Skip to main content

Advertisement

Log in

Bone Marrow Mesenchymal Stem Cell-Derived Exosomal KLF4 Alleviated Ischemic Stroke Through Inhibiting N6-Methyladenosine Modification Level of Drp1 by Targeting lncRNA-ZFAS1

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ischemic stroke has become a serious public health problem that causes high rates of death and disability. Bone marrow mesenchymal stem cell (BMSC)-derived exosomes have shown promising therapeutic results in IS, while the underlying mechanisms need further investigation. Cell and mice models were established through oxygen–glucose deprivation/reoxygenation (OGD/R) treatment and middle cerebral artery occlusion (MCAO)/reperfusion. Exosomes were isolated from BMSCs. Related gene and protein expression was measured by qRT-PCR, Western blotting, and immunofluorescence analysis. The biological functions of treated cells and tissues were analyzed by MTT, ELISA, JC-1, flow cytometry, TTC staining, or TUNEL staining. The interaction of KLF4/lncRNA-ZFAS1 promoter and lncRNA-ZFAS1/FTO was measured by ChIP, dual-luciferase reporter, or RIP assays. The m6A levels of Drp1 were measured by MeRIP-PCR. Mitochondrial staining and transmission electron microscopy (TEM) were used to evaluate the mitochondrial morphology in N2a cells and brain tissues. BMSC-derived exosomes increased the viability of neuronal cells treated with OGD/R while decreasing LDH release, oxidative stress, mitochondrial injury, and apoptosis. Furthermore, these effects were abolished by knockdown of exosomal KLF4. KLF4 increased lncRNA-ZFAS1 through binding to its promoter. LncRNA-ZFAS1 overexpression suppressed the m6A levels of Drp1 and reversed the promoting effect of exosomal KLF4 silencing on mitochondrial injury and the imbalance of mitochondrial dynamics by targeting FTO. Exosomal KLF4 alleviated the infarct area, neuronal injury, and apoptosis in MCAO mice through lncRNA-ZFAS1/FTO/Drp1 axis. BMSC-derived exosomal KLF4 promoted lncRNA-ZFAS1 expression to repress Drp1 m6A modification by targeting FTO, thus reducing mitochondrial dysfunction and alleviating neuronal injury in ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR et al (2016) Heart Disease and Stroke Statistics-2016 Update: a report from the American Heart Association. Circulation 133 (4):e38–360.https://doi.org/10.1161/CIR.0000000000000350

  2. Raichle ME (1983) The pathophysiology of brain ischemia. Ann Neurol 13(1):2–10. https://doi.org/10.1002/ana.410130103

    Article  CAS  PubMed  Google Scholar 

  3. Yepes M, Roussel BD, Ali C, Vivien D (2009) Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci 32(1):48–55. https://doi.org/10.1016/j.tins.2008.09.006

    Article  CAS  PubMed  Google Scholar 

  4. Dharmasaroja P (2009) Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke. J Clin Neurosci 16(1):12–20. https://doi.org/10.1016/j.jocn.2008.05.006

    Article  PubMed  Google Scholar 

  5. Bang OY, Lee JS, Lee PH, Lee G (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57(6):874–882. https://doi.org/10.1002/ana.20501

    Article  PubMed  Google Scholar 

  6. Borlongan CV, Lind JG, Dillon-Carter O, Yu G, Hadman M, Cheng C, Carroll J, Hess DC (2004) Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brain Res 1010(1–2):108–116. https://doi.org/10.1016/j.brainres.2004.02.072

    Article  CAS  PubMed  Google Scholar 

  7. Stonesifer C, Corey S, Ghanekar S, Diamandis Z, Acosta SA, Borlongan CV (2017) Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 158:94–131. https://doi.org/10.1016/j.pneurobio.2017.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang Q, Zhou M, Wu X, Li Z, Liu B, Gao W, Yue J, Liu T (2019) Promoting therapeutic angiogenesis of focal cerebral ischemia using thrombospondin-4 (TSP4) gene-modified bone marrow stromal cells (BMSCs) in a rat model. J Transl Med 17(1):111. https://doi.org/10.1186/s12967-019-1845-z

    Article  PubMed  PubMed Central  Google Scholar 

  9. Manuel GE, Johnson T, Liu D (2017) Therapeutic angiogenesis of exosomes for ischemic stroke. Int J Physiol Pathophysiol Pharmacol 9(6):188–191

