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Abstract
The fragile X protein (FXP) family comprises the multifunctional RNA-binding proteins FMR1, FXR1, and FXR2 that play 
an important role in RNA metabolism and regulation of translation, but also in DNA damage and cellular stress responses, 
mitochondrial organization, and more. FMR1 is well known for its implication in neurodevelopmental diseases. Recent evi-
dence suggests substantial contribution of this protein family to amyotrophic lateral sclerosis (ALS) pathogenesis. ALS is a 
highly heterogeneous neurodegenerative disease with multiple genetic and unclear environmental causes and very limited 
treatment options. The loss of motoneurons in ALS is still poorly understood, especially because pathogenic mechanisms 
are often restricted to patients with mutations in specific causative genes. Identification of converging disease mechanisms 
evident in most patients and suitable for therapeutic intervention is therefore of high importance. Recently, deregulation 
of the FXPs has been linked to pathogenic processes in different types of ALS. Strikingly, in many cases, available data 
points towards loss of expression and/or function of the FXPs early in the disease, or even at the presymptomatic state. In 
this review, we briefly introduce the FXPs and summarize available data about these proteins in ALS. This includes their 
relation to TDP-43, FUS, and ALS-related miRNAs, as well as their possible contribution to pathogenic protein aggregation 
and defective RNA editing. Furthermore, open questions that need to be addressed before definitively judging suitability of 
these proteins as novel therapeutic targets are discussed.
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Introduction

The heterogeneous neurodegenerative disease amyo-
trophic lateral sclerosis (ALS) is characterized by the 
progressive loss of neurons of the motor system lead-
ing to muscular atrophy, weakness, paralysis, and, ulti-
mately, death by respiratory failure. A few percent of the 
patients can be explained by monogenic inheritance of 
pathogenic variants in more than two dozen ALS genes 
(fALS), with C9orf72, SOD1, FUS, and TARDBP being 

the most frequent, at least in populations of European 
ancestry. However, the vast majority of patients are spo-
radic (sALS), but, here too, increasing evidence points 
towards the involvement of genetics and a polygenic 
architecture of the disease. Most likely, although poorly 
understood, a complex and heterogeneous interplay of 
multiple known and unknown genetic and environmental 
risk factors is responsible for most sALS cases. There 
is still no cure for ALS, and limited treatment options 
prolong life expectancy just by a few months. Despite 
extensive research, molecular mechanisms responsible for 
the death of motoneurons are not well understood. This is 
mainly due to the high heterogeneity of cellular defects 
associated with different ALS genes, and frequent failure 
to detect pathogenic pathways in patients with another 
genetic cause and/or in sporadic patients. Nevertheless, 
some pathogenic processes are shared among most, if 
not all, ALS patients. Therefore, it is still a matter of 
debate if different genetic causes should be considered 
as diverse diseases with a similar outcome, or if different 
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primum movens converge into a single or few pathogenic 
cascade(s) driving onset and progression of the disease. 
So far, both hypotheses are supported by solid bodies of 
evidence, and answering this question is of high impor-
tance for better understanding this devastating disease, 
the development of disease modifying treatments, and the 
stratification of patients in clinical trials [1, 2].

In this review, we summarize available evidence for an 
involvement of the fragile X protein (FXP) family, com-
prising FMR1, FXR1, and FXR2, in ALS pathogenesis. 
This protein family, and especially FMR1, is famous for 
their roles in autism spectrum disorders (ASDs) includ-
ing the fragile X syndrome (FXS), and related diseases 
reviewed elsewhere. However, recent studies implicate 
these proteins in certain types of cancer, mental illnesses, 
and neurodegenerative diseases [3]. Although we are far 
from understanding their role in ALS, available evidence 
indicates contribution of this protein family to the dis-
ease that may be largely independent of the underlying 
cause. From a functional point of view, the FXPs have the 
potential to link key events of ALS pathogenesis, such as 
hyperexcitability of motoneurons, RNA dysmetabolism, 
mitochondrial dysfunction, axonal transport and synaptic 
integrity, and impaired protein homeostasis and protein 
aggregation. If true, therapeutic approaches aiming at the 
FXPs may not cure the disease, but may be beneficial for 
the vast majority, if not all, ALS patients.

The FXP Family

Structure

The FXPs constitute a small family of RNA-binding proteins 
(RBPs) comprising only three members, FMR1 (or FMRP), 
FXR1 (or FXR1P), and FXR2 (or FXR2P). These proteins 
are highly homologous to each other, especially in the N-ter-
minal half, while more variation is found in the C-terminal 
part [3]. Evolutionary, FXPs are highly conserved and most 
organisms higher than insects encode all three family mem-
bers in their genomes.

