. Again, 
we conducted a two-way analysis of variance to clarify 
whether CACNB3 regulation was related to brain region or 
disease. This indicated that CACNB3 regulation was, indeed, 
disease-related (p-value: 0.046), with non-significant interac-
tion (p-value: < 0.25; Fig. 4B) supporting our IHC finding. 
Western blot results also showed a tendency for higher tem-
poral lobe neocortex CACNB3 expression in the mTLE group 
compared to non-epilepsy controls (Fig. 4A), although not sta-
tistically significant (p-value: 0.083). The fact that IHC is per-
formed on specific neocortical layers while Western blotting 
is performed on homogenized tissue, which will dilute layer-
specific differences, is a likely explanation to why the differ-
ence is only statistically significant in the former analysis.

To gain further insight into CACNB3’s likely involve-
ment in seizure generation, we performed pathway analy-
sis using the Reactome database (reactome.org). The result 
showed that CACNB3 is involved in the “presynaptic depo-
larization and  Ca2+ channel opening” pathway. This suggests 
that altered CACNB3 expression levels may be involved in 
seizure generation by impairing normal neuronal presyn-
aptic terminal function. Hence, changes in CACNB3 levels 
modify opening of voltage-gated  Ca2+ channels which affect 
 Ca2+ influx and neurotransmitter release and thereby influ-
ence neuronal excitability and seizure propensity.

Summary of Main Findings

Using an unbiased bioinformatics approach, we reduced 
a list of 3040 mTLE significant DEGs to a robust list of 
113 and identified KCNH5, KCNH7, HTR3B, CACNB3, 
and ZBTB20 as lead targets. Among lead targets, we show 
consistent significant disease-related differences in expres-
sion level of CACNB3 in all lead target validation analyses 
performed, despite using different groups of non-epilepsy 
control tissues (Table 2). Changes in CACNB3 expression 
levels may thus be involved in mTLE pathophysiology and 
should be evaluated further for its molecular basis and value 
as putative new drug target in mTLE.

Table 2 shows the directions and significance of mRNA 
and protein regulation of CACNB3, KCNH5, KCNH7, 
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Fig. 2  Relative mRNA expression as determined by qPCR of 
CACNB3, KCNH5, KCNH7, HTR3B, and ZBTB20 in temporal lobe 
neocortices and hippocampus of mTLE patients or non-epilepsy con-
trol subjects confirm our earlier RNAseq-based findings and point to 
CACNB3 as a gene product of interest in mTLE. Panels A, B, C, D, 
and E show the relative transcript expression of CACNB3, KCNH5, 
KCNH7, HTR3B, and ZBTB20, respectively. Isolated RNA from 17 
mTLE and 16 non-epilepsy subject (control) hippocampal and tem-
poral lobe neocortical samples was analyzed by qPCR as described 
in the “Methods” section and the values obtained for temporal lobe 
neocortex for the non-epilepsy control subjects were normalized to 