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakahara Y, Northcott PA, Li M, Kongkham PN, Smith C, Yan H, Croul S, Ra YS et al (2010) Genetic and epigenetic inactivation of Kruppel-like factor 4 in medulloblastoma. Neoplasia 12(1):20–27. https://doi.org/10.1593/neo.91122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Z, Li J, Wang A, Wang Z, Wang J, Yuan J, Wei X, Xing F et al (2021) Sevoflurane inhibits traumatic brain injury-induced neuron apoptosis via EZH2-downregulated KLF4/p38 axis. Front Cell Dev Biol 9:658720. https://doi.org/10.3389/fcell.2021.658720

  12. Cheng Z, Zou X, Jin Y, Gao S, Lv J, Li B, Cui R (2018) The role of KLF4 in Alzheimer’s disease. Front Cell Neurosci 12:325. https://doi.org/10.3389/fncel.2018.00325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Su C, Sun F, Cunningham RL, Rybalchenko N, Singh M (2014) ERK5/KLF4 signaling as a common mediator of the neuroprotective effects of both nerve growth factor and hydrogen peroxide preconditioning. Age (Dordr) 36(4):9685. https://doi.org/10.1007/s11357-014-9685-5

    Article  CAS  PubMed  Google Scholar 

  14. Zhang X, Wang L, Han Z, Dong J, Pang D, Fu Y, Li L (2020) KLF4 alleviates cerebral vascular injury by ameliorating vascular endothelial inflammation and regulating tight junction protein expression following ischemic stroke. J Neuroinflammation 17(1):107. https://doi.org/10.1186/s12974-020-01780-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  16. Leng Z, Li Y, Zhou G, Lv X, Ai W, Li J, Hou L (2020) Kruppel-like factor 4 regulates stemness and mesenchymal properties of colorectal cancer stem cells through the TGF-beta1/Smad/snail pathway. J Cell Mol Med 24(2):1866–1877. https://doi.org/10.1111/jcmm.14882

    Article  CAS  PubMed  Google Scholar 

  17. Barry G (2014) Integrating the roles of long and small non-coding RNA in brain function and disease. Mol Psychiatry 19(4):410–416. https://doi.org/10.1038/mp.2013.196

    Article  CAS  PubMed  Google Scholar 

  18. Liu B, Cao W, Xue J (2019) LncRNA ANRIL protects against oxygen and glucose deprivation (OGD)-induced injury in PC-12 cells: potential role in ischaemic stroke. Artif Cells Nanomed Biotechnol 47(1):1384–1395. https://doi.org/10.1080/21691401.2019.1596944

    Article  CAS  PubMed  Google Scholar 

  19. Zhu M, Li N, Luo P, Jing W, Wen X, Liang C, Tu J (2018) Peripheral blood leukocyte expression of lncRNA MIAT and its diagnostic and prognostic value in ischemic stroke. J Stroke Cerebrovasc Dis 27(2):326–337. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.009

    Article  PubMed  Google Scholar 

  20. Wang J, Ruan J, Zhu M, Yang J, Du S, Xu P, Zhang Z, Wang P et al (2019) Predictive value of long noncoding RNA ZFAS1 in patients with ischemic stroke. Clin Exp Hypertens 41(7):615–621. https://doi.org/10.1080/10641963.2018.1529774

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Zhang Y (2020) lncRNA ZFAS1 improves neuronal injury and inhibits inflammation, oxidative stress, and apoptosis by sponging miR-582 and upregulating NOS3 expression in cerebral ischemia/reperfusion injury. Inflammation 43(4):1337–1350. https://doi.org/10.1007/s10753-020-01212-1

    Article  CAS  PubMed  Google Scholar 

  22. Yin Y, Wu RX, He XT, Xu XY, Wang J, Chen FM (2017) Influences of age-related changes in mesenchymal stem cells on macrophages during in-vitro culture. Stem Cell Res Ther 8(1):153. https://doi.org/10.1186/s13287-017-0608-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xie L, Shi F, Li Y, Li W, Yu X, Zhao L, Zhou M, Hu J et al (2020) Drp1-dependent remodeling of mitochondrial morphology triggered by EBV-LMP1 increases cisplatin resistance. Signal Transduct Target Ther 5(1):56. https://doi.org/10.1038/s41392-020-0151-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang X, Wang S, Wang L, Ceylan AF, Ren J, Zhang Y (2020) Mitophagy inhibitor liensinine suppresses doxorubicin-induced cardiotoxicity through inhibition of Drp1-mediated maladaptive mitochondrial fission. Pharmacol Res 157:104846. https://doi.org/10.1016/j.phrs.2020.104846

