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Abstract
The role of the lateral geniculate nucleus (LGN) in vision has been extensively studied, yet its extraretinal capacities are 
still being investigated, including its role in arousal from sleep. The β2 nicotinic acetylcholine receptor (nAChR) subunit is 
involved in the laminal organisation of the LGN with magnocellular (MC) and parvocellular (PC) neurons. Sudden infant death 
syndrome (SIDS) occurs during a sleep period and, neuropathologically, is associated with increased neuronal cell death and 
altered nAChRs. A recent qualitative pilot study from our group implicates the possibility of increased neuronal death/apop-
tosis in the SIDS LGN. The present study used quantitative analysis to report the baseline expression of apoptotic and nAChR 
subunits α7 and β2 in the PC and MC layers of the LGN, to determine correlations amongst these markers within layers and 
across layers, and to evaluate changes in the expression of these markers in the LGN of SIDS infants, along with associations 
with SIDS risk factors, such as age, sex, cigarette smoke exposure, bed-sharing, and presence of an upper respiratory tract 
infection (URTI). Tissue was immunohistochemically stained for cell death markers of active caspase-3 (Casp-3) and TUNEL, 
and for the α7 and β2 nAChR subunits. Amongst 43 cases of sudden and unexpected deaths in infancy (SUDI), classifications 
included explained deaths (eSUDI, n = 9), SIDS I (n = 5) and SIDS II (n = 29). Results indicated a strong correlation of the 
apoptotic markers and β2 nAChR subunit between the LGN layers, but not across the markers within the layers. Amongst the 
diagnostic groups, compared to eSUDI, the SIDS II cases had decreased Casp-3 expression while β2 nAChR expression was 
increased in both PC and MC layers. Amongst the SIDS risk factors, URTI and bed-sharing were associated with changes in 
neuronal death but not in the α7 and β2 markers. In conclusion, our findings do not support a role for the α7 and β2 nAChRs in 
apoptotic regulation of the LGN layers during infancy. However, for SIDS victims, an inverse correlation between the changes 
for markers of apoptosis and the β2 nAChR subunit expression suggests altered LGN function.
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Introduction

The lateral geniculate nucleus (LGN) is located in the dor-
sal posterolateral thalamus, and is well known for its role 
in vision [1]. Yet, 80-90% of its input is from extraretinal 
projections [1], including the pedunculopontine tegmental 
nucleus which is a major source of neurons of the cholin-
ergic ascending arousal network, and the thalamic reticular 
nucleus; both of which have been associated with arousal 
from sleep and attention [2]. Anatomically, the LGN is easily 
recognisable due to its distinctively laminal appearance. The 
LGN consists of 6 layers: 4 of parvocellular (PC) neurons 
and 2 of magnocellular (MC) neurons, with koniocellular 
neurons separating the layers (Fig. 1). The MC and PC layers 
are mostly studied and are physiologically, structurally and 
developmentally different [3]. Across species, MC neurons 
are described as larger than PC neurons [1, 3, 4]. Based on 
rodent studies, it is suggested that functionally, the MC is 
more closely related to visual processing with its extensive 
connections to the visual structures, while the PC is more 
related to non-visual processing with its extensive connec-
tions to the brainstem [4]. These non-visual projections have 
linked the LGN with a role in rapid eye movement (REM) 
sleep and circadian rhythms [5–7], though its specific role in 
non-visual processing is still being studied [3, 8].

The prevalence of sudden infant death syndrome (SIDS) 
has decreased since the introduction of safe sleeping 

programs, but the pathogenesis of the syndrome remains 
unclear, despite it being associated with risk factors includ-
ing prematurity, male sex, cigarette smoke exposure, prone 
sleeping, bed-sharing and the presence of an upper respira-
tory tract infection [URTI] [9]. To this end, all cases of sud-
den unexpected deaths in infancy (SUDI) continue to be 
investigated by death scene investigation and autopsy, and 
a diagnosis of SIDS is reached only if the cause of death 
remains unexplained; for the explained cases, they are clas-
sified as explained SUDI (eSUDI). In 2004, the definition 
of SIDS was standardised to “the sudden unexpected death 
of an infant <1 year of age, with onset of the fatal episode 
apparently occurring during sleep, that remains unexplained 
after a thorough investigation, including performance of a 
complete autopsy and review of the circumstances of death 
and the clinical history” [10].

Abnormal cell death has been repeatedly identified in 
SIDS cases, affecting brain structures involved in respira-
tory, cardiac, autonomic and/or arousal control [11–16]. Our 
group recently undertook a preliminary study across 37 brain 
regions in SIDS evaluating two cell death markers, active cas-
pase-3 (Casp-3) (specific for apoptosis) and Terminal deoxy-
nucleotidyl transferase (Tdt)-mediated dUTP nick end label-
ling (TUNEL) [13]. The staining profile seen in the LGN was 
striking and deemed relevant for more detailed evaluation.