100%. Paired t tests were performed to compare the relative expres-
sion within the mTLE group, and unpaired t tests were performed 
to compare the relative expression in the hippocampus of the mTLE 
group vs. the non-epilepsy control subject group. The temporal lobe 
neocortex is designated “C,” and hippocampus is designated “H.” The 
mean and SD are indicated for all conditions and p-values of < 0.05 
are considered significant. F Two-way analysis of variance was per-
formed for all five transcripts and the contribution of brain region, 
mTLE, and the interaction between the two dependent variables to 
the total variance in the data are given in percent along with the com-
puted p-values that are considered significant if < 0.05
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Fig. 3  The relative protein 
expression levels as determined 
by immunohistochemical 
analysis of CACNB3, KCNH5, 
KCNH7, HTR3B, and ZBTB20 
in layers 1, 2, 3, 5, and 6 of 
the temporal lobe neocor-
tices of mTLE patients vs. 
non-epilepsy control subjects 
show that CACNB3 expres-
sion is higher in all layers for 
the mTLE patients. A Tissues 
from 14 mTLE patients and 12 
non-epilepsy control subjects 
were analyzed by immunohisto-
chemistry, and values represent 
relative expression levels as 
detailed in the “Methods” 
section. Multiple unpaired t 
tests with Welch’s correction 
and a false discovery rate of 
5% were employed to test for 
differences between layers. The 
mean and SD are indicated for 
all conditions, and an adjusted 
p-value (adj.; the multiple test-
corrected p-value) of < 0.05 is 
considered significant. Inserts 
show examples of representa-
tive marker-specific light field 
microscopy images (20 × mag-
nification) of temporal lobe 
neocortical slices for a mTLE 
patient (left) and a non-epilepsy 
control subject (right). The red 
markings are measurements in 
resp. layers 1, 2, 3, 5, and 6 and 
white matter. B control slides of 
mTLE temporal lobe neocortex 
with CACNB3 staining (left) 
and without CACNB3 staining 
(right). Images of non-epilepsy 
control subject slides with and 
without CACNB3 staining are 
presented in SI35. All images 
may be viewed in large in sup-
plemental information SI21-25, 
SI35, and SI36
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HTR3B, and ZBTB20 in hippocampus and temporal lobe 
neocortex in mTLE and non-epilepsy control subjects by 
the means of transcriptome analysis, qPCR, IHC, and West-
ern blot analyses. Techniques and populations are listed in 
the first column. Lead targets are listed in the first row. The 
second row lists transcriptome results on direction of DEG 
regulation and the p-value expressed significance reported 
by Kjær et al. [5]. The third row lists mTLE hippocampal 
and temporal lobe neocortical qPCR results on direction 
of RNA regulation with a p-value expressed significance. 
The fourth row lists mTLE and non-epilepsy control sub-
ject hippocampal RNA expression level difference results 
from qPCR with the direction of regulation with a p-value 
expressed significance. The fourth row lists mTLE and 
non-epilepsy control subject hippocampal qPCR results 
on direction of RNA regulation with a p-value expressed 
significance. The fifth row lists mTLE and non-epilepsy 
control subject hippocampal and temporal lobe neocorti-
cal IHC results on protein regulation with a multiple test-
ing adjusted p-value (adj. p-value) expressed significance. 
Significant p-values related to specific layers are speci-
fied, while non-significant findings are presented as most 
significant non-significant finding in all additional layers. 
The sixth row lists mTLE hippocampal and temporal lobe 
neocortical Western blot result on direction of protein 
level regulation with a multiple testing adjusted p-value 
expressed significance. The seventh row lists mTLE and 
non-epilepsy control subject hippocampal and temporal 
lobe neocortical Western blot result on direction of protein 
level regulation with a multiple testing adjusted p-value 
expressed significance. 

Discussion

Drug resistance remains the leading cause of why more than 
1/3 of epilepsy patients continue to have seizures despite 
best possible treatment [28], and identification of putative 
new drug targets is crucial to improve outcomes for patients 
with drug-resistant mTLE [29]. Several reports on transcrip-
tome analysis have focused attention on DEGs as a source to 
identify new targetable molecular alterations in mTLE [4, 5, 