  25. Shang S, Wang J, Chen S, Tian R, Zeng H, Wang L, Xia M, Zhu H et al (2019) Exosomal miRNA-1231 derived from bone marrow mesenchymal stem cells inhibits the activity of pancreatic cancer. Cancer Med 8(18):7728–7740. https://doi.org/10.1002/cam4.2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen W, Wang H, Zhu Z, Feng J, Chen L (2020) Exosome-shuttled circSHOC2 from IPASs regulates neuronal autophagy and ameliorates ischemic brain injury via the miR-7670-3p/SIRT1 axis. Mol Ther Nucleic Acids 22:657–672. https://doi.org/10.1016/j.omtn.2020.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang L, Wan Y, Zhang Z, Jiang Y, Lang J, Cheng W, Zhu L (2021) FTO demethylates m6A modifications in HOXB13 mRNA and promotes endometrial cancer metastasis by activating the WNT signalling pathway. RNA Biol 18(9):1265–1278. https://doi.org/10.1080/15476286.2020.1841458

    Article  CAS  PubMed  Google Scholar 

  28. Du YD, Guo WY, Han CH, Wang Y, Chen XS, Li DW, Liu JL, Zhang M et al (2021) N6-methyladenosine demethylase FTO impairs hepatic ischemia-reperfusion injury via inhibiting Drp1-mediated mitochondrial fragmentation. Cell Death Dis 12(5):442. https://doi.org/10.1038/s41419-021-03622-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hokari M, Kuroda S, Shichinohe H, Yano S, Hida K, Iwasaki Y (2008) Bone marrow stromal cells protect and repair damaged neurons through multiple mechanisms. J Neurosci Res 86(5):1024–1035. https://doi.org/10.1002/jnr.21572

    Article  CAS  PubMed  Google Scholar 

  30. He XY, Chen ZZ, Cai YQ, Xu G, Shang JH, Kou SB, Li M, Zhang HT et al (2011) Expression of cytokines in rat brain with focal cerebral ischemia after grafting with bone marrow stromal cells and endothelial progenitor cells. Cytotherapy 13(1):46–53. https://doi.org/10.3109/14653249.2010.510505

    Article  CAS  PubMed  Google Scholar 

  31. Shichinohe H, Ishihara T, Takahashi K, Tanaka Y, Miyamoto M, Yamauchi T, Saito H, Takemoto H et al (2015) Bone marrow stromal cells rescue ischemic brain by trophic effects and phenotypic change toward neural cells. Neurorehabil Neural Repair 29(1):80–89. https://doi.org/10.1177/1545968314525856

    Article  PubMed  Google Scholar 

  32. Ikegame Y, Yamashita K, Hayashi S, Mizuno H, Tawada M, You F, Yamada K, Tanaka Y et al (2011) Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy 13(6):675–685. https://doi.org/10.3109/14653249.2010.549122

    Article  CAS  PubMed  Google Scholar 

  33. Xiao Y, Geng F, Wang G, Li X, Zhu J, Zhu W (2018) Bone marrow-derived mesenchymal stem cells-derived exosomes prevent oligodendrocyte apoptosis through exosomal miR-134 by targeting caspase-8. J Cell Biochem. https://doi.org/10.1002/jcb.27519

    Article  PubMed  PubMed Central  Google Scholar 

  34. Safakheil M, Safakheil H (2020) The effect of exosomes derived from bone marrow stem cells in combination with rosuvastatin on functional recovery and neuroprotection in rats after ischemic stroke. J Mol Neurosci 70(5):724–737. https://doi.org/10.1007/s12031-020-01483-1

    Article  CAS  PubMed  Google Scholar 

  35. Zeng Q, Zhou Y, Liang D, He H, Liu X, Zhu R, Zhang M, Luo X et al (2020) Exosomes secreted from bone marrow mesenchymal stem cells attenuate oxygen-glucose deprivation/reoxygenation-induced pyroptosis in PC12 cells by promoting AMPK-dependent autophagic flux. Front Cell Neurosci 14:182. https://doi.org/10.3389/fncel.2020.00182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Deng Y, Chen D, Gao F, Lv H, Zhang G, Sun X, Liu L, Mo D et al (2019) Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J Biol Eng 13:71. https://doi.org/10.1186/s13036-019-0193-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu X, Zhuang C, Chen L (2020) Exosomal long non-coding RNA expression from serum of patients with acute minor stroke. Neuropsychiatr Dis Treat 16:153–160. https://doi.org/10.2147/NDT.S230332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang H, Xi X, Zhao B, Su Z, Wang Z (2018) KLF4 protects brain microvascular endothelial cells from ischemic stroke induced apoptosis by transcriptionally activating MALAT1. Biochem Biophys Res Commun 495(3):2376–2382. https://doi.org/10.1016/j.bbrc.2017.11.205