In our quest to determine the underlying mechanism(s) 
for increased apoptosis in the LGN, we chose to evaluate 

Fig. 1   Microscopic morphology of the LGN layers and cells obtained 
by Cresyl Violet staining. (A) Micrograph illustrating the location of 
the LGN in coronal section at level 43 of Atlas of the Human Brain 
by Mai et al., 1997 and its relation to the hippocampus dentate gyrus 
(DG), commencement of the Cornu ammonis 3 (CA3), and fimbria. 
(B) The six laminae are indicated. 1-2 represent the magnocellular 

layer (MC) and 3-6 represent the parvocellular layer (PC), in between 
each layer are koniocellular neurons. (C, D & E) are magnifications 
of the (C) Magnocellular cells, (D) Koniocellular cells, and (E) Par-
vocellular cells and the boxed C & E in panel B indicate the approxi-
mate locations from where images for analysis were obtained. Scale 
bar represents 2.0cm for A, 1.5cm for B, and 200μm for C-E



4122	 Molecular Neurobiology (2023) 60:4120–4131

1 3

associations with the cholinergic system, given its role in 
apoptotic regulation [reviewed [17]]. First, cholinergic 
neurons are sensitive to hypoxic insults [18], and hypoxia 
is hypothesised to underly the pathogenesis of SIDS [19, 
20]. Second, recent studies have shown decreased activity 
of the circulating cholinergic enzyme butyrylcholinesterase 
[21] and altered expression of brain nicotinic acetylcholine 
receptors (nAChRs) [9, 11, 12, 20, 22–25] in SIDS infants. 
Finally, the nAChRs regulate apoptotic expression (reviewed 
in [26] and correlations between markers of apoptosis and 
nAChR subunits, specifically α7 and β2, have been previ-
ously found in the brainstem of SIDS infants [11, 20]. Within 
the LGN, cholinergic activation is required for the appropri-
ate development of the LGN neurons, with the β2 nAChR 
subunit particularly important for its specific anatomical and 
functional organisation [27, 28] and retinal afferents [29].

This study extends our recent findings of TUNEL and 
Casp-3 in the LGN of infants dying from SUDI [13]. In that 
study, a semi-quantitative scoring system was employed. 
Herein, we aimed to undertake a quantitative analysis of the 
apoptotic markers (TUNEL and Casp-3), and to include a 
further analysis of cholinergic receptor expression (α7 and 
β2 nAChR subunits) (hereafter apoptotic and cholinergic 
markers), in the MC and PC layers of the LGN in a larger 
infant cohort. The specific aims were to determine:

1-	 expression of the apoptotic and cholinergic markers in 
the PC and MC layers of the LGN in eSUDI cases,

2-	 relationships between the expression of apoptotic and 
cholinergic markers within the infant LGN,

3-	 whether expressions of these markers are altered in SIDS 
compared to eSUDI cases, and

4-	 any associations between known risk factors for SIDS, 
including cigarette smoke exposure, bed-sharing and an 
URTI, and the expression of apoptotic and cholinergic 
markers. This latter aim is important given the poten-
tial of these individual risks to induce changes in these 
markers, based on animal models, albeit, determined in 
other brain regions; cigarette smoke exposure [30, 31], 
bedsharing mimicked by exposure to intermittent hyper-
capnic hypoxia [32, 33], infections/URTI [34, 35].

Material and Methods

Dataset characterisation, Tissue collection, 
and staining

All data and brain tissue were obtained from the Depart-
ment of Forensic Medicine, Glebe, NSW as part of the 
routine autopsy undertaken to investigate the cause of 
death for each infant. Cases were de-identified prior to 
the laboratory studies. The study was approved by the 

University of Sydney and the Sydney Local Health District 
Royal Prince Alfred hospital (RPAH) ethical committees; 
Protocol X13-0038 & HREC/13/RPAH/54.

Information regarding exposure to SIDS risk factors, 
such as cigarette smoke exposure, and demographic fea-
tures, such as age at death, were collected from the foren-
sic records. The characteristics of the dataset have been 
previously described, including diagnostic classification 
into one of the 3 groups of eSUDI, SIDS I and SIDS II, 
undertaken by an expert panel [14] using the criteria set 
by Krous et al., 2004 [10].

Tissue collection and staining were performed in our 
laboratory as detailed previously [32] and the same tis-
sue sections were evaluated in our reports focused on the 
hippocampus in these infants [11–13, 36]. From stained 
tissue sections of 52 infants, a subgroup of 43 infants had 
tissue sections suitable for the current study based on the 
presence of the LGN at the correct level.

Tissue sections (7μm) mounted on 2% 3-aminoprono-
pyltriethoxysilane-treated slides were stained by immuno-
histochemistry as previously detailed [11–14], using a kit 
for TUNEL (Millipore ApopTag Peroxidase in Situ Kit, 
#S7100), and antibodies for Casp-3 (Cat no: 559565; BD 
Pharmigen, 1:300 dilution in 1% NHS), α7 nAChR subu-
nit (ab 10096, Abcam, 1:200 dilution in 1% NHS) and β2 
nAChR subunit (sc-11372, Santa Cruz, 1:100 in 1% NHS).

Quantitative analysis of the LGN

A Leica Upright DM6000 Light Microscope (Leica 
Microsystems Ltd. Heerbrugg, Switzerland), was used to 
ensure the presence of the LGN structure. The LGN level, 
size and shape were categorised based on the Atlas of the 
Human Brain by Mai et al., 1st Edition, 1997. Tissue within 
LGN levels 40-44 were used (Supplementary Figure 1) to 
permit differentiation of PC and MC layers. (Fig. 1).

Quantification was conducted on four images captured 
using the 40X magnification lens; 2 taken within the curve 
from laminar 6 (PC, Fig 1 box E in panel B) and 2 from 
laminar 1 (MC, Fig 1 box C in panel B). A single scorer, 
blinded to diagnosis, counted the number of positive and 
negative stained neurons for all 4 markers. TUNEL and 
Casp-3 were visualised with brown staining in the nucleus 
and blue staining in the cytoplasm, respectively (Fig. 2A, 
B). α7 nAChR and β2 nAChR were all visualised with 
brown staining in the cytoplasm (Fig. 2C-F). Manual cell-
counting was done using ImageJ Program (V1.51, National 
Institute of Health, USA). Finally, counts were converted 
to percentages and data are presented as % positive (of 
total) neurons within each layer.