Fig. 4  The relative protein expression levels as determined by West-
ern blotting of CACNB3 in temporal lobe neocortex and hippocam-
pus of mTLE patients or non-epilepsy control subjects show that 
expression of CACNB3 is higher in the temporal lobe neocortex rela-
tive to the hippocampus within the two groups but not between them. 
A Tissue from 17 mTLE patients and 16 control individuals were 
analyzed by Western blotting and values represent relative expres-
sion levels as detailed in the methods section. The values obtained 
for temporal lobe neocortex (designated “C”; hippocampus is desig-
nated “H”) for the non-epilepsy control subject group were normal-
ized to 1. Multiple paired or unpaired t tests with Welch’s correction 
and a false discovery rate of 5% were employed to test for differences 
within and between the mTLE and the non-epilepsy control subject 
group, respectively. The mean and SD are indicated for all condi-
tions, and p-values adjusted for multiple testing of < 0.05 are con-
sidered significant. B Two-way analysis of variance was performed 
to evaluate the contribution of brain region, mTLE, and the interac-
tion between the two dependent variables to the total variance in the 
data; these are given in percent along with the computed p-values 
that are considered significant if < 0.05. C & D Representative blots 
showing four paired mTLE (C) and non-epilepsy control subject (D) 
samples, respectively, from temporal lobe neocortex (cortex) and hip-
pocampus; vinculin is the loading control, and full blots showing all 
detected bands employed to construct panel C and D are presented in 
Fig SI33 and SI34

▸
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30]. Here, we identify CACNB3 as a lead target for further 
exploration of the molecular basis of mTLE and its value as 
putative new drug target in mTLE.

CACNB3 is a cytosolic protein of VGCCs which is 
widely distributed throughout the human body [31] and 
plays a key role in the regulation of  Ca2+ entry in excitable 
cells [31–33]. VGCC alterations are linked to pathophysi-
ological processes such as epilepsy [12, 13], and CACNB3 
promotes channel trafficking and regulates gating properties 
[34]. Four genes encode the β subunits (CACNB1-CACNB4), 
which all reportedly are expressed at similar levels in both 
pre- and postsynaptic hippocampal neurons, and all β sub-
types are documented to enhance high voltage-activated 
calcium channel currents [31, 32, 34]. Increased intracel-
lular  Ca2+ concentration can alter neuronal excitability as 
a consequence of disrupted  Ca2+ homeostasis, which may 
contribute to the generation of seizures [32, 35]. However, 
the functional roles of the β3 subunit are not fully clear, 
and it should be noted that CACNB3 has also been associ-
ated with  IP3 receptor [33] and N-methyl-D-aspartate recep-
tor (NMDAR) activity in the hippocampus [36]. CACNB3 
has not previously been associated with drug resistance in 
epilepsy, but CACNB3 expression level alterations were 
reported in studies addressing mental health conditions [37].

This validation study was based on our initial assump-
tion from previously published RNA-seq results — that 
CACNB3 is down-regulated in mTLE hippocampi compared 
to mTLE temporal lobe neocortices — because of disease 
[5]. The qPCR mRNA level results, which included hip-
pocampal and temporal lobe neocortical tissue from both 
mTLE patients and non-epilepsy control subjects, supported 
that result (Fig. 2A). These findings cannot be explained by 
general cell death since the marker levels were normalized 
to HPRT1 transcript levels which would change equally. 
However, they should be interpreted with the caveat that dis-
rupted TLE tissue could have changes in cell type composi-
tion. Western blot protein level results confirmed CACNB3 
downregulation in hippocampus compared to temporal lobe 
neocortex for the mTLE group, but not in the non-epilepsy 
control subjects (Fig. 4A), as will be discussed here. A study 
by Lin et al. showed that reduced VGCC function caused by 
a mutation affecting CACNB4 significantly altered CACNB3 
expression levels in a lethargic cacnb4lh mouse model of 
absence seizures when compared to controls [38]. Thus, 
CACNB3 mRNA expression level alterations may contribute 
to seizures generation. However, while we found CACNB3 
expression levels significantly decreased in (1) mTLE hip-
pocampus compared to temporal lobe neocortex (Fig. 2A) 
and (2) mTLE hippocampus compared to non-epilepsy con-
trol subjects (Fig. 2A), Lin et al. found them globally slightly 
increased throughout the brains of cacnb4lh homozygote 
mice compared to controls [38]. Interestingly although not 
significant, we found CACNB3 expression levels increased 

in hippocampus compared to those in temporal lobe neocor-
tex in non-epilepsy control subjects (Fig. 2A), supporting 
our initial assumption that mTLE CACNB3 expression level 
decrease in hippocampus compared to temporal lobe neo-
cortex was related to disease. Lin et al. suggest that multiple 
classes of β subunit mRNAs segregate into distinct subcel-
lular domains in hippocampal neurons [38], indicating an 
individual role of CACNB3 depending on cell and tissue 
type which could explain our divergent results to a certain 
degree. However, although the Lin et al. study showed that 
CACNB3 alterations could be coupled to seizure generation, 
its upregulation was suggested as a compensatory effect on 
VGCC dysfunction mediating CACNB4 downregulation [38].