    Article  CAS  PubMed  Google Scholar 

  39. Zhu S, Tai C, MacVicar BA, Jia W, Cynader MS (2009) Glutamatergic stimulation triggers rapid Krupple-like factor 4 expression in neurons and the overexpression of KLF4 sensitizes neurons to NMDA-induced caspase-3 activity. Brain Res 1250:49–62. https://doi.org/10.1016/j.brainres.2008.11.013

    Article  CAS  PubMed  Google Scholar 

  40. Jang C, Arany Z (2015) Mitochondria cripple without Kruppel. Trends Endocrinol Metab 26(11):587–589. https://doi.org/10.1016/j.tem.2015.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wen M, Ye J, Han Y, Huang L, Yang H, Jiang W, Chen S, Zhong W et al (2018) Hypertonic saline regulates microglial M2 polarization via miR-200b/KLF4 in cerebral edema treatment. Biochem Biophys Res Commun 499(2):345–353. https://doi.org/10.1016/j.bbrc.2018.03.161

    Article  CAS  PubMed  Google Scholar 

  42. Liu C, Yang J, Zhang C, Liu M, Geng X, Ji X, Du H, Zhao H (2018) Analysis of long non-coding RNA expression profiles following focal cerebral ischemia in mice. Neurosci Lett 665:123–129. https://doi.org/10.1016/j.neulet.2017.11.058

    Article  CAS  PubMed  Google Scholar 

  43. Shen B, Wang L, Xu Y, Wang H, He S (2021) Long non-coding RNA ZFAS1 exerts a protective role to alleviate oxygen and glucose deprivation-mediated injury in ischemic stroke cell model through targeting miR-186-5p/MCL1 axis. Cytotechnology 73(4):605–617. https://doi.org/10.1007/s10616-021-00481-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chokkalla AK, Mehta SL, Kim T, Chelluboina B, Kim J, Vemuganti R (2019) Transient focal ischemia significantly alters the m(6)A epitranscriptomic tagging of RNAs in the brain. Stroke 50(10):2912–2921. https://doi.org/10.1161/STROKEAHA.119.026433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gan H, Hong L, Yang F, Liu D, Jin L, Zheng Q (2019) Progress in epigenetic modification of mRNA and the function of m6A modification. Sheng Wu Gong Cheng Xue Bao 35(5):775–783. https://doi.org/10.13345/j.cjb.180416

    Article  CAS  PubMed  Google Scholar 

  46. Zhuang M, Li X, Zhu J, Zhang J, Niu F, Liang F, Chen M, Li D et al (2019) The m6A reader YTHDF1 regulates axon guidance through translational control of Robo3.1 expression. Nucleic Acids Res 47(9):4765–4777. https://doi.org/10.1093/nar/gkz157

  47. Chen J, Zhang YC, Huang C, Shen H, Sun B, Cheng X, Zhang YJ, Yang YG et al (2019) m(6)A Regulates neurogenesis and neuronal development by modulating histone methyltransferase Ezh2. Genomics Proteomics Bioinformatics 17(2):154–168. https://doi.org/10.1016/j.gpb.2018.12.007

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yi D, Wang Q, Zhao Y, Song Y, You H, Wang J, Liu R, Shi Z et al (2021) Alteration of N (6) -methyladenosine mRNA methylation in a rat model of cerebral ischemia-reperfusion injury. Front Neurosci 15:605654. https://doi.org/10.3389/fnins.2021.605654

  49. Rajecka V, Skalicky T, Vanacova S (2019) The role of RNA adenosine demethylases in the control of gene expression. Biochim Biophys Acta Gene Regul Mech 1862 3:343–355. https://doi.org/10.1016/j.bbagrm.2018.12.001