The functional domains of the FXP family include a tan-
dem Agenet-like domain (TAD) at the N-terminus followed 
by a nuclear localization signal (NLS), three RNA-binding 
K-homology (KH) domains, a nuclear export signal (NES), 
and a mostly disordered C-terminus comprising RNA-
binding RGG motifs, or variations thereof (Fig. 1) [3, 4]. 
The function of the TAD is unknown, but it is structurally 
related to TUDOR domains known to recognize and interact 
with methylated arginines and/or lysines of proteins [5]. 
Indeed, the TAD of FMR1, but not of FXR1 and FXR2 
[6], has been shown to directly interact with the C-terminal 
region of FUS [7, 8] comprising methylated RGG motifs 
[9]. The NLS and NES facilitate shuttling between nucleus 
and cytoplasm, whereby all three FXPs are predominantly 
found in the cytoplasm. The KH domains as well as the 

Fig. 1   Domains of the fragile X protein family. Each member of 
the fragile X protein family comprises a tandem agenet-like domain 
(Age1 and Age2) at the N-terminus, a nuclear localization signal 
(NLS) as well as a nuclear export signal (NES), three RNA-binding 
K homology domains (KH0, KH1 and KH2), and a mostly disordered 

C-terminus that harbours repeats of RNA-binding RGG motifs (in 
FMR1 and FXR1, or two separate variations of RGG motifs in FXR2, 
indicated as RG1 and RG2). Canonical isoforms are shown and 
amino acid positions of the respective domains according to InterPro 
[10] are indicated. RG1 and RG2 motifs of FXR2 were defined in [6]
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RGG motifs are responsible for the RNA-binding proper-
ties of these proteins. However, despite numerous studies 
mainly focusing on FMR1, sequence and/or structural fea-
tures of RNAs binding to the FXPs are still poorly under-
stood, and different methodologies and cell types used for 
target mRNA identification may strongly affect the results. 
Nevertheless, for FMR1, target mRNAs appear to be mostly 
related to cellular signaling, development and function of 
axons, dendrites, and synapses, the microtubule cytoskel-
eton and RNA transport, and transcriptional and epigenetic 
regulation of gene expression. While the three KH domains 
weakly interact with single-stranded RNAs and most likely 
require specific secondary structures and/or additional 
RBPs/factors for binding, the RGG domains of the FXPs 
have been repeatedly, but not consistently, shown to associ-
ate with RNA G quadruplexes [3, 4]. Interestingly, a recent 
study found that the RGG domains of the FXPs directly 
interact with a specific subset of mature microRNAs (miR-
NAs) deregulated in ALS, but possible functions have not 
been elucidated yet [6].

Function

The FXPs are multifunctional proteins ubiquitously 
expressed in virtually all tissues and cell types, including 
the CNS [11]. Most of our knowledge of FXP functions is 
derived from studying FMR1 in the context of ASDs. As 
expected from the similar structures and, at least in part, 
high homology of this protein family, overlapping and 
unique functions of the individual FXPs have been reported. 
In general, the FXPs are known to be associated with polyri-
bosomes acting as regulators of protein synthesis involved 
in transport and translational suppression of target mRNAs, 
thereby regulating local translation, e.g., at synapses in 
neurons important for synaptic plasticity and excitability 
of neurons. However, additional functions of the FXPs 
have emerged. In RNA metabolism, FMR1 and FXR1 are 
involved in ADAR-mediated RNA editing, and this modifi-
cation may play a role in recognition of FMR1/FXR1 target 
mRNAs. Additionally, the FXPs may be involved in tran-
scription, splicing, and nuclear export of mRNAs, as well 
as in mRNA stability. Therefore, spatiotemporal regulation 
and tuning of gene expression is likely one of the main func-
tions of the FXPs [3, 4]. However, functions of the FXPs in 
RNA metabolism are not limited to mRNAs. Association 
of the FXPs with the miRNA machinery is well established 
and thought to support translational silencing of targeted 
mRNAs via the RNA-induced silencing complex (RISC) 
[12]. The finding that the FXPs directly interact with a sub-
set of miRNAs, without the involvement of Ago proteins, 
may be indicative for additional/distinct mechanisms [6]. 
Much less is known about the relation of the FXPs to long 

noncoding (lnc) RNAs that are particularly abundant in the 
brain. However, here too, increasing evidence points towards 
an involvement of the FXPs in lncRNA biology (e.g., [13]).

Other functions of the FXPs beyond RNA metabolism are 
their involvement in chromatin dynamics and the DNA dam-
age response, cell cycle regulation, ribosome biogenesis, and 
mitochondrial organization [3, 4, 14]. In neurons, FMR1 is an 
important regulator of ion channels at multiple levels. Besides 
regulating local translation of mRNAs coding for diverse ion 
channels, FMR1 is additionally involved in channel’s traf-
ficking and gating via protein-protein interactions [15]. Fur-
thermore, the FXPs play an important role in cellular stress 
responses and stress granule formation. Stress granules are 
membrane-less accumulations of RNAs and proteins form-
ing in the cytoplasm by phase separation of proteins/RNAs, 
and promoting survival of most cell types under conditions of 
stress [16]. While it is known that all three FXPs, similar to 
many other RBPs, are components of stress granules [17, 18], 
FMR1 is essential for stress granule assembly [19]. Interest-
ingly, different stressors in neuronal and non-neuronal cell 
types induce expression of FMR1, further substantiating its 
role in cellular stress responses. Here, it is worth mentioning 
that lower and higher expression levels of FMR1 are associ-
ated with decreased and increased cell viabilities, respectively 
[14, 20, 21]. The role of FXR1 and FXR2 in stress granule 
dynamics has not been studied in detail yet. Figure 2 sum-
marizes the various functions of the FXPs.