Consistent with our mTLE mRNA findings, the deeper insight 
at protein level supported our assumption, since CACNB3 
expression levels were decreased in mTLE hippocampus com-
pared to temporal lobe neocortex (Fig. 4A). Surprisingly and in 
contrast to our mRNA level findings, Western blot results showed 
that CACNB3 expression levels were increased in temporal lobe 
neocortex compared to hippocampus in non-epilepsy control 
subjects (Fig. 2A), which did not support that CABNB3 down-
regulated in mTLE hippocampus was disease related.

Despite an increased confidence that DEGs can be used 
for biological discovery at protein level [39], mRNA and 
protein expression level correlation seem poor across many 
studies [40, 41]. One reason is the many layers of regula-
tory processes known to cause deviating mRNA and pro-
tein expression levels (e.g., alternative polyadenylation 
and translation initiation) [42], and the pathophysiological 
mechanisms underlying mTLE are furthermore shown to 
give rise to an additional layer of gene expression regula-
tion in epilepsy [43]. Thus, it is likely that our findings in 
the mTLE group are a consequence of disrupted regula-
tory processes. However, the result could also be caused by 
technical biases, since RNA and protein degrade differently 
(e.g., RNA is more easily degraded than protein, and differ-
ent transcripts/proteins have different half-lives) [44, 45]. 
mRNA isolated from brain tissue stored for up to 160 min at 
room temperature upon collection was previously reported 
not to be degraded [46]. Given that all mTLE tissue was col-
lected less than 3 min after resection [5], we found that the 
mTLE group unlikely was affected by technical biases to the 
same extent as non-epilepsy control subject tissues, which 
for ethical reasons have longer collection times. Differences 
in tissue handling, tissue collection method, etc. were fur-
thermore unlikely to have influenced the mTLE group to the 
same extent as in the non-epilepsy group, from which the 
tissue arose from five different brain banks having five dif-
ferent procedures for tissue handling and collection.

IHC CACNB3 expression level results from temporal lobe 
neocortex were increased in all layers in mTLE compared to 
non-epilepsy control subjects, particularly in the upper neocor-
tical layers (Fig. 3A). Combined with the recent finding that 
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impairment of the upper cortical layers drives schizophrenia 
symptomatology [47], this may indicate that upper layer corti-
cal networks are a hotspot for neurodevelopmental disorders 
and the most vulnerable for impairments. Our IHC finding is 
also consistent with the near-significant result from Western 
blot analysis (Fig. 4A), and since both analyses represent dif-
ferent non-epilepsy control subject tissue samples, it gave us an 
enhanced confidence that the increased CACNB3 expression 
levels in mTLE temporal lobe neocortex were a true biologi-
cal finding. In accordance with our findings, N’Gouemo et al. 
reported increased CACNB3 expression levels in genetically 
epilepsy-prone rats (GEPR) [48], while Lie et al. reported an 
increased distribution of CACNB1 and CACNB2 in TLE hip-
pocampus compared to controls [49]. The latter likely led to 
enhanced currents carried by VGCCs, which thereby increased 
synaptic excitability and triggered epileptic seizures [49]. Thus, 
changes in CACNB3 expression levels may be associated 
with changes in excitability, although it remains to be further 
explored to what extent these changes contribute to increased 
excitability in mTLE. However, N’Gouemo et al. studied the 
inferior colliculus (the consensus site for seizure initiation in 
GEPR) neurons compared to control rats [48] which is not the 
consensus site for seizure initiation in mTLE [26], question-
ing the comparability of the studies. Since seizures most often 
originate in the amygdala-hippocampal complex in mTLE 
patients [26], it makes sense that hippocampus is most affected 
by disease and thus is the best tissue to study when addressing 
epilepsy-associated pathology. On the other hand, hippocam-
pal tissue in mTLE patients usually shows severe degenera-
tion (Table 1), harboring the risk that mTLE hippocampal 
studies reflect degeneration and not epileptogenic effects. The 
progressive nature of mTLE (increasingly larger parts of the 
brain is affected by mTLE [26]) furthermore makes it likely that 
increased CACNB3 expression levels may also be coupled to 
seizure generation originating from the temporal lobe neocortex 
[26]. However, as Lin et al. points out, it is not clear whether 
CACNB3 expression alterations are causal or compensatory in 
relation to mTLE pathophysiology [38], emphasizing the rel-
evance of further investigating of the role of CACNB3 in mTLE 
temporal lobe neocortical pathophysiology and as putative new 
drug target in mTLE.

