Skip to main content

Advertisement

Log in

Roles of Histone Acetyltransferases and Deacetylases in the Retinal Development and Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The critical role of epigenetic modification of histones in maintaining the normal function of the nervous system has attracted increasing attention. Among these modifications, the level of histone acetylation, modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is essential in regulating gene expression. In recent years, the research progress on the function of HDACs in retinal development and disease has advanced remarkably, while that regarding HATs remains to be investigated. Here, we overview the roles of HATs and HDACs in regulating the development of diverse retinal cells, including retinal progenitor cells, photoreceptor cells, bipolar cells, ganglion cells, and Müller glial cells. The effects of HATs and HDACs on the progression of various retinal diseases are also discussed with the highlight of the proof-of-concept research regarding the application of available HDAC inhibitors in treating retinal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Chen X, Wang S, Xu H, Pereira JD, Hatzistergos KE, Saur D, Seidler B, Hare JM, Perrella MA, Yin ZQ, Liu X (2017) Evidence for a retinal progenitor cell in the postnatal and adult mouse. Stem Cell Res 23:20–32

    PubMed  PubMed Central  Google Scholar 

  2. Iwagawa T, Watanabe S (2019) Molecular mechanisms of H3K27me3 and H3K4me3 in retinal development. Neurosci Res 138:43–48

    CAS  PubMed  Google Scholar 

  3. Masland RH (2012) The neuronal organization of the retina. Neuron 76(2):266–280

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Danjo Y, Shinozaki Y, Natsubori A, Kubota Y, Kashiwagi K, Tanaka KF, Koizumi S (2022) The Mlc1 promoter directs Muller cell-specific gene expression in the retina. Transl Vis Sci Technol 11(1):25

    PubMed  PubMed Central  Google Scholar 

  5. Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A (2022) Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 91:101093

    CAS  PubMed  PubMed Central  Google Scholar 

  6. O'Hara-Wright M, Gonzalez-Cordero A (2020) Retinal organoids: a window into human retinal development. Development 147(24)

  7. Bassett EA, Wallace VA (2012) Cell fate determination in the vertebrate retina. Trends Neurosci 35(9):565–573

    CAS  PubMed  Google Scholar 

  8. Aldiri I, Xu B, Wang L, Chen X, Hiler D, Griffiths L, Valentine M, Shirinifard A, Thiagarajan S, Sablauer A, Barabas ME, Zhang J, Johnson D, Frase S, Zhou X, Easton J, Zhang J, Mardis ER, Wilson RK et al (2017) The dynamic epigenetic landscape of the retina during development, reprogramming, and tumorigenesis. Neuron 94(3):550–568.e10

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Basinski BW, Balikov DA, Aksu M, Li Q, Rao RC (2021) Ubiquitous chromatin modifiers in congenital retinal diseases: implications for disease modeling and regenerative medicine. Trends Mol Med 27(4):365–378

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu MS, Li XJ, Liu CY, Xu Q, Huang JQ, Gu S, Chen JX (2022) Effects of histone modification in major depressive disorder. Curr Neuropharmacol 20(7):1261–1277

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20(3):259–266

    CAS  PubMed  Google Scholar 

  12. Berner AK, Kleinman ME (2016) Therapeutic approaches to histone reprogramming in retinal degeneration. Adv Exp Med Biol 854:39–44

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yu D, Tang Q, Liu L, He D, Wang L, Zhou X (2022) HDAC3 Inhibition alleviates high-glucose-induced retinal ganglion cell death through inhibiting inflammasome activation. Biomed Res Int 2022:4164824

    PubMed  PubMed Central  Google Scholar 

  14. Zhang X, Zhang BW, Xiang L, Wu H, Alexander SUPITAS, Zhou P, Dai MZY, Wang X, Xiong W, Zhang Y, Jin ZB, Deng LW (2022) MLL5 is involved in retinal photoreceptor maturation through facilitating CRX-mediated photoreceptor gene transactivation. iScience 25(4):104058

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gupta S, Sharma P, Chaudhary M, Premraj S, Kaur S, Vijayan V, Arun MG, Prasad NG, Ramachandran R (2023) Pten associates with important gene regulatory network to fine-tune Muller glia-mediated zebrafish retina regeneration. Glia 71:259–283