Post‑translational Modifications

Regarding the multiple functions and cellular locations, it is 
not surprising that the FXPs are regulated by various post-
translational modifications (PTMs). These include phospho-
rylation, methylation, acetylation, sumoylation, and ubiquityla-
tion [3, 22, 23]. However, the enzymes and signaling pathways 
involved, as well as functional consequences of these PTMs, 
are largely unknown. The best-studied PTM of the FXPs is the 
phosphorylation of serine 500 (S500 in humans, S499 in mice) 
of FMR1 that is likely mediated by the constitutive active 
casein kinase II (CK2), and required for its role in regulating 
translation. Only phosphorylated FMR1 associates with pol-
yribosomes and RISC resulting in translational repression of 
target mRNAs. Dephosphorylation of FMR1 by protein phos-
phatase 2A (PP2A) leads to its release from ribosomes and 
Ago2 facilitating translation. Phosphorylation of S500 has also 
been shown to promote phase separation of FMR1 required 
for the formation of different RNA granules involved in RNA 
transport and stress responses. Release of FMR1 from RNA 
granules is likely induced by sumoylation. Dephosphorylation 
of S500 is additionally a prerequisite for the ubiquitylation 
of FMR1 and its degradation via the ubiquitin-proteasome-
system (UPS). The UPS has also been shown to be involved 
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in the degradation of FXR1, but by a different mechanism and 
in another context [3, 23]. Another PTM of FXR1 and likely 
of FMR1, but not of FXR2, is phosphorylation of S420 of 
FXR1 and the conserved residue (S511) of FMR1 by the mul-
tifunctional kinase PAK1. At least in zebrafish muscle devel-
opment, this PTM is essential for FXR1 function. Further-
more, this PTM increases when FXR1/FMR1 are recruited to 
arsenite-induced stress granules, indicating a role of this PTM 
in cellular stress responses [24]. The RGG domains of FMR1 
and FXR1 may be methylated affecting their association 
with polyribosomes and their capability to form homo- and 
heterodimers with other FXPs. While methylation of FXR1 
may decrease its RNA-binding activity in general, differen-
tial mRNA-binding is observed for FMR1 depending on the 
methylation state of specific arginines [3, 23]. Causes and con-
sequences of multiple additional PTMs of the FXPs detected 
by proteome-wide approaches [22] have not been studied yet. 
Unfortunately, there is almost no functional data available 
about the PTMs of FXR2.

FXP‑Associated Hereditary Diseases

The majority of genetic diseases linked to the FXPs are associ-
ated with severe developmental defects. Deficiency or absence 
of FMR1 protein causes FXS, which is the most common 
cause of inherited intellectual disability and ASDs. The pri-
mary cause of FXS is a trinucleotide (CGG) repeat expansion 
in the promoter region of FMR1 leading to hypermethylation 
and silencing of expression. Many of the various symptoms 
of FXS are attributed to the multiple functions of FMR1 and/
or its mRNA targets in development and maintenance of syn-
apses. While healthy individuals have ≤ 44 CGG repeats, > 
200 repeats are pathogenic and cause silencing of FMR1, and 
consequently FXS. Intermediate repeat lengths (i.e., 55–200) 

are linked to two other diseases, namely, fragile X–associated 
premature ovarian insufficiency (FXPOI) in women and, pre-
dominantly in men, fragile X–associated tremor/ataxia syn-
drome (FXTAS) [3, 25]. FXPOI is the most frequent cause 
of monogenic premature ovarian insufficiency, while FXTAS 
is a late-onset neurodegenerative disease. Interestingly, in 
contrast to FXS, in both FXPOI and FXTAS, expression of 
FMR1 protein is not or only mildly decreased, and increased 
transcription of repeat-containing FMR1 mRNA sequester-
ing RBPs and/or being translated into aberrant FMR1 protein 
may represent the dominating pathogenic mechanism [26, 27]. 
Recently, diseases associated with intermediate FMR1 CGG 
repeat lengths have been extended by the fragile X–associated 
neurodevelopmental disorders (FXANDs) that usually include 
anxiety and depression [28].

Besides FMR1, also FXR1 is linked to developmen-
tal diseases, namely, congenital myopathies that differ in 
severity depending on the specific mutation. These diseases 
underly recessive mutations in muscle-specific exon 15 of 
FXR1. The milder form (proximal, with minicore lesions 
[MYOPMIL]) is a result of strongly reduced expression of 
FXR1, while the very severe form (with respiratory insuffi-
ciency and bone fractures [MYORIBF]) is due to expression 
of a mutant protein prone to aggregation [29]. Additionally, 
genome-wide association studies repeatedly linked FXR1 to 
schizophrenia and bipolar disorders [3]. So far, no hereditary 
diseases associated with FXR2 have been reported.

The FXPs in ALS Pathogenesis

When considering the multiple functions and mRNA targets 
of the FXPs, it is not too surprising that these proteins are 
involved in cellular processes and pathways impaired in ALS. 

Fig. 2   Overview of FXP functions. Summary of cellular processes 
that have been linked to the FXPs. Functions mainly dependent on the 
RNA-binding properties of these proteins are shown in orange. Blue 
boxes indicate involvement of the FXPs in cellular pathways puta-

tively by protein-protein interactions. The white box shows functions 
of FXP target mRNAs. Please note that most FXP functions shown 
here have been identified by studying FMR1, and it is not yet known 
if FXR1 and FXR2 are involved in all processes shown here
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However, compared to other RBPs that do not cause ALS but 
may contribute to the pathogenesis, e.g., some members of the 
heterogenous nuclear ribonucleoprotein (hnRNP)-family [30], 
available evidence suggests a prominent role of the FXPs.