It should certainly be feasible to design drugs that can mod-
ulate CACNB3 activity. One putative approach would be to 
design a proteolysis targeting chimera (PROTAC) type drug 
that could modify the presence of functional CACNB3 protein 
by regulating proteasomal degradation [50]. Within the existing 
class of ion channel–targeting drugs, this approach would be 
novel since a PROTAC targeting CACNB3 would modulate 
channel activity without blocking the channel itself. Given that 
we are looking at tissue from patients who already have the 
disease, there is inherently no way to tell whether regulated 
CACNB3 levels are a cause or a consequence of the disease. 
This would be the case even if we could exclude it being an 

effect of degeneration of specific cell types or of glial activation. 
However, as the aim of our study is to identify putative novel 
drug targets for the disease — and many good drug targets are 
not causal — establishing causality is not essential to our study. 
Considering the success of gabapentinoids that block α2δ-1 
of VGCCs thereby reducing  Ca2+ influx and neurotransmitter 
release [51, 52], it is clear that targeting auxiliary subunits of 
ion channels can exert significant clinical effect. However, to 
develop CACNB3 as a drug target requires more than a disease-
modifying role for CACNB3 and a feasible medicinal chemistry 
strategy, as discussed by Gashaw et al. [10]. For instance, while 
CACNB3 is primarily expressed in the brain, it is expressed 
and serves key roles in several other tissues [31–33, 53]. Thus, 
developing CACNB3 as a drug target might require a brain-
selective drug delivery strategy as well. In summary, much 
work is needed before CACNB3 can be considered further as 
a putative novel drug target.

Conclusion

We unbiasedly reduced our initial list of 3040 significant 
mTLE DEGs down to 113 using bioinformatics and identi-
fied CACNB3, KCNH5, KCNH7, HTR3B, and ZBTB20 as 
lead targets in mTLE using a systematic bioinformatics 
strategy. qPCR, IHC, and Western blot results on mTLE and 
non-epilepsy control subject tissues indicated that CACNB3 
expression level alterations were likely to be caused by dis-
ease. Thus, here we provide a groundwork understanding 
of CACNB3 expression alterations in mTLE, suggest its 
possible involvement in mTLE pathophysiology, and reflect 
on its value as a putative new drug target. Given the diverse 
roles suggested to be mediated by CACNB3, its functional 
biological roles and putative association to mTLE are not 
well understood. Consequently, we encourage follow-up 
studies addressing whether CACNB3 downregulation in 
hippocampus and CACNB3 upregulation in temporal neo-
cortex is critically involved in mTLE and whether modu-
lation of CACNB3 with drugs is likely to have a positive 
therapeutic effect. The dataset of Kjær et al. is well suited 
for further analyses of targets in mTLE, including neuroin-
flammation and cell adhesion.
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