    Article  CAS  Google Scholar 

  50. Xu K, Mo Y, Li D, Yu Q, Wang L, Lin F, Kong C, Balelang MF et al (2020) N(6)-methyladenosine demethylases Alkbh5/Fto regulate cerebral ischemia-reperfusion injury. Ther Adv Chronic Dis 11:2040622320916024. https://doi.org/10.1177/2040622320916024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mathiyalagan P, Adamiak M, Mayourian J, Sassi Y, Liang Y, Agarwal N, Jha D, Zhang S et al (2019) FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair. Circulation 139(4):518–532. https://doi.org/10.1161/CIRCULATIONAHA.118.033794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li XD, Wang MJ, Zheng JL, Wu YH, Wang X, Jiang XB (2021) Long noncoding RNA just proximal to X-inactive specific transcript facilitates aerobic glycolysis and temozolomide chemoresistance by promoting stability of PDK1 mRNA in an m6A-dependent manner in glioblastoma multiforme cells. Cancer Sci 112(11):4543–4552. https://doi.org/10.1111/cas.15072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Qin B, Dong M, Wang Z, Wan J, Xie Y, Jiao Y, Yan D (2021) Long noncoding RNA CASC15 facilitates esophageal squamous cell carcinoma tumorigenesis via decreasing SIM2 stability via FTOmediated demethylation. Oncol Rep 45(3):1059–1071. https://doi.org/10.3892/or.2020.7917

    Article  CAS  PubMed  Google Scholar 

  54. Wu Q, Luo CL, Tao LY (2017) Dynamin-related protein 1 (Drp1) mediating mitophagy contributes to the pathophysiology of nervous system diseases and brain injury. Histol Histopathol 32(6):551–559. https://doi.org/10.14670/HH-11-841

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere gratitude to the reviewers for their constructive comments.

Funding

This work was supported by the National Natural Science Foundation of China, “Study on Long Noncoding RNA Regulating the Differentiation Direction of Neural Stem Cells” (project number: 81760234).

Author information

Authors and Affiliations

Authors

Contributions

Qing-Song Wang: conceptualization, writing—original draft preparation, investigation, validation, visualization, and methodology. Rong-Jun Xiao: methodology and data curation. Jun Peng: software. Zheng-Tao Yu: data curation. Jun-Qi Fu: software. Ying Xia: conceptualization, writing—original draft preparation, supervision, and writing—reviewing and editing.

Corresponding author

Correspondence to Ying Xia.

Ethics declarations

Ethics Approval and Consent to Participate

All animal experiments were approved by the biomedical ethics committee of Haikou People’s Hospital.

Consent for Publication

The informed consent obtained from study participants.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Figure 1.

The function of exosomal KLF4 and lncRNA-ZFAS1 on the oxidative stress, mitochondrial injuries and apoptosis of primary cultured neurons. (A) The expression of KLF4 in primary cultured neurons co-treated with OGD/R and different concentration of exosomes was measured by Western blotting. (B) The viability of primary cultured neurons was analyzed by MTT assay after transfecting with Exo-shKLF4 or co-transfecting with Exo-shKLF4 and ZFAS1 overexpressing vector. (C-E) ELISA kits were performed to detect the levels of ROS, MDA and GSH-Px in primary cultured neurons transfected with Exo-shKLF4 or co-transfected with Exo-shKLF4 and ZFAS1 overexpressing vector. (F) The changes of MMP in OGD/R primary cultured neurons transfected with Exo-shKLF4 or co-transfected with Exo-shKLF4 and ZFAS1 overexpressing vector were assessed by JC-1 assay. (G and H) The apoptosis of OGD/R primary cultured neurons transfected with Exo-shKLF4 or co-transfected with Exo-shKLF4 and ZFAS1 overexpressing vector and the expression of apoptosis-related proteins were measured by flow cytometry and Western blotting. * p<0.05, ** p<0.01, *** p<0.001. (PNG 1422 kb)

High resolution image (TIF 69342 kb)

Supplementary Figure 2.

The effect of exosomal KLF4 and lncRNA-ZFAS1 axis on FTO expression and the balance of mitochondrial dynamics in primary cultured neurons. (A-D) Relative expression of Drp1, Fis1, OPA1 and Mfn1 in primary cultured neurons transfected with Exo-shKLF4 or co-transfected with Exo-shKLF4 and ZFAS1 overexpressing vector was measured by qRT-PCR. (E and F) The expression of FTO at mRNA and protein levels in primary cultured neurons transfected with Exo-shKLF4 or co-transfected with Exo-shKLF4 and ZFAS1 overexpressing vector was evaluated by qRT-PCR and Western blotting. * p<0.05, ** p<0.01, *** p<0.001. (PNG 405 kb)

High resolution image (TIF 3011 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, QS., Xiao, RJ., Peng, J. et al. Bone Marrow Mesenchymal Stem Cell-Derived Exosomal KLF4 Alleviated Ischemic Stroke Through Inhibiting N6-Methyladenosine Modification Level of Drp1 by Targeting lncRNA-ZFAS1. Mol Neurobiol 60, 3945–3962 (2023). https://doi.org/10.1007/s12035-023-03301-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03301-2

Keywords

Navigation