Regulation of Transport and Translation of Target 
mRNAs

Cytoplasmic mis-localization and aggregation of RBPs with 
important functions in RNA metabolism, such as TDP-43 
and FUS, are a neuropathological hallmark of most ALS 
cases. Neuronal cytoplasmic inclusions (NCIs) containing 
abnormally phosphorylated and fragmented TDP-43 are 
found in affected neurons and some other cell types of ≈97% 
of all ALS patients, largely independent of the underlying 
cause of the disease [1, 2]. Moreover, rare variants in TAR-
DBP coding for TDP-43 are causative for ALS [31] indicat-
ing a central role of this RBP in ALS pathogenesis, beyond 
the possibility of being a simple marker for dying neurons. 
FUS is another RBP that, similar to TDP-43, shows cyto-
plasmic mis-localization and aggregation in affected tissues 
of ALS patients. However, at least in ALS, FUS pathology is 
most prominent in patients carrying a pathogenic FUS vari-
ant [1, 32], but has also been detected in sALS patients [33, 
34]. It is worth to mention that most pathogenic mutations 
in FUS are very aggressive and associated with an early-
onset and a fast disease progression [35]. FALS patients with 
pathogenic mutations in SOD1 are exceptions to the almost 
universal TDP-43 and/or FUS pathology found in ALS. 
They also show abnormal protein aggregation in affected 
tissues, but these aggregates contain predominantly SOD1 
protein [32].

Functional Relationship of the FXPs and TDP‑43 
in Regulating Local Translation

The finding that FMR1 and TDP-43 co-localize in RNA 
granules [36, 37] and cooperatively regulate transport and 
local translation of some shared target mRNAs [37–39] led 
to the idea of a partial, age-related redundancy of these pro-
teins. In this model, FMR1 is important in development, and 
loss of/reduced expression or malfunction of this protein is 
rather associated with neurodevelopmental disorders. TDP-
43, on the other hand, is more important in adulthood and/
or ageing. Here, pathogenic mutations are linked to neuro-
degenerative diseases [40]. Indeed, by combining several 
studies aiming at identifying target mRNAs of FMR1 or 
TDP-43, 1140 mRNAs were found binding to both proteins. 
However, cooperative regulation of transport and translation 
of these mRNAs that include ≈160 mRNAs important for 
neuronal development, structure, and function has not been 
demonstrated yet [39]. Furthermore, when considering the 

problems associated with FMR1 target mRNA identification 
(see above), reliability of the 1140 mRNAs bound by both 
proteins is questionable, and further validation is required. 
Therefore, the extent of redundancy of FMR1 and TDP-43 
remains to be determined. Nevertheless, cooperative regu-
lation of selected mRNAs, including some that are highly 
important in neurons, has been shown. These include the 
mRNAs of SIRT1 [37], Rac1, GluR1, and Map1b [38, 39].

Highly interesting results regarding a link of TDP-43 and 
FMR1 in the context of ALS were achieved in an in vivo 
Drosophila model. Here, overexpression of both TDP-43 
wild-type or an ALS-associated variant (G298S) induced a 
depigmentation phenotype of the eye that indicates neurode-
generation in the neuroepithelium, increased larval turning 
times and severely reduced life span. In both cases, over-
expression of the single Drosophila homolog of the FXP 
family, dFMR1, fully or partly rescued these phenotypes. In 
contrast, RNAi-mediated knockdown or genetic depletion of 
dFMR1 worsened the TDP-43-induced phenotypes. Impor-
tantly, overexpression of dFMR1 did not rescue increased 
larval turning times induced by knockdown of TBPH (the 
Drosophila homolog of TDP-43). Hence, this model rather 
argues against profound redundancy of TDP-43 and FMR1, 
but undoubtedly identifies the FXPs as important modifi-
ers of TDP-43-induced neurotoxicity. It is noteworthy that 
dFMR1 rescued the TDP-43 associated phenotypes at mul-
tiple levels including restoration of futsch (the Drosophila 
homolog of MAP1B) mRNA translation and of neuromus-
cular junction pathology, as well as by decreasing TDP-43 
aggregation [41].

Very little is known about the relation of FXR1 and FXR2 
to TDP-43. However, considering that both proteins interact 
with TDP-43 [7] and are present in a fraction of FMR1-con-
taining RNA granules [42], a functional relationship similar 
to FMR1 is likely but has not been demonstrated yet.

Mutant FUS Impairs FXP Function

First evidence for a possible involvement of the FXPs in 
FUS-ALS was provided by the finding that FUS physically 
interacts with all three FXPs [7]. Here, the interaction of 
FUS and FMR1 (see above) is direct [7, 8], while the inter-
action with FXR1 and FXR2 is much less pronounced, at 
least when focusing on the TADs of the FXPs [6]. Further-
more, the FXPs have repeatedly been shown to localize to 
cytoplasmic FUS granules formed by ALS-associated FUS 
variants in both non-neuronal cells and iPSC-derived moto-
neurons [6, 8, 43]. Importantly, when considering that both 
FUS and the FXPs are components of stress granules [17, 
18, 44], this co-localization was evident without induction 
of stress. Interestingly, expression level of at least FMR1 
may be linked to the nucleocytoplasmic distribution of 
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FUS, because in HEK293T cells knockdown of FMR1 led 
to nuclear retention of both wild-type and mutant FUS [8].