    CAS  PubMed  Google Scholar 

  16. Barnes CE, English DM, Cowley SM (2019) Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription. Essays Biochem 63(1):97–107. https://doi.org/10.1042/EBC20180061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shvedunova M, Akhtar A (2022) Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol 23(5):329–349

    CAS  PubMed  Google Scholar 

  18. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang XJ, Gregoire S (2005) Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol 25(8):2873–2884

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Park SY, Kim JS (2020) A short guide to histone deacetylases including recent progress on class II enzymes. Exp Mol Med 52(2):204–212

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schlüter A, Aksan B, Fioravanti R, Valente S, Mai A, Mauceri D (2019) Histone deacetylases contribute to excitotoxicity-triggered degeneration of retinal ganglion cells in vivo. Mol Neurobiol 56(12):8018–8034

    PubMed  Google Scholar 

  22. Anderson KW, Chen J, Wang M, Mast N, Pikuleva IA, Turko IV (2015) Quantification of histone deacetylase isoforms in human frontal cortex, human retina, and mouse brain. PLoS One 10(5):e0126592

    PubMed  PubMed Central  Google Scholar 

  23. Zaidi SAH, Thakore N, Singh S, Guzman W, Mehrotra S, Gangaraju V, Husain S (2020) Histone deacetylases regulation by delta-opioids in human optic nerve head astrocytes. Invest Ophthalmol Vis Sci 61(11):17

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiao W, Chen X, Liu X, Luo L, Ye S, Liu Y (2014) Trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and epithelial-mesenchymal transition in retinal pigment epithelium cells. J Cell Mol Med 18(4):646–655

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chuang DM, Leng Y, Marinova Z, Kim HJ, Chiu CT (2009) Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci 32(11):591–601

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401(6749):188–193

    CAS  PubMed  Google Scholar 

  27. Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    CAS  PubMed  Google Scholar 

  28. Martin BJE, Brind’Amour J, Kuzmin A, Jensen KN, Liu ZC, Lorincz M, Howe LAJ (2021) Transcription shapes genome-wide histone acetylation patterns. Nature. Communications 12(1)

  29. Yamaguchi M, Tonou-Fujimori N, Komori A, Maeda R, Nojima Y, Li H, Okamoto H, Masai I (2005) Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. Development 132(13):3027–3043

    CAS  PubMed  Google Scholar 

  30. Mitra S, Sharma P, Kaur S, Khursheed MA, Gupta S, Chaudhary M, Kurup AJ, Ramachandran R (2019) Dual regulation of lin28a by Myc is necessary during zebrafish retina regeneration. J Cell Biol 218(2):489–507

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Popova EY, Imamura Kawasawa Y, Zhang SSM, Barnstable CJ (2021) Inhibition of epigenetic modifiers LSD1 and HDAC1 blocks rod photoreceptor death in mouse models of retinitis pigmentosa. J Neurosci 41(31):6775–6792

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mitra S, Sharma P, Kaur S, Khursheed MA, Gupta S, Ahuja R, Kurup AJ, Chaudhary M, Ramachandran R (2018) Histone deacetylase-mediated Muller glia reprogramming through Her4.1-Lin28a axis is essential for retina regeneration in zebrafish. iScience 7:68–84

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ye F, Chen Y, Hoang TN, Montgomery RL, Zhao XH, Bu H, Hu T, Taketo MM, van Es JH, Clevers H, Hsieh J, Bassel-Duby R, Olson EN, Lu QR (2009) HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci 12(7):829–838

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lebrun-Julien F, Suter U (2015) Combined HDAC1 and HDAC2 depletion promotes retinal ganglion cell survival after injury through reduction of p53 target gene expression. ASN Neuro 7(3)

  35. Xue H, Liu J, Shi L, Yang H (2020) Overexpressed microRNA-539-5p inhibits inflammatory response of neurons to impede the progression of cerebral ischemic injury by histone deacetylase 1. Am J Physiol Cell Physiol 319(2):C381–C391

    CAS  PubMed  Google Scholar 

  36. Marinova Z, Ren M, Wendland JR, Leng Y, Liang MH, Yasuda S, Leeds P, Chuang DM (2009) Valproic acid induces functional heat-shock protein 70 via class I histone deacetylase inhibition in cortical neurons: a potential role of Sp1 acetylation. J Neurochem 111(4):976–987