For a subset of sections, intra- and inter-individual repro-
ducibility testing was conducted by the two authors CC and 
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AV. Intraclass correlation coefficient (ICC) analysis resulted 
in an inter-individual ICC of 0.72 (which is considered mod-
erate reliability; p = 0.002) and an intra-individual ICC of 
0.89 (considered good reliability; p < 0.001).

Statistical analysis

All data was exported to Windows SPSS (Version 25; SPSS 
(IBM) Inc., Illinois, USA) for statistical analysis. Nominal 
characteristics between diagnostic groups were analysed 
using Chi-Square tests and expressed as percentages. Con-
tinuous data pertaining to infant characteristics were ana-
lysed using ANOVA with post-hoc least significant differ-
ence (LSD). Results are presented as mean ± standard error 
of the mean (SEM).

For the tissue markers, normality tests of the residuals 
was performed and showed a non-normal distribution for 
Casp-3 PC and α7 nAChR PC. As such, non-parametric tests 
were applied. Comparisons amongst diagnostic groups was 
via the Kruskal-Wallis test, and those according to the pres-
ence or absence of recognised SIDS risk factors was via 
the Independent samples Mann-Whitney U test. This data 
is presented as the median and interquartile range (Q1-Q3). 

Correlations between characteristics and tissue markers, and 
amongst the tissue markers, were analysed using Spearman's 
rank correlation. Significance was taken at p ≤ 0.05.

Given the growing evidence that bedsharing infants have 
different pathological expressions compared to non-bed-
sharers [11, 15, 37–39], we included sub-analyses of bed-
sharing infants from the SIDS II group.

Results

Data characteristics

Subgroup classifications of the 43 cases were: eSUDI 
(n = 9), SIDS I (n = 5) and SIDS II (n = 29). Within the 
SIDS II group, all were within the age range 1-9 months, 
and risks identified included neonatal or perinatal factors, 
including being born premature at <37w gestation (n = 12), 
had a query of possible asphyxia related to the circumstance 
of death, including bedsharing (n = 20) (Table 1), and/or 
based on autopsy findings as per the criteria listed in Krous 
et al., 2004 [10]. For the majority of these infants, more 
than one of these factors were present. Causes of death in 
the eSUDI group included infection (n = 5, including 3x 
myocarditis, 1x encephalitis, 1x bronchopneumonia+gastr
oenteritis), congenital syndromes (n = 3) and post-operative 
complications (n = 1). Clinical and autopsy characteristics 
did not differ amongst the diagnostic groups (Table 1). Tis-
sue fixation time was higher in the eSUDI group (Table 1) 
as more cases in this group were from an older dataset (early 
2000s) when the protocol for fixation time was longer and 
utilised 10% neutral buffered formalin (NBF) over a few 
weeks instead of 20% NBF over a few days [36]. Adjust-
ment was made for the impact of fixation time on Casp-3 
expression (data not shown). Risk factor profiles showed that 
bed-sharing and recent URTI (Table 1) were more common 
in SIDS II cases, as expected given its definition [10]. When 
the SIDS II group were separated according to bed-sharing 
status, associations with bed-sharing included gestational 
age (closer to term) and higher birth weight (Table 1).

Baseline levels of markers and correlations 
with age, LGN layers and markers

In the eSUDI group, expression of apoptotic markers showed 
wide variation. TUNEL expression in the LGN averaged 
58% (range 6%–78%), and Casp-3 averaged 43% (range 
4%–70%). TUNEL averaged 58% in both the MC and PC, 
while Casp-3 averaged 54% and 32% in the MC and PC, 
respectively (medians and range provided in Table 2). For 
the cholinergic receptors, β2 nAChR subunit averaged 15% 

Fig. 2   Immunostaining for the markers quantified. (A-B) TUNEL (thick 
arrows, positive is brown nucleus) and Casp-3 (thin arrows, positive is 
blue cytoplasm), (C-D) α7 nAChR subunit, and (E-F) β2 nAChR subu-
nit. Solid black arrows represent positive neurons and white arrows rep-
resent negative neurons. Scale bar represents 100μm for all images
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and α7 nAChR subunit averaged 14%, and was slightly 
higher in the MC than in the PC (Table 2).

Subgroup analysis to evaluate any impact of an infec-
tious cause of death (vs non-infectious) found no difference 
(p > 0.4 for all markers via Mann-Whitney U test - data not 
shown). Correlation analysis to determine whether age con-
tributed to the wide variation in expression for TUNEL and 
Casp-3 showed no correlation (Supplementary Table 1).

Correlation analyses of marker expression between the 
PC and MC layers on the entire cohort (regardless of diag-
nosis classification), found the ‘within’ marker expression 
between the layers was positively correlated for TUNEL, 
Casp-3 and β2 nAChR (p < 0.05, Supplementary Table 2 
green highlighted boxes). Analysis between the markers 
showed a correlation between Casp-3 and β2 nAChR expres-
sion in both PC and MC (Supplementary Table 2).

Marker expression amongst diagnostic groups

Compared to the eSUDI group, Casp-3 was lower in both 
the PC (p = 0.014) and MC (p = 0.001) of SIDS II (Table 2), 
while β2 nAChR subunit was higher in both the PC 
(p = 0.006) and MC (p = 0.003) (Table 2).

Subgroup analysis of the SIDS II group according 
to bed-sharing status, showed that bed-sharing SIDS II 
infants had lower TUNEL in the PC (p = 0.03 vs SIDS II 
non-bedshare & p = 0.01 vs eSUDI) and the MC (p = 0.02 
vs SIDS II non-bedshare & p = 0.03 vs eSUDI), and higher 
Casp-3 in the PC (p = 0.02 vs SIDS II non-bedshare & 
p < 0.001 vs eSUDI) and the MC (p = 0.03 vs SIDS II non-
bedshare & p < 0.001 vs eSUDI). Lower β2 nAChR subu-
nit expression was only seen when compared to the eSUDI 
group for both the PC (p = 0.02) and the MC (p = 0.01) 
(Table  2), with no differences in α7 nAChR subunit 
expression (Table 2).