Recently, elegant studies revealed a role of FUS in trans-
lation. Besides multiple additional functions, FUS can, 
similar to the FXPs, associate with polyribosomes and is 
involved in translational regulation. ALS-associated vari-
ants of FUS have been shown to repress protein synthesis 
globally [45–48]. Mechanistically, it has been proposed 
by polysome profiling that ALS-related mutations lead to 
an increased association of FUS with ribosomes (riboso-
mal subunits, monosomes, and polysomes) resulting in 
increased repression of translation [47]. However, bind-
ing of FUS to ribosomes was not measured directly, and 
increased presence of mutated FUS in ribosomal frac-
tions may reflect increased aggregation propensity. Indeed, 
another study showed decreased association of mutant FUS 
with polysomes [43]. Here, the authors suggest a mecha-
nism of increased translational repression involving FMR1. 
They convincingly show that wild-type FUS promotes the 
association of FMR1 with the translational machinery, and 
that mutant FUS sequesters FMR1 in FUS condensates. 
Importantly, in this model, FMR1 is removed from poly-
somes by mutant FUS including bound mRNAs resulting 
in decreased translation of FMR1 target mRNAs (Fig. 3). 
Comparing the ribosome-bound mRNAs (translatome) from 
control and mutant FUS mice indeed confirmed depletion 
of FMR1 target mRNAs [43]. However, here too, due to the 
problems associated with FMR1 target mRNA identification 
(see above), these results have to be interpreted with care.

Another interesting mechanism involving FMR1 in FUS-
linked ALS has recently been explored in iPSC-derived 
motoneurons. In this scenario, FMR1 represses the transla-
tion of the RBP HuD (encoded by ELAVL4). Mutant FUS 
mis-localizing to the cytoplasm competes with FMR1 for 
binding to the HuD mRNA resulting in increased expression 
of HuD protein. Increased HuD protein, in turn, leads to 
abnormal stabilization of target mRNAs coding for GAP43 
and NRN1, and consequently higher protein levels. Here, 
knockdown of NRN1 was sufficient to partially but sub-
stantially rescue an axonal branching phenotype induced by 
mutant FUS [49].

Most likely the best evidence indicating an involvement 
of the FXPs in ALS caused by mutant FUS is, similar to 
TDP-43, provided by an in vivo model. Here, in zebrafish, 
it has been shown that phenotypes induced by overexpres-
sion of mutant FUS (R521C), such as loss of neuromus-
cular junction integrity and aberrant touch-evoked escape 
responses (TEERs), are fully rescued when FMR1 is overex-
pressed along with mutant FUS. Mechanistically, the authors 
have shown that mutant FUS leads to an increase of Map1b 
protein in synaptosomes that is normalized by FMR1 at the 
level of translation [7]. Unfortunately, additional targets and 
mechanisms were not addressed in this study.

As for TDP-43, there is almost no data available about 
a possible relation of FXR1 and FXR2 to FUS. However, 
similar to FMR1, also FXR1 and FXR2 are sequestered in 
cytoplasmic granules containing mutant FUS [6] suggesting 
a contribution of these proteins to ALS pathogenesis that 
awaits experimental testing.

FXPs and Pathogenic Protein Aggregation

Besides mounting evidence that ALS-related proteins, such 
as TDP-43 and FUS, impact FXP functions, there are hints 
in the literature that the FXPs may be implicated in a hall-
mark of ALS, namely, the pathogenic aggregation of specific 
proteins in affected tissues [1, 2].

In ALS post-mortem tissue, available data are limited, 
but it has been shown that FMR1 localizes to NCIs of wild-
type TDP-43 in sporadic ALS, as well as of mutant FUS in 
FUS-linked ALS [7]. Additionally, FXR1, but not FXR2, is 
a component of some (≈20%) FUS inclusions. Interestingly, 
aberrant expression of FXR1 and FXR2 in ALS spinal cord 
motoneurons was evident independent of the underlying 
cause of the disease, at least in FUS- and C9orf72-linked 
fALS, as well as in sALS. Here, compared to the homog-
enous expression in controls, ≈15–40% of motoneurons 

Fig. 3   Contribution of the FXPs to FUS-linked ALS. In healthy indi-
viduals (A), the FXPs are associated with polyribosomes and regulate 
translation of various target mRNAs. In motoneurons of individu-
als suffering from FUS-linked ALS (B), aggregates of mutant FUS 
sequester the FXPs including bound mRNAs resulting in decreased 
translation of FXP target mRNAs
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showed higher level of FXR1 and FXR2, while substantially 
lower levels of these proteins were evident in ≈5–20% of 
motoneurons. Roughly 25–50% of motoneurons with high 
FXR1 or FXR2 expression additionally showed accumula-
tions or aggregates of these proteins. Strikingly, at least in 
FUS-linked ALS, low expression of FXR1 and especially 
FXR2 correlated with the presence of FUS NCIs [6].