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Du W, Wang N, Li F, Jia K, An J, Liu Y, Wang Y, Zhu L, Zhao S, Hao J (2019) STAT3 phosphorylation mediates high glucose-impaired cell autophagy in an HDAC1-dependent and -independent manner in Schwann cells of diabetic peripheral neuropathy. FASEB J 33(7):8008–8021

    CAS  PubMed  Google Scholar 

  38. Pita-Thomas W, Mahar M, Joshi A, Gan D, Cavalli V (2019) HDAC5 promotes optic nerve regeneration by activating the mTOR pathway. Exp Neurol 317:271–283

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shi L, Tian Z, Fu Q, Li H, Zhang L, Tian L, Mi W (2020) miR-217-regulated MEF2D-HDAC5/ND6 signaling pathway participates in the oxidative stress and inflammatory response after cerebral ischemia. Brain Res 1739:146835

    CAS  PubMed  Google Scholar 

  40. Cai X, Li J, Wang M, She M, Tang Y, Li J, Li H, Hui H (2017) GLP-1 Treatment improves diabetic retinopathy by alleviating autophagy through GLP-1R-ERK1/2-HDAC6 signaling pathway. Int J Med Sci 14(12):1203–1212

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Finsterwald C, Carrard A, Martin JL (2013) Role of salt-inducible kinase 1 in the activation of MEF2-dependent transcription by BDNF. PLoS One 8(1):e54545

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakagawa Y, Kuwahara K, Harada M, Takahashi N, Yasuno S, Adachi Y, Kawakami R, Nakanishi M, Tanimoto K, Usami S, Kinoshita H, Saito Y, Nakao K (2006) Class II HDACs mediate CaMK-dependent signaling to NRSF in ventricular myocytes. J Mol Cell Cardiol 41(6):1010–1022

    CAS  PubMed  Google Scholar 

  43. Yu M, Zhang L, Sun S, Zhang Z (2021) Gliquidone improves retinal injury to relieve diabetic retinopathy via regulation of SIRT1/Notch1 pathway. BMC Ophthalmol 21(1):451

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang TH, Huang CM, Gao X, Wang JW, Hao LL, Ji Q (2018) Gastrodin inhibits high glucose-induced human retinal endothelial cell apoptosis by regulating the SIRT1/TLR4/NFkappaBp65 signaling pathway. Mol Med Rep 17(6):7774–7780

    CAS  PubMed  Google Scholar 

  45. Tong P, Peng QH, Gu LM, Xie WW, Li WJ (2019) LncRNA-MEG3 alleviates high glucose induced inflammation and apoptosis of retina epithelial cells via regulating miR-34a/SIRT1 axis. Exp Mol Pathol 107:102–109

    CAS  PubMed  Google Scholar 

  46. Zheng Z, Chen H, Li J, Li T, Zheng B, Zheng Y, Jin H, He Y, Gu Q, Xu X (2012) Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin. Diabetes 61(1):217–228

    CAS  PubMed  Google Scholar 

  47. Wu Y, Pang Y, Wei W, Shao A, Deng C, Li X, Chang H, Hu P, Liu X, Zhang X (2020) Resveratrol protects retinal ganglion cell axons through regulation of the SIRT1-JNK pathway. Exp Eye Res 200:108249

    CAS  PubMed  Google Scholar 

  48. Zhang M, Jiang N, Chu Y, Postnikova O, Varghese R, Horvath A, Cheema AK, Golestaneh N (2020) Dysregulated metabolic pathways in age-related macular degeneration. Sci Rep 10(1):2464

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chou WW, Chen KC, Wang YS, Wang JY, Liang CL, Juo SHH (2013) The role of SIRT1/AKT/ERK pathway in ultraviolet B induced damage on human retinal pigment epithelial cells. Toxicol In Vitro 27(6):1728–1736

    CAS  PubMed  Google Scholar 

  50. Dudakovic A, Camilleri ET, Lewallen EA, McGee-Lawrence ME, Riester SM, Kakar S, Montecino M, Stein GS, Ryoo HM, Dietz AB, Westendorf JJ, van Wijnen AJ (2015) Histone deacetylase inhibition destabilizes the multi-potent state of uncommitted adipose-derived mesenchymal stromal cells. J Cell Physiol 230(1):52–62