The ‘within’ marker expression correlations in the PC 
and MC were all lost in the eSUDI group (Supplementary 
Table 3), but were maintained in the SIDS diagnostic sub-
groups, except for β2 nAChR (Supplementary Tables 4 & 5). 
The between marker correlation for Casp-3 and β2 nAChR 
was no longer evident, however a new correlation was identi-
fied between TUNEL and α7 nAChR subunit in MC of SIDS 
II (Supplementary Table 5). Separating the SIDS II group 
according to bed-sharing status showed this new correla-
tion to be present in the bed-sharing cohort (Supplementary 
Tables 6 & 7, Supplementary Figure 2).

Table 1   Clinical, autopsy, brain tissue and risk factor data of the study dataset amongst the 3 groups and then subdividing the SIDS II according 
to bed-sharing status

Results are presented as mean ± SEM. Fractions are provided to reflect instances where data was not reported
Bold used to highlight significance
*Significance taken at p < 0.05
PCA: post-conception age; HC: head circumference PMI: post-mortem interval. N/A: not applicable

eSUDI
(n = 9)

SIDS I
(n = 5)

SIDS II
(n = 29)

p-value* SIDS II Bed-
sharers (n = 20)

SIDS II Non-bed-
sharers (n = 9)

p-value*

Clinical data
  Birth weight (kgs) 2.5 ± 0.2 2.9 ± 0.1 3.1 ± 0.2 0.22 3.3 ± 0.2 2.6 ± 0.3 0.09
  Gestational age (wks) 38.3 ± 0.7 38.8 ± 0.8 38.2 ± 0.5 0.88 39.0 ± 0.4 36.4 ± 1.0 0.05

Autopsy data
  Age at death (mths) 4.5 ± 1.0 3.0 ± 0.7 3.5 ± 0.3 0.27 3.4 ± 0.3 3.6 ± 0.6 0.73
  PCA (wks) 53.4 ± 4.0 50.8 ± 2.2 52.2 ± 1.3 0.84 52.6 ± 1.4 51.6 ± 3.0 0.73
  Body weight (kg) 5.7 ± 0.6 5.8 ± 1.0 6.2 ± 0.3 0.79 6.3 ± 0.4 5.8 ± 0.6 0.50
  Brain weight (g) 694 ± 70 665 ± 64 732 ± 29 0.64 733 ± 33 732 ± 62 0.99
  Body length (cm) 60.6 ± 2.8 61.9 ± 2.7 60.4 ± 1.5 0.92 61.0 ± 1.8 59.1 ± 2.7 0.56
  HC (cm) 40.2 ± 1.5 39.6 ± 1.5 40.7 ± 0.6 0.77 40.8 ± 0.8 40.7 ± 0.9 0.98

Tissue parameters
  PMI (hrs) 25.0 ± 7.2 31.1 ± 5.8 25.5 ± 1.1 0.58 26.4 ± 1.5 23.4 ± 1.0 0.21
  Fixation (wks) 3.2 ± 1.1 1.9 ± 0.3 1.2 ± 0.1 0.01 1.3 ± 0.2 0.9 ± 0.1 0.15

Risk factor prevalence
  Males (%) 5/9 (56) 4/5 (80) 20/29 (69) 0.62 12/20 (60) 8/9 (88) 0.20
  Found prone (%) 0/4 (0) 3/5 (60) 10/27 (37) 0.17 8/18 (44) 2/9 (22) 0.24
  Bed-sharing (%) 0/4 (0) 0/5 (0) 20/29 (69) 0.01 N/A N/A
  Cigarette smoke exposure (%) 3/6 (50) 3/5 (60) 11/27 (41) 0.70 8/18 (44) 3/9 (33) 0.45
  Recent URTI (%) 1/9 (11) 1/5 (20) 17/28 (61) 0.02 12/19 (63) 5/9 (55) 0.51
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Associations with SIDS risk factors

Analyses for associations between marker expression and 
SIDS factors of URTI, cigarette smoke exposure and sex, 
were conducted on the whole cohort (All cases, Table 3) 
and then on the SIDS subset alone (combining SIDS I 
and SIDS II, Table 4), while the sleep related factors of 
being found prone and bedsharing were only conducted 
on the SIDS subset (Table 4).

For the whole cohort, infants with an URTI had higher 
β2 nAChR expression in the PC layer (p = 0.003) (Table 3). 
Neither cigarette smoke exposure nor sex were associated 
with differences in expression levels of the apoptotic or cho-
linergic markers (Table 3).

For the SIDS subset, no differences were found for any 
of the risk factors with the exception of decreased TUNEL 
in both PC (p = 0.04) and MC (p = 0.03) in those found bed-
sharing (Table 4).

Correlation analyses were run on the cholinergic markers 
to determine whether cigarette smoke exposure results in any 
altered relationships within the layers and/or between mark-
ers, and results showed a new correlation between Casp-3 and 
TUNEL in the MC with exposure (Supplementary Table 8).

Comparisons excluding bed‑sharing infants

Given the differences associated with bed-sharing, further sub-
group analyses were conducted with bed-sharing infants excluded.