Mechanistically, it has been repeatedly shown that the 
FXPs are sequestered by cytoplasmic condensates spontane-
ously formed by mutant FUS impacting FXP functions (see 
above). However, an inverse scenario, i.e., that FXP contain-
ing granules may sequester cytoplasmic FUS, and serve as 
hubs for FUS aggregation, has never been addressed. For 
TDP-43, there are some hints that this may indeed be the 
case. It has been shown that cytoplasmic TDP-43, induced 
either by overexpression of specific variants in cell lines 
[50] or by traumatic brain injury in mice [51], partly local-
izes to FMR1 containing granules that are not necessarily 
stress granules. In cell lines, additional application of stress 
(sodium arsenite) was required for maturation of permanent 
TDP-43 aggregates separating from FMR1 containing stress 
granules [50]. In mice, these cytoplasmic TDP-43/FMR1 
granules were reversible and did not mature to permanent 
aggregates, even when mice expressing an ALS-associated 
variant of TDP-43 (G298S) were used for the experiments 
[51]. Therefore, it remains to be determined if FXP contain-
ing granules are implicated in ALS-related protein aggre-
gation. Nevertheless, the finding that overexpression of 
dFMR1 mitigated the phenotype of a TDP-43-linked Dros-
ophila ALS model possibly by reducing TDP-43 aggregation 
argues for a contribution of the FXPs [41], either directly or 
indirectly via regulation of other factors.

Recently, a study not related to ALS provided the basis 
for another hypothesis, how the FXPs may contribute to the 
aggregation of TDP-43. Here, knockdown of the individual 
FXPs in non-neuronal cell lines induced the formation of 
cytoplasmic condensates of nuclear pore components [52]. 
Considering that TDP-43 co-aggregates with components of 
the nuclear pore [53, 54], and nuclear pore pathology may 
even precede mis-localization and aggregation of TDP-43 
[55], it is tempting to hypothesize that the FXPs are involved 
in this process. Findings in ALS post-mortem tissue indicat-
ing restriction of NCIs to motoneurons with low expression 
level of the FXPs [6] would be in line with this hypothesis, 
but there is no experimental evidence yet.

FXPs and ALS‑Related miRNAs: an Indicator 
for Presymptomatic FXP Dysfunction?

MiRNAs are generally known to fine-tune gene expression 
post-transcriptionally by recruiting RISC to more or less 
complimentary sequences in the 3′ untranslated region of 
target mRNAs, resulting in degradation and/or translational 

repression [56]. In ALS, miRNAs are of special interest, 
because several causative genes, such as TARDBP [57, 58], 
FUS [59], HNRNPA1 [60], HNRNPA2B1, or MATR3 [61], 
have been linked to miRNA biogenesis and/or function, and 
even a general defect of miRNA biogenesis is discussed 
[62]. Additionally, genetic ablation of the endoribonuclease 
catalyzing the final cleavage of miRNA-precursors to mature 
miRNAs, Dicer1, from spinal motoneurons of mice leads 
to an ALS-like phenotype [63], further pronouncing impor-
tance of miRNA-mediated regulation of gene expression for 
motoneuron survival.

With regard to the FXPs, we could show that all three 
directly interact with a specific subset of mature miRNAs 
[6]. These ALS-related miRNAs are highly enriched for 
a sequence motif (GDCGG; D = G, A, or U), and were 
previously found downregulated in serum samples of fALS 
patients with different genetic causes (FUS, SOD1, and 
C9orf72) of the disease [64], as well as in the majority 
(>60%) of sALS patients [65]. Additionally, the FXPs are 
involved in the biogenesis and/or degradation of these ALS-
related miRNAs [6], whereby specific mechanisms, func-
tions, and associated consequences have not been explored 
yet. Our finding that this subset of miRNAs was already 
downregulated in serum of presymptomatic carriers of caus-
ative ALS mutations (SOD1, C9orf72, and PFN1; [64]), as 
well as in FUS mutant iPSC-derived motoneurons that most 
likely represent a presymptomatic or early stage of the dis-
ease, may indicate an involvement of the FXPs in very early 
pathogenic mechanisms. Unfortunately, despite multiple 
studies addressing miRNAs in ALS, downregulation of the 
FXP-related GDCGG-miRNAs was not confirmed by other 
groups yet. This is, most likely, due to the fact that we used 
microarrays for detection, and these miRNAs are poorly cov-
ered by small RNA sequencing applied in most studies [6]. 
Nevertheless, our results, at least at the level of specific miR-
NAs, point towards converging disease mechanisms in ALS 
with different underlying causes that may involve the FXPs.

FXPs and Defects in RNA Editing

It is known for a long time, that, predominantly in the CNS, 
mRNAs coding for subunits of α-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid (AMPA) receptors may 
be post-transcriptionally modified leading to amino acid 
substitutions at critical sites associated with channel per-
meability [66]. The finding that editing efficiency of such 
a critical site (commonly referred to as Q/R site) of the 
GluA2 subunit (encoded by GRIA2) of AMPA receptors in 
laser-dissected motoneurons from ALS patients is markedly 
reduced, implicated defective RNA editing in ALS patho-
genesis [67]. Unedited Q/R sites of GluA2 are associated 
with increased Ca2+ influx that has been linked to multiple 
features of ALS including hyperexcitability, excitotoxicity, 
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mis-localization of TDP-43, and death of motoneurons [68]. 
Besides this specific editing site, a recent study focusing 
on C9orf72-related ALS/FTD revealed widespread disease-
associated RNA editing aberrations in different post-mortem 
brain regions as well as in iPSC-derived motoneurons. Most 
likely, these changes were induced by the cytoplasmic mis-
localization of the RNA editing enzyme ADAR2 [69].