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhao M, Tao Y, Peng GH (2020) The role of histone acetyltransferases and histone deacetylases in photoreceptor differentiation and degeneration. Int J Med Sci 17(10):1307–1314

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Remez LA, Onishi A, Menuchin-Lasowski Y, Biran A, Blackshaw S, Wahlin KJ, Zack DJ, Ashery-Padan R (2017) Pax6 is essential for the generation of late-born retinal neurons and for inhibition of photoreceptor-fate during late stages of retinogenesis. Dev Biol 432(1):140–150

    CAS  PubMed  Google Scholar 

  53. Saha A, Tiwari S, Dharmarajan S, Otteson DC, Belecky-Adams TL (2018) Class I histone deacetylases in retinal progenitors and differentiating ganglion cells. Gene Expr Patterns 30:37–48

    CAS  PubMed  Google Scholar 

  54. Ferreira RC, Popova EY, James J, Briones MRS, Zhang SS, Barnstable CJ (2017) Histone deacetylase 1 is essential for rod photoreceptor differentiation by regulating acetylation at histone H3 lysine 9 and histone H4 lysine 12 in the mouse retina. J Biol Chem 292(6):2422–2440

    CAS  PubMed  Google Scholar 

  55. Albadri S, Naso F, Thauvin M, Gauron C, Parolin C, Duroure K, Vougny J, Fiori J, Boga C, Vriz S, Calonghi N, del Bene F (2019) Redox signaling via lipid peroxidation regulates retinal progenitor cell differentiation. Dev Cell 50(1):73–89.e6

    CAS  PubMed  Google Scholar 

  56. Zhao X, Shan Q, Xue HH (2022) TCF1 in T cell immunity: a broadened frontier. Nat Rev Immunol 22(3):147–157

    CAS  PubMed  Google Scholar 

  57. Chen J, Zhao KN, Vitetta L (2019) Effects of intestinal microbial(-)elaborated butyrate on oncogenic signaling pathways. Nutrients 11(5)

  58. Klimova L, Kozmik Z (2014) Stage-dependent requirement of neuroretinal Pax6 for lens and retina development. Development 141(6):1292–1302

    CAS  PubMed  Google Scholar 

  59. Thomas T, Loveland KL, Voss AK (2007) The genes coding for the MYST family histone acetyltransferases, Tip60 and Mof, are expressed at high levels during sperm development. Gene Expression Patterns 7(6):657–665

    CAS  PubMed  Google Scholar 

  60. Kim CH, Kim JW, Jang SM, An JH, Song KH, Choi KH (2012) Transcriptional activity of paired homeobox Pax6 is enhanced by histone acetyltransferase Tip60 during mouse retina development. Biochem Biophys Res Commun 424(3):427–432

    CAS  PubMed  Google Scholar 

  61. Kim C-H, An MJ, Kim DH, Kim JW (2017) Histone deacetylase 1 (HDAC1) regulates retinal development through a PAX6-dependent pathway. Biochem Biophys Res Commun 482(4):735–741

    CAS  PubMed  Google Scholar 

  62. Chen B, Cepko CL (2007) Requirement of histone deacetylase activity for the expression of critical photoreceptor genes. BMC Dev Biol 7:78

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim J-W, Jang SM, Kim CH, An JH, Choi KH (2012) Transcriptional activity of neural retina leucine zipper (Nrl) is regulated by c-Jun N-terminal kinase and Tip60 during retina development. Mol Cell Biol 32(9):1720–1732

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Peng GH, Chen S (2007) Crx activates opsin transcription by recruiting HAT-containing co-activators and promoting histone acetylation. Hum Mol Genet 16(20):2433–2452

    CAS  PubMed  Google Scholar 

  65. Solovei I, Kreysing M, Lanctôt C, Kösem S, Peichl L, Cremer T, Guck J, Joffe B (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137(2):356–368

    CAS  PubMed  Google Scholar 

  66. Hennig AK, Peng GH, Chen S (2013) Transcription coactivators p300 and CBP are necessary for photoreceptor-specific chromatin organization and gene expression. PLoS One 8(7):e69721