Table 2   LGN expression of TUNEL, Caspase-3, β2 and α7 nAChR subunits for diagnostic groups

Results presented as median % positively stained neurons and interquartile range (Q1 – Q3)
Significance taken at p ≤ 0.05; Bold used to highlight significance
*Significance compared to eSUDI; ^Significance compared to SIDS I; #Significance compared to non-bed-sharing SIDS II

eSUDI
(n=9)

SIDS I
(n=5)

SIDS II
(n=29)

SIDS II non-bed  
sharers (n=9)

SIDS II  
bed-sharers (n=20)

TUNEL
  PC 67.5 (27.4 – 75.9) 22.4 (10.3-84.8) 37.1 (8.3-59.2) 61.6 (31.0-70.9) 23.5 (6.7-43.8)*#

  MC 66.4 (34.2 – 73.3) 38.3 (11.6-83.7) 29.8 (10.2-67.1) 66.7 (36.7-74.0) 19.7 (7.6-46.2)*#

Casp-3
  PC 30.8 (11.3 – 52.9) 14.3 (0.0-32.6) 6.3 (0.0-21.0)* 0.0 (0.0-4.3)* 11.8 (0.0-25.7)*#

  MC 58.5 (44.2 – 63.1) 45.9 (0.0-51.9) 14.5 (0.0-37.7)* 1.8 (0.0-11.2)*^ 22.7 (9.6-42.5)*#

β2 nAChR
  PC 8.4 (5.9 – 9.9) 15.7 (12.1-22.4) 16.2 (9.7-25.6)* 25.0 (9.2-34.5)* 15.6 (9.8-23.4)*
  MC 19.1 (12.5 – 22.4) 33.9 (21.3-46.0) 37.4 (28.0-47.0)* 46.3 (29.6-61.5)* 37.3 (26.5-44.2)*

α7 nAChR
  PC 9.6 (8.4 – 16.3) 13.0 (4.3-19.5) 7.1 (5.7-18.3) 6.8 (5.6-18.5) 9.8 (5.5-19.5)
  MC 14.6 (10.3 – 21.9) 18.2 (4.4-28.5) 29.2 (13.6-38.6) 36.9 (17.3-53.1) 25.8 (10.9-38.5)

Table 3   Effects of risk factors on LGN expression of TUNEL, Caspase-3, α7 and β2 nAChR subunits for ALL cases

Bold used tohighlight significance when comparing with its counterpart at p ≤  0.05

URTI Smoke exposure Sex

N (n = 23) Y (n = 19) N (n = 21) Y (n = 17) M (n = 29) F (n = 14)

TUNEL
  PC 31.7 (12.5-66.1) 59.0 (8.3-68.6) 37.3 (11.5-66.2) 37.1 (8.7-67.9) 37.1 (11.8-67.9) 41.4 (7.3-63.7)
  MC 40.0 (17.1-66.9) 47.7 (8.5-70.8) 26.9 (10.2-66.4) 41.7 (21.9-73.2) 41.7 (11.5-69.8) 39.4 (16.9-66.7)

Casp-3
  PC 19.5 (4.1-35.7) 7.4 (0.0-17.9) 4.8 (0.0-17.7) 15.3 (4.3-29.2) 8.6 (0.0-21.2) 11.4 (2.4-34.4)
  MC 40.8 (5.3-56.3) 13.6 (0.0-35.5) 14.5 (0.0-51.9) 23.9 (9.6-49.9) 15.5 (0.0-51.8 39.9 (12.4-52.7)

β2 nAChR
  PC 9.4 (7.8-13.3) 20.4 (15.2-25.6) 15.3 (9.9-26.7) 14.8 (7.9-20.8) 13.9 (9.3-24.8) 14.1 (8.0-20.4)
  MC 24.6 (18.6-47.0) 35.3 (25.9-45.1) 31.8 (24.4-46.8) 34.9 (19.9-43.4) 37.3 (22.4-48.0) 30.4 (20.4-41.8)

α7 nAChR
  PC 9.6 (5.6-16.8) 7.4 (6.1-24.5) 9.8 (6.2-17.3) 10.9 (5.1-21.1) 9.6 (5.7-18.1) 10.8 (6.4-16.4)
  MC 22.4 (11.6-37.7) 17.3 (13.4-31.7) 22.1 (11.5-31.4) 23.0 (13.5-42.0) 22.4 (10.7-38.1) 19.8 (14.3-33.3)
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Analysis amongst diagnostic groups showed that com-
pared to the eSUDI group, SIDS II infants sleeping alone 
(non-bed sharers) had lower Casp-3 expression in both the PC 
(p = 0.001) and the MC (p < 0.001) (Table 2), and higher β2 
nAChR expression in the PC (p = 0.03) and the MC (p = 0.01) 
(Table 2). Compared to SIDS I infants, Casp-3 was lower in 
SIDS II non-bed-sharers in the MC only (p = 0.047) (Table 2).

Analysing according to the risk factors, showed that for the 
whole cohort, the higher β2 nAChR expression in the PC related 
to URTI was still maintained (p=0.03, Table 5 vs Table 3) but 
now was also associated with higher TUNEL in both the PC 
(p=0.02) and the MC (p=0.04) (Table 5). No differences were 
seen for cigarette smoke exposure and sex (Table 5).

For the SIDS subset, the higher β2 nAChR expression in 
the PC related to URTI was no longer evident, yet the higher 
TUNEL in both the PC (p = 0.008) and the MC (p = 0.02) were 
maintained (Table 6). No differences were seen for cigarette 
smoke exposure, sex or being found prone sleeping (Table 6).