Interestingly, the FXPs, and especially FMR1 and FXR1, 
are closely linked to RNA-editing pathways. Elegant experi-
ments in Drosophila showed that the homolog of the FXP 
family, dFMR1, physically interacts with and modulates the 
activity of dADAR, an A-to-I RNA-editing enzyme. Here, 
loss or overexpression of dFMR1 led to deregulated RNA 
editing especially of mRNAs involved in synaptic transmis-
sion and neuromuscular junction architecture [70]. Similar 
results were reported in zebrafish [71], mice [72], and post-
mortem brains of humans suffering from ASDs [73]. In 
humans, FMR1 interacts with the catalytically active A-to-I 
RNA editing enzymes ADAR1 and ADAR2 (encoded by 
ADAR and ADARB1, respectively), while FXR1 interacts 
with ADAR1 only. The finding that, in ASDs, sites of dif-
ferential RNA editing are in close proximity to FMR1- and 
FXR1-binding sites suggest that the FXPs are directly 
involved in recruiting ADAR enzymes to mRNA-editing 
sites. Interestingly, while FMR1 promotes editing of specific 
mRNA sites, FXR1 was found to repress editing [73]. So 
far, it has not been explored if the differential RNA editing 
and/or the cytoplasmic mis-localization of ADAR2 reported 
in C9orf72-linked ALS [69] may be related to deregulated 
FXPs. In HeLa cells, knockdown of FMR1 or FXR1 did 
not induce cytoplasmic mis-localization of ADAR1 and/or 
ADAR2 [73]. Regarding the ALS-related Q/R site of GluA2 
(see above), it is not known if the FXPs are involved in 
insufficient editing. However, presence of GluA2 mRNA in 
FMR1-containing granules [74], as well as ASD-like pheno-
types of carriers of GluA2 Q/R site mutations [75], indicate 
involvement of FMR1. Nevertheless, aberrant expression of 
FXR1 in spinal cord motoneurons of ALS patients [6], or 
sequestration of FMR1 in NCIs of TDP-43 or FUS [7], will 
most likely affect RNA editing, including possible conse-
quences on synaptic transmission, neuromuscular junction 
integrity, and motoneuron survival.

Additional Hints Indicating a Contribution 
of the FXPs to ALS Pathogenesis

In addition to the studies discussed above, there are sev-
eral findings published that may relate the FXPs to ALS 
pathogenesis, but have not been explored in detail yet. For 
example, besides binding to TDP-43 and FUS, all three 
FXPs interact with Ataxin-2 (encoded by ATXN2) [7], an 
important risk gene [76] and modifier of ALS [77]. FMR1 
and FXR2 interact with the protein product of another 

established ALS gene, TBK1 [78, 79]. If this interaction 
is associated with the phosphorylation of critical sites of 
FMR1 and/or FXR2 is not known. Furthermore, FMR1 posi-
tively regulates the translation of SOD1 mRNA [80], and 
proteomics identified deregulation of some FMR1 targets in 
spinal cord synaptoneurosomes in SOD1 G93A mice [81].

In C9orf72-linked ALS, all three FXPs have repeatedly 
been shown to interact with repeat expansion-containing 
RNA [82–85], and at least FMR1 localizes to repeat expan-
sion induced RNA foci [85]. Additionally, in a Drosophila 
model of C9orf72 repeat expansions, FMR1 modulated 
dendritic branching defects, and increased level of FMR1, 
as well as of an established FMR1 target (PSD-95), were 
detected in human C9orf72 mutant iPSC-derived moto-
neurons. Furthermore, transcriptomics of C9orf72 mutant 
human post-mortem cortex revealed an enrichment of FMR1 
target mRNAs among downregulated mRNAs [86].

Last but not least, also target mRNAs of the FXPs indi-
cate implication of these proteins in ALS pathogenesis. The 
Encyclopedia of DNA Elements (ENCODE; [87]) dataset 
of RNA-protein interactions generated by enhanced UV 
cross-linking immunoprecipitation (eCLIP; [88]) allows 
comparison of target mRNAs of the individual FXPs. Strik-
ingly, according to the Kyoto Encyclopedia of Genes and 
Genomes (KEGG; [89]) target mRNAs of FMR1 and FXR2 
are highly significantly enriched in genes related to ALS, 
including some causative ALS genes. Enrichment of FXR1 
targets is much less pronounced, but still significant (Fig. 4). 
These interactions include, but are not limited to, mRNAs 
of definite ALS genes TARDBP, FUS (FXR2), and VCP (all 
three FXPs), as well as the clinical modifier ATXN2 (FXR2; 
classification of ALS genes according to [90, 91]). How-
ever, this relation has to be interpreted with care, because 
the ENCODE dataset is derived from non-neuronal cells 
(HepG2 and K562), and because of the problems associ-
ated with FXP target mRNA identification mentioned above. 
Nevertheless, at least some of the interactions are likely of 
relevance in neurons, and in ALS pathogenesis.