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Voyvodic JT, Burne JF, Raff MC (1995) Quantification of normal cell death in the rat retina: implications for clone composition in cell lineage analysis. Eur J Neurosci 7(12):2469–2478

    CAS  PubMed  Google Scholar 

  68. Chen B, Cepko CL (2009) HDAC4 regulates neuronal survival in normal and diseased retinas. Science 323(5911):256–259

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gaub P, Joshi Y, Wuttke A, Naumann U, Schnichels S, Heiduschka P, di Giovanni S (2011) The histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain 134(7):2134–2148

    PubMed  Google Scholar 

  70. Schwechter B, Millet LE, Levin LA (2007) Histone deacetylase inhibition-mediated differentiation of RGC-5 cells and interaction with survival. Invest Ophthalmol Vis Sci 48(6):2845–2857

    PubMed  Google Scholar 

  71. Biermann J, Boyle J, Pielen A, Lagrèze WA (2011) Histone deacetylase inhibitors sodium butyrate and valproic acid delay spontaneous cell death in purified rat retinal ganglion cells. Mol Vis 17:395–403

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Narita T, Weinert BT, Choudhary C (2019) Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol 20(3):156–174

    CAS  PubMed  Google Scholar 

  73. Choi HK, Choi Y, Kang HB, Lim EJ, Park SY, Lee HS, Park JM, Moon J, Kim YJ, Choi I, Joe EH, Choi KC, Yoon HG (2015) PINK1 positively regulates HDAC3 to suppress dopaminergic neuronal cell death. Hum Mol Genet 24(4):1127–1141

    CAS  PubMed  Google Scholar 

  74. Demyanenko S, Sharifulina S (2021) The role of post-translational acetylation and deacetylation of signaling proteins and transcription factors after cerebral ischemia: facts and hypotheses. Int J Mol Sci 22(15)

  75. Bringmann A, Pannicke T, Biedermann B, Francke M, Iandiev I, Grosche J, Wiedemann P, Albrecht J, Reichenbach A (2009) Role of retinal glial cells in neurotransmitter uptake and metabolism. Neurochem Int 54(3-4):143–160

    CAS  PubMed  Google Scholar 

  76. Bringmann A, Wiedemann P (2012) Muller glial cells in retinal disease. Ophthalmologica 227(1):1–19

    PubMed  Google Scholar 

  77. Yang Q, Zhou Y, Sun Y, Luo Y, Shen Y, Shao A (2020) Will sirtuins be promising therapeutic targets for TBI and associated neurodegenerative diseases? Front Neurosci 14:791

    PubMed  PubMed Central  Google Scholar 

  78. Wei W, Hu P, Qin M, Chen G, Wang F, Yao S, Jin M, Xie Z, Zhang X (2022) SIRT4 is highly expressed in retinal Muller glial cells. Front Neurosci 16:840443

    PubMed  PubMed Central  Google Scholar 

  79. Jorstad N, Wilken MS, Grimes WN, Wohl SG, VandenBosch LS, Yoshimatsu T, Wong RO, Rieke F, Reh TA (2017) Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature 548(7665):103–107

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Johnson J, Tian N, Caywood MS, Reimer RJ, Edwards RH, Copenhagen DR (2003) Vesicular neurotransmitter transporter expression in developing postnatal rodent retina: GABA and glycine precede glutamate. J Neurosci 23(2):518–529

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ramírez M, Hernández-Montoya J, Sánchez-Serrano SL, Ordaz B, Ferraro S, Quintero H, Peña-Ortega F, Lamas M (2012) GABA-mediated induction of early neuronal markers expression in postnatal rat progenitor cells in culture. Neuroscience 224:210–222

    PubMed  Google Scholar 

  82. Hatakeyama D, Sunada H, Totani Y, Watanabe T, Felletár I, Fitchett A, Eravci M, Anagnostopoulou A, Miki R, Okada A, Abe N, Kuzuhara T, Kemenes I, Ito E, Kemenes G (2022) Molecular and functional characterization of an evolutionarily conserved CREB-binding protein in the Lymnaea CNS. FASEB J 36(11):e22593

    CAS  PubMed  Google Scholar 

  83. Campa C, Costagliola C, Incorvaia C, Sheridan C, Semeraro F, de Nadai K, Sebastiani A, Parmeggiani F (2010) Inflammatory mediators and angiogenic factors in choroidal neovascularization: pathogenetic interactions and therapeutic implications. Mediators Inflamm 2010:1–14

    Google Scholar 

  84. Ishida T, Yoshida T, Shinohara K, Cao K, Nakahama KI, Morita I, Ohno-Matsui K (2017) Potential role of sirtuin 1 in Muller glial cells in mice choroidal neovascularization. PLoS One 12(9):e0183775

    PubMed  PubMed Central  Google Scholar 

  85. Zia A, Sahebdel F, Farkhondeh T, Ashrafizadeh M, Zarrabi A, Hushmandi K, Samarghandian S (2021) A review study on the modulation of SIRT1 expression by miRNAs in aging and age-associated diseases. Int J Biol Macromol 188:52–61

    CAS  PubMed  Google Scholar 

  86. Mimura T, Kaji Y, Noma H, Funatsu H, Okamoto S (2013) The role of SIRT1 in ocular aging. Exp Eye Res 116:17–26

    CAS  PubMed  Google Scholar 

  87. Warfvinge K, Kamme C, Englund U, Wictorin K (2001) Retinal integration of grafts of brain-derived precursor cell lines implanted subretinally into adult, normal rats. Exp Neurol 169(1):1–12

    CAS  PubMed  Google Scholar 

  88. Peng CH, Chang YL, Kao CL, Tseng LM, Wu CC, Chen YC, Tsai CY, Woung LC, Liu JH, Chiou SH, Chen SJ (2010) SirT1—a sensor for monitoring self-renewal and aging process in retinal stem cells. Sensors (Basel) 10(6):6172–6194

    CAS  PubMed  Google Scholar 

  89. Ozawa Y, Kubota S, Narimatsu T, Yuki K, Koto T, Sasaki M, Tsubota K (2010) Retinal aging and sirtuins. Ophthalmic Res 44(3):199–203

    CAS  PubMed  Google Scholar 

  90. Satoh A, Stein L, Imai S (2011) The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity. Handb Exp Pharmacol 206:125–162

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ban N, Ozawa Y, Inaba T, Miyake S, Watanabe M, Shinmura K, Tsubota K (2013) Light-dark condition regulates sirtuin mRNA levels in the retina. Exp Gerontol 48(11):1212–1217

    CAS  PubMed  Google Scholar 

  92. Zhong L, D'Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T, Clish CB, Vaitheesvaran B, Iliopoulos O, Kurland I, Dor Y, Weissleder R, Shirihai OS, Ellisen LW, Espinosa JM, Mostoslavsky R (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140(2):280–293

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Silberman DM, Ross K, Sande PH, Kubota S, Ramaswamy S, Apte RS, Mostoslavsky R (2014) SIRT6 is required for normal retinal function. PLoS One 9(6):e98831

    PubMed  PubMed Central  Google Scholar 

  94. Feng Y, Liang J, Zhai Y, Sun J, Wang J, She X, Gu Q, Liu Y, Zhu H, Luo X, Sun X (2018) Autophagy activated by SIRT6 regulates Abeta induced inflammatory response in RPEs. Biochem Biophys Res Commun 496(4):1148–1154

    CAS  PubMed  Google Scholar 

  95. Leus NG, Zwinderman MR, Dekker FJ (2016) Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-kappaB-mediated inflammation. Curr Opin Chem Biol 33:160–168

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Li P, Ge J, Li H (2020) Lysine acetyltransferases and lysine deacetylases as targets for cardiovascular disease. Nat Rev Cardiol 17(2):96–115

    CAS  PubMed  Google Scholar 

  97. Nishino TG, Miyazaki M, Hoshino H, Miwa Y, Horinouchi S, Yoshida M (2008) 14-3-3 regulates the nuclear import of class IIa histone deacetylases. Biochem Biophys Res Commun 377(3):852–856

    CAS  PubMed  Google Scholar 

  98. Iaconelli J, Lalonde J, Watmuff B, Liu B, Mazitschek R, Haggarty SJ, Karmacharya R (2017) Lysine deacetylation by HDAC6 regulates the kinase activity of AKT in human neural progenitor cells. ACS Chem Biol 12(8):2139–2148

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Corso-Díaz X, Jaeger C, Chaitankar V, Swaroop A (2018) Epigenetic control of gene regulation during development and disease: a view from the retina. Prog Retin Eye Res 65:1–27

    PubMed  PubMed Central  Google Scholar 

  100. Sancho-Pelluz J, Alavi MV, Sahaboglu A, Kustermann S, Farinelli P, Azadi S, van Veen T, Romero FJ, Paquet-Durand F, Ekström P (2010) Excessive HDAC activation is critical for neurodegeneration in the rd1 mouse. Cell Death Dis 1:e24

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Botto C, Rucli M, Tekinsoy MD, Pulman J, Sahel JA, Dalkara D (2022) Early and late stage gene therapy interventions for inherited retinal degenerations. Prog Retin Eye Res 86:100975

    CAS  PubMed  Google Scholar 

  102. Zhang Q (2016) Retinitis pigmentosa: progress and perspective. Asia Pac J Ophthalmol (Phila) 5(4):265–271

    CAS  PubMed  Google Scholar 

  103. Brunet AA, Harvey AR, Carvalho LS (2022) Primary and secondary cone cell death mechanisms in inherited retinal diseases and potential treatment options. Int J Mol Sci 23(2)

  104. Trifunović D, Petridou E, Comitato A, Marigo V, Ueffing M, Paquet-Durand F (2018) Primary rod and cone degeneration is prevented by HDAC inhibition. Adv Exp Med Biol 1074:367–373

    PubMed  Google Scholar 

  105. Samardzija M, Corna A, Gomez-Sintes R, Jarboui MA, Armento A, Roger JE, Petridou E, Haq W, Paquet-Durand F, Zrenner E, de la Villa P, Zeck G, Grimm C, Boya P, Ueffing M, Trifunović D (2021) HDAC inhibition ameliorates cone survival in retinitis pigmentosa mice. Cell Death Differ 28(4):1317–1332

    CAS  PubMed  Google Scholar 

  106. Trifunović D, Arango-Gonzalez B, Comitato A, Barth M, del Amo E, Kulkarni M, Sahaboglu A, Hauck SM, Urtti A, Arsenijevic Y, Ueffing M, Marigo V, Paquet-Durand F (2016) HDAC inhibition in the cpfl1 mouse protects degenerating cone photoreceptors in vivo. Hum Mol Genet 25(20):4462–4472

    PubMed  Google Scholar 

  107. Koriyama Y, Sugitani K, Ogai K, Kato S (2014) Heat shock protein 70 induction by valproic acid delays photoreceptor cell death by N-methyl-N-nitrosourea in mice. J Neurochem 130(5):707–719

    CAS  PubMed  Google Scholar 

  108. Yoshida T, Ozawa Y, Suzuki K, Yuki K, Ohyama M, Akamatsu W, Matsuzaki Y, Shimmura S, Mitani K, Tsubota K, Okano H (2014) The use of induced pluripotent stem cells to reveal pathogenic gene mutations and explore treatments for retinitis pigmentosa. Mol Brain 7:45

    PubMed  PubMed Central  Google Scholar 

  109. Ozawa Y, Toda E, Homma K, Osada H, Nagai N, Tsubota K, Okano H (2022) Effects of epigenetic modification of PGC-1alpha by a chemical chaperon on mitochondria biogenesis and visual function in retinitis pigmentosa. Cells 11(9)

  110. Sundaramurthi H, Roche SL, Grice GL, Moran A, Dillion ET, Campiani G, Nathan JA, Kennedy BN (2020) Selective histone deacetylase 6 inhibitors restore cone photoreceptor vision or outer segment morphology in zebrafish and mouse models of retinal blindness. Front Cell Dev Biol 8:689

    PubMed  PubMed Central  Google Scholar 

  111. Shi K, Zhu X, Wu J, Chen Y, Zhang J, Sun X (2021) Centromere protein E as a novel biomarker and potential therapeutic target for retinoblastoma. Bioengineered 12(1):5950–5970

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Rao RC, Dou Y (2015) Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat Rev Cancer 15(6):334–346

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Duan S, Gong X, Liu X, Cui W, Chen K, Mao L, Jun S, Zhou R, Sang Y, Huang G (2019) Histone deacetylase inhibitor, AR-42, exerts antitumor effects by inducing apoptosis and cell cycle arrest in Y79 cells. J Cell Physiol 234(12):22411–22423

    CAS  PubMed  Google Scholar 

  114. Liu M, Yao B, Gui T, Guo C, Wu X, Li J, Ma L, Deng Y, Xu P, Wang Y, Yang D, Li Q, Zeng X, Li X, Hu R, Ge J, Yu Z, Chen Y, Chen B et al (2020) PRMT5-dependent transcriptional repression of c-Myc target genes promotes gastric cancer progression. Theranostics 10(10):4437–4452

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Okuyama H, Endo H, Akashika T, Kato K, Inoue M (2010) Downregulation of c-MYC protein levels contributes to cancer cell survival under dual deficiency of oxygen and glucose. Cancer Res 70(24):10213–10223

    CAS  PubMed  Google Scholar 

  116. Wang C, Tai Y, Lisanti MP, Liao DJ (2011) c-Myc induction of programmed cell death may contribute to carcinogenesis: a perspective inspired by several concepts of chemical carcinogenesis. Cancer Biol Ther 11(7):615–626

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Yu N, Chen P, Wang Q, Liang M, Qiu J, Zhou P, Yang M, Yang P, Wu Y, Han X, Ge J, Zhuang J, Yu K (2020) Histone deacetylase inhibitors differentially regulate c-Myc expression in retinoblastoma cells. Oncol Lett 19(1):460–468

    CAS  PubMed  Google Scholar 

  118. Sanford JD, Yang J, Han J, Tollini LA, Jin A, Zhang Y (2021) MDMX is essential for the regulation of p53 protein levels in the absence of a functional MDM2 C-terminal tail. BMC Mol Cell Biol 22(1):46

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kawano T, Akiyama M, Agawa-Ohta M, Mikami-Terao Y, Iwase S, Yanagisawa T, Ida H, Agata N, Yamada H (2010) Histone deacetylase inhibitors valproic acid and depsipeptide sensitize retinoblastoma cells to radiotherapy by increasing H2AX phosphorylation and p53 acetylation-phosphorylation. Int J Oncol 37(4):787–795

    CAS  PubMed  Google Scholar 

  120. Zhang Y, Wu D, Xia F, Xian H, Zhu X, Cui H, Huang Z (2016) Downregulation of HDAC9 inhibits cell proliferation and tumor formation by inducing cell cycle arrest in retinoblastoma. Biochem Biophys Res Commun 473(2):600–606

    CAS  PubMed  Google Scholar 

  121. Jin Q, He W, Chen L, Yang Y, Shi K, You Z (2018) MicroRNA-101-3p inhibits proliferation in retinoblastoma cells by targeting EZH2 and HDAC9. Exp Ther Med 16(3):1663–1670

    PubMed  PubMed Central  Google Scholar 

  122. Xu L, Li W, Shi Q, Wang M, Li H, Yang X, Zhang J (2020) MicroRNA936 inhibits the malignant phenotype of retinoblastoma by directly targeting HDAC9 and deactivating the PI3K/AKT pathway. Oncol Rep 43(2):635–645

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhu Y, Hao F (2021) Knockdown of long noncoding RNA HCP5 suppresses the malignant behavior of retinoblastoma by sponging miR36195p to target HDAC9. Int J Mol Med 47(5)

  124. Thomas CJ, Mirza RG, Gill MK (2021) Age-related macular degeneration. Med Clin North Am 105(3):473–491

    PubMed  Google Scholar 

  125. Nashine S (2021) Potential therapeutic candidates for age-related macular degeneration (AMD). Cells 10(9)

  126. Pennington KL, DeAngelis MM (2015) Epigenetic mechanisms of the aging human retina. J Exp Neurosci 9(Suppl 2):51–79

    CAS  PubMed  Google Scholar 

  127. Peng CH, Cherng JY, Chiou GY, Chen YC, Chien CH, Kao CL, Chang YL, Chien Y, Chen LK, Liu JH, Chen SJ, Chiou SH (2011) Delivery of Oct4 and SirT1 with cationic polyurethanes-short branch PEI to aged retinal pigment