Discussion

This is the first study to provide detailed evaluation of the 
expression of both apoptotic and cholinergic markers in the 
human infant LGN. While expression of the apoptotic and 

β2 nAChR cholinergic markers showed good correlation 
across the 2 layers of the LGN, the only correlation amongst 
markers was between Casp-3 and β2. Interestingly, all these 
correlations were contingent on whether infants were bed-
sharing. We discuss a potential role for the cholinergic sys-
tem in development, function, and the regulation of neuronal 
apoptosis in the infant LGN, and of the factors identified as 
influencing these associations, including SIDS II classifica-
tion, a history of bed-sharing and presence of an URTI at 
the time of death

Tissue markers in the infant LGN

We found a wide variation in the proportion of LGN neurons 
undergoing apoptosis in this infant dataset with an average 
of 50%, and this was not correlated with age (1-9 months), 
regardless of the infants’ diagnosed cause for death. The 50% 
for TUNEL correlates with our previous qualitative analysis 
[13] yet the proportion for Casp-3 was higher herein. The 
advantages of the current study include our specific focus 
on the LGN, the larger study cohort, and that the quantita-
tive analysis was undertaken separately for each layer [13]. 
Neurons, particularly those of the visual system, require pro-
grammed cell death to become fully developed after birth 
[40–42]. The presence of neuronal apoptosis in the LGN 

Table 4   Effects of risk factors on LGN expression of TUNEL, Casp-3, α7 and β2 nAChR subunits in SIDS subset (SIDS I and SIDS II cases 
combined)

Results presented as median % positively stained neurons and interquartile range (Q1 – Q3) following independent samples Mann-Whitney U 
test
Bold used to highlight significance when comparing with its counterpart at p ≤ 0.05

URTI Smoke Exposure Sex Found prone Bed sharing

N (n = 15) Y (n = 18) N (n = 18) Y (n = 14) M (n = 24) F (n = 10) N (n = 19) Y (n = 13) N (n = 14) Y (n = 20)

TUNEL
  PC 22.4

(6.1-40.0)
56.5
(8.3-68.1)

29.8
(7.8-62.9)

33.9
(8.9-61.7)

24.3
(8.5-64.9)

39.3
(7.7-59.6)

30.8
(6.2-67.9)

40.0
(8.3-59.2)

51.9
(20.3-75.5)

23.5
(6.7-43.8)

  MC 29.8
(10.4-60.2)

37.3
(8.2-72.9)

23.8
(9.6-61.4)

40.5
(15.8-72.6)

34.1
(10.1-68.4)

33.2
(10.8-63.8)

38.3
(10.0-67.5)

26.9
(9.5-65.5)

63.4
(23.9-78.3)

19.7
(7.6-46.2)

Casp-3
  PC 9.6

(0.0-28.0)
6.3

(0.0-14.2)
4.4

(0.0-13.4)
12.3
(1.1-24.7)

5.3
(0.0-16.7)

10.3
(0.0-26.7)

4.0
(0.0-12.3)

11.8
(0.0-27.8)

0.0
(0.0-10.3)

11.8
(0.0-25.7)

  MC 22.6
(0.0-46.9)

12.7
(0.0-26.3)

13.6
(0.0-42.9)

23.3
(5.0-43.9)

12.0
(0.0-25.4)

38.8
(10.0-47.4)

12.7
(0.0-27.0)

15.5
(1.8-51.9)

3.5
(0.0-30.2)

22.7
(9.6-42.5)

β2 nAChR
  PC 11.1

(9.0-22.8)
19.9
(14.7-26.1)

16.7
(10.1-27.4)

15.7
(10.1-23.9)

15.7
(10.0-26.3)

16.7
(11.5-22.4)

18.9
(10.2-27.6)

14.7
(10.8- 24.4)

18.0
(11.7-27.6)

15.6
(9.8-23.4)

  MC 36.4
(24.0-49.2)

37.3
(27.5-45.5)

37.5
(29.1-48.5)

39.7
(26.5-44.2)

38.8
(25.5-49.5)

32.5
(26.7-41.8)

33.8
(23.0-47.9)

41.0
(32.7-46.8)

43.2
(24.6-60.3)

37.3
(26.5-44.2)

α7 nAChR
  PC 9.8

(3.3-18.1)
7.1

(6.1-24.6)
7.4

(6.1-17.6)
10.9
(4.5-21.3)

9.8
(5.2-19.7)

6.8
(6.2-12.9)

10.9
(6.0-18.1)

9.8
(5.3-23.0)

7.4
(5.6-18.5)

9.8
(5.5-19.5)

  MC 33.6
(18.2-38.5)

16.8
(12.2-33.4)

22.1
(9.6-33.0)

37.5
(13.6-45..4)

26.7
(13.5-38.3)

22.4
(13.5-45.7)

22.1
(14.3-37.4)

31.7
(9.3-45.8)

23.0
(16.2-37.5)

25.8
(10.9-38.5)
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during a critical period of development has been seen in 
other studies and in different animal models, with apoptotic 
expression reducing with increasing age [42–45]. However, 
it is important to note that other studies report the mean num-
ber of apoptotic neurons [42, 43] rather than the percentage 
of positive neurons as we have done, thus it is not possible 
to determine comparative expression levels. Moreover, the 
data can vary pending on the marker being studied, as we 
have shown herein with the lack of any correlation ‘across’ 
TUNEL and Casp-3 in both layers, indicating both Casp-3 

dependent and independent pathways are likely present [46]. 
Regardless, our data provide supporting evidence of ongoing 
apoptotic processes in the human infant LGN, and that the 
levels do not vary within the first 9 months of life but rather, 
do so due to other factors as will be discussed below.

Our finding of an average of 14-15% in the α7 and β2 
nAChR subunits was lower than anticipated, especially 
for the β2 nAChR subunit which plays a key role in the 
functional organisation of the LGN [27–29] and for which 
amongst other subunits, was found to be the predominant 

Table 5   Effects of risk factors on LGN expression of TUNEL, Caspase-3, α7 and β2 nAChR subunits for ALL cases excluding bedsharing SIDS II 

Bold used tohighlight significance when comparing with its counterpart at p ≤  0.05

URTI Smoke exposure Sex

N (n = 16) Y (n = 7) N (n = 11) Y (n = 9) M (n = 17) F (n = 6)

TUNEL
  PC 40.0 (14.6-67.9) 73.9 (66.7-89.4) 65.7 (21.9-73.9) 42.2 (10.9-75.3) 66.7 (18.7-75.8) 65.7 (34.0-75.3)
  MC 60.2 (20.0-67.5) 68.7 (66.2-89.3) 66.2 (12.5-68.7) 66.7 (31.8-76.8) 66.2 (22.6-77.4) 66.7 (36.7-72.3)

Casp-3
  PC 11.4 (3.0-30.0) 0.0 (0.0-43.6) 4.0 (0.0-14.3) 15.1 (1.1-40.0) 4.3 (0.0-26.7) 21.5 (4.3-48.3)
  MC 43.4 (2.6-58.2) 12.7 (0.0-51.9) 12.7 (0.0-51.8) 34.8 (0.9-53.9) 10.8 (0.0-53.9) 45.9 (18.2-64.2)

β2 nAChR
  PC 9.3 (7.2-12.9) 22.3 (16.7-34.5) 16.7 (10.0-27.6) 8.5 (6.7-19.5) 13.3 (8.5-26.3) 9.5 (6.7-18.5)
  MC 23.5 (16.7-46.0) 30.4 (20.3-60.3) 29.6 (19.6-47.0) 21.2 (14.6-50.4) 24.6 (19.9-53.6) 26.3 (16.8-45.7)

α7 nAChR
  PC 9.1 (5.9-16.7) 9.2 (6.6-21.5) 15.1 (6.4-17.6) 10.3 (5.3-17.5) 9.0 (5.8-16.3) 12.5 (7.3-16.7)
  MC 19.7 (10.7-35.3) 19.5 (15.5-36.0) 21.9 (16.8-33.6) 20.3 (12.6-41.4) 22.4 (11.6-37.1) 17.5 (15.3-20.8)

Table 6   Effects of risk factors on LGN expression of TUNEL, Casp-3, α7 and β2 nAChR subunits in SIDS subset excluding bedsharing SIDS II 

Results presented as median % positively stained neurons and interquartile range (Q1 – Q3) following independent samples Mann-Whitney U 
test
Bold used to highlight significance when comparing with its counterpart at p ≤ 0.05
& Only accounts for one case as staining for α7 nAChR was missing for one of the cases

URTI Smoke Exposure Sex Found prone

N (n = 8) Y (n = 6) N (n = 8) Y (n = 6) M (n = 12) F (n = 2) N (n = 9) Y (n = 5)

TUNEL
  PC 22.2 (7.7-41.7) 70.9 (65.4-90.5) 64.1 (22.1-72.4) 41.1 (12.8-82.5) 41.1 (17.0-72.4) 70.9 (61.6-N/A) 61.6 (18.7-81.6) 40.0 (13.8-73.5)
  MC 31.8 (12.5-65.7) 74.0 (62.0-89.7) 57.4 (12.5-76.6) 63.8 (35.1-80.8) 63.4 (21.3-76.6) 63.0 (48.1-N/A) 66.7 (31.8-79.0) 60.2 (11.6-78.6)

Casp-3
  PC 4.0 (0.0-14.3) 0.0 (0.0-15.6) 0.0 (0.0-5.8) 4.3 (0.0-32.6) 0.0 (0.0-6.3) 10.8 (0.0-10.8) 0.0 (0.0-5.8) 4.3 (0.0-17.9)
  MC 3.5 (0.0-45.9) 6.3 (0.0-23.9) 3.5 (0.0-14.1) 3.5 (0.0-48.9) 0.0 (0.0-14.5) 29.3 (12.7-29.3) 3.5 (0.0-14.1) 3.5 (0.0-48.9)

β2 nAChR
  PC 13.3 (10.4-25.7) 21.5 (14.3-37.5) 20.8 (12.1-32.8) 18.0 (9.2-24.9) 18.0 (10.4-31.1) 20.3 (16.7-20.3) 

(7.2)
22.8 (14.3-37.5) 13.3 (10.4-24.4)

  MC 43.2 (27.1-59.5) 38.3 (23.3-60.6) 38.3 (25.8-57.0) 43.2 (20.3-72.1) 46.3 (24.4-60.9) 36.8 (30.4-36.8) 30.0 (23.3-60.6) 46.3 (33.9-60.0)
α7 nAChR

  PC 10.3 (3.9-19.1) 7.4 (6.4-25.1) 7.4 (5.9-18.5) 8.3 (4.8-18.4) 
(16.4)

9.2 (5.3-19.1) 6.8 (6.8-6.8)& 7.4 (5.9-18.5) 9.8 (2.7-33.2)

  MC 33.6 (17.6-41.4) 17.3 (14.8-47.9 21.7 (16.2-36.9) 30.2 (15.8-49.2) 26.7 (15.5-41.4) 17.3 (17.3-17.3)& 21.7 (16.2-36.9) 41.7 (8.6-68.8)
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one expressed, although α7 was not analysed in that study 
[29]. We did not find any other reports of the α7 nAChR 
in the LGN, but based on the findings that the α7 nAChR 
knock-out mouse has poor visual acuity due to changes 
in the visual cortex [47], it is reasonable to think that this 
receptor subunit also plays a key role in the LGN, thus war-
ranting further studies.

Expression of our markers in the MC relative to the PC 
was slightly higher, consistent with current research suggest-
ing that the MC develops and matures faster than the PC [42, 
48, 49]. However, this did not affect the correlation in the 
expression of the markers between the layers which showed 
consistent distribution across the layers (internal ‘within’ 
correlation), particularly for the apoptotic markers.

Comparison between diagnostic groups

In both layers of the LGN, Casp-3 expression was lower in 
SIDS II compared to the eSUDI group, and it was markedly 
lower in SIDS II infants who slept alone. This contrasts with 
our previous finding of increased Casp-3 expression in other 
brain regions in SIDS [11, 13–15]. In the absence of any 
changes in TUNEL expression, this may be due to the high 
incidence of infection/inflammatory-related deaths in our 
eSUDI group, with systemic injury contributing to increased 
markers of the early stages of apoptosis in the LGN. This 
has been previously seen for Casp-3 [34] and TUNEL [35] 
in different brain structures of rodent models of neonatal sys-
temic inflammation, with the Casp-3 data showing it to only 
be increased after gram negative inflammation [34]. We pos-
tulate that this supports activation of non-Casp-3 apoptotic 
pathways, especially given that the eSUDI group showed 
no differences between the infectious and non-infectious 
groups. This explanation is also consistent with our finding 
that only TUNEL expression was increased in association 
with URTI, and not Casp-3, regardless of the infant’s final 
diagnosis. An alternative explanation could be that a protec-
tive mechanism is activated in the SIDS LGN, preventing the 
activation of the Casp-3- mediated apoptotic pathway. This 
possibility is supported by the higher β2 nAChR expression 
we found in SIDS II cases, since β2 nAChR has a neuro-
protective role (reviewed in [50]) that can become activated 
during hypoxia-induced apoptosis [18].

Our data showed that both layers were affected equally in 
SIDS II, and is contrary to the literature indicating functional 
differences in response to insult [51] with data indicating the 
MC layer is more susceptible, for example when exposed to 
alcohol in the third trimester in monkeys [52], and in neuro-
degenerative diseases, including Alzheimer’s and Parkinson’s 
(reviewed in [53]). It is possible that age, and the duration 
and type of insult, may contribute to these differences.

Given the importance of β2 nAChR and Casp-3, inde-
pendent from apoptosis, in the development of the LGN, 

we hypothesise that the differences in marker expression 
described in SIDS cases could also reflect an insufficient 
LGN development, leading to dysfunction. Though we 
could not assess the function of the LGN, we speculate 
that the differences seen have implications for its roles in 
both visual and higher-order processing, including arousal 
from sleep [5–7]. In the LGN, the orexinergic system plays 
a role in arousal from sleep, and this non-visual role of the 
LGN has been linked to control of REM sleep and the cir-
cadian rhythm [7, 54, 55]. In light of our previous finding 
of decreased orexin expression in the SIDS hypothalamus 
and nuclei of the pons [56], we speculate that the same sys-
tem could be disrupted in the LGN and contributing to an 
arousal deficit.

Effects of risk factors

Bed-sharing and the presence of an URTI, were the only 
risk factors associated with changes in marker expression.

Bed-sharers had reduced expression of TUNEL in both 
PC and MC, suggesting reduced cell death in the LGN of 
this group. We consider the impact of bed-sharing to most 
likely relate to hypoxia, and SIDS II bed-sharers showed 
differences in all markers except for the α7 nAChR, in both 
layers of the LGN. Current literature recognises the effect of 
hypoxia on the LGN (reviewed in [57]); however, we found 
no literature on the effect of hypoxia on nAChR or apoptotic 
expression in the LGN, so further investigation into this rela-
tionship is warranted. The LGN has great capability in adap-
tive reorganisation following a mild traumatic brain injury 
[58], and the increase in Casp-3 and decrease in TUNEL and 
β2 nAChR expression might reflect this.

When analysing excluding the bed-sharers, the pres-
ence of URTI was the only risk factor associated with 
changes: increased TUNEL in both layers, and an increase 
in β2 nAChR in the PC. An association between URTI and 
TUNEL has been previously described by our group with 
the hypothesis that a systemic immune challenge leads to 
neuronal cell death [11, 13]. The increase of β2 nAChR in 
the PC could represent the unique laminal organisation of 
the LGN, its connections to specific brain structures or its 
response to injury. One connection of interest is the locus 
coeruleus (LC) from the noradrenergic ascending arousal 
network that is associated with respiratory control [59] and 
converges onto the PC layer of the LGN [4, 60]. Given that 
a disruption of the LC’s noradrenergic fibres can result in 
tight-junction disorganisation and a leaky blood brain barrier 
[61], thought to be responsible, for example, in the similar 
levels of circulating mercury between the PC LGN and LC 
in human adults [60], the increase in β2 nAChR expression 
in the PC associated with URTI could be an up-stream effect 
via the LC, especially as a moderate level of β2 nAChR 
expression has been previously recognised in the infant LC 
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[12, 62]. Unfortunately, in our previous studies of the LC 
[12, 62, 63] we did not evaluate the effects of URTI, and 
thus, a direct link between this risk factor and marker expres-
sion in the LC remains unknown.

Limitations

A main limitation of the study is that we were not able to 
perform stereological based quantification. This was due to 
the study being retrospective in nature with limited tissue 
available to us after coronial post-mortem investigation. As 
such, we cannot report on the uniformity of the changes 
observed throughout the LGN, nor if they are due to changes 
in neuron numbers. However, our method of %positivity 
allows for comparison amongst cases where limited tissue 
is available for analysis.

Conclusion

In a cohort of SUDI cases, we found an average of 50% of 
neurons in the infant LGN undergoing apoptosis. Associa-
tions with α7 and β2 nAChR subunit expression were weak, 
suggesting that the apoptotic process observed is not regu-
lated by α7 nor β2 nAChRs. Changes seen in SIDS II infants 
and in sub-groups exposed to various SIDS risk factors sup-
port a neuroprotective role of the β2 nAChRs. Variations we 
found amongst the groups with exposure to different SIDS 
risk factors support current literature suggesting that the 
LGN is sensitive to insults such as hypoxia and infection, 
rather than being attributable to any specific cause of SIDS.
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