The FXPs in Other Age‑Related 
Neurodegenerative Diseases

Although this review focuses on available evidence for a 
contribution of the FXPs to ALS pathogenesis, it is worth 
mentioning that these proteins have been implicated in 
two other age-related neurodegenerative diseases, namely, 
Alzheimer’s disease (AD) and Parkinson’s disease (PD). 
Strikingly, similar to ALS, downregulation of FXP family 
members has been linked to early pathogenic events, which 
precede or perhaps even cause the deposition of aggregates.

In AD, FMR1 suppresses the translation of APP mRNA 
and loss of/reduced expression of FMR1 may contribute 
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to APP overexpression and deposition of amyloid plaques 
[93]. Indeed, decreased FMR1 expression was evident in 
pre-symptomatic and early symptomatic, but not in fully 
symptomatic, AD model mice [94]. In PD, a recent study 
employing cell culture experiments, mouse models, and 
human post-mortem brain tissue convincingly showed that 
FMR1 is downregulated in vulnerable neurons, and that 
reduced FMR1 protein most likely precedes Lewy body 
pathology. Moreover, the authors found that overexpression 
of α-synuclein induces downregulation of FMR1 [95]. Nota-
bly, in serum of PD patients, we found downregulation of 
GDCGG-miRNAs [96] reminiscent of our findings in ALS 
(see above). These data expand the relevance of the FXP 
family from ALS with different underlying causes also to 
AD and PD and emphasize overlap of at least some patho-
genic processes in different neurodegenerative diseases.

Conclusion and Future Perspectives

In summary, a number of excellent studies leave little doubt 
about an involvement of the FXP family in ALS pathogen-
esis. Here, the most convincing data, including analyses of 
human materials, animal models, and mechanistic studies, 
are available for the relation of the FXPs to FUS- and TDP-
43-linked ALS. Additionally, there are many hints in the 
literature that the FXPs may play a role in other genetic 
forms of ALS linked to SOD1, PFN1, C9orf72, ATXN2, and 
TBK1, as well as in sALS. This list could even be expanded 
when including mRNAs of ALS genes putatively binding 

to one of the FXPs (see Fig. 4). Therefore, reduced expres-
sion and/or loss-of-function of the FXPs may represent a 
pathogenic event in ALS and argues for the existence of 
converging disease mechanisms evident in most, if not all, 
patients. However, further studies are required to elucidate 
importance of these findings for human ALS. Mutations in 
different genes likely have different effects on the FXPs, but 
may converge on a single outcome, namely, reduced FXP 
expression and/or function. Despite large-scale studies (e.g., 
[97]), not any of the FXPs has been genetically linked to 
ALS so far. This may be explained by the fact that these pro-
teins have important functions in development and are rather 
associated with developmental than age-related diseases (see 
above). Therefore, it is more likely that loss of function and/
or expression of the FXPs in ALS represents one of several 
“hits” necessary for developing ALS, as suggested in multi-
step models of ALS [98, 99].

Considering that deregulation of the FXPs is most likely 
an early or even presymptomatic event in ALS pathogenesis, 
these proteins, or upstream events affecting these proteins, 
may represent promising novel therapeutic targets. However, 
there are still many open questions requiring clarification. 
Most importantly, (i) there is a strong bias in studying FMR1 
in ALS while FXR1 and FXR2 are largely neglected. Is one 
of the FXPs of special importance, or do all three FXPs 
equally contribute to the disease? Here, comparative studies 
are required, especially because of the possibility that differ-
ent FXPs may be of relevance in ALS patients with distinct 
underlying causes. (ii) Overexpression of FXPs substan-
tially or even fully rescued phenotypes of Drosophila and 

Fig. 4   Target mRNAs of the 
FXPs are related to ALS. 
Venn diagram showing target 
mRNAs of the individual FXPs 
in non-neuronal cells (see text 
for details) related to the KEGG 
pathway ‘Amyotrophic Lateral 
Sclerosis’. P-values (adjusted) 
correspond to enrichment of 
ALS-related mRNAs among all 
target mRNAs and were calcu-
lated using the Enrichr database 
[92]. The mRNAs of causative 
ALS genes are highlighted
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zebrafish models of ALS. Is this finding also true in mam-
mals? Clarifying this question in well-defined ALS mouse 
models would provide better estimates of potential benefits 
for human patients. (iii) How do the FXPs behave during 
the course of the disease? At what timepoint occurs deregu-
lation of each individual FXP? These questions should be 
addressed in different genetic mouse models to determine 
optimal timepoints of intervention, and to better understand 
the sequence of pathogenic events. (iv) Many of the studies 
described above linked the FXPs to protein aggregation. Are 
the FXPs implicated in additional pathogenic mechanisms? 
When considering the multiple functions of these proteins, 
they may additionally be involved in other ALS-related pro-
cesses, e.g., mitochondrial dysfunction.

There is still a long way to go regarding the FXPs in ALS 
and other neurodegenerative diseases, but results available 
so far are promising. In contrast to targeting expression of 
mutated genes using antisense oligonucleotides or alterna-
tive approaches, targeting the FXPs may result in treatment 
options for most patients, including those without a genetic 
mutation in a common causative gene. While it is rather 
unlikely that restoring FXP function and/or expression will 
cure the respective disease, every improvement compared to 
therapies available now is a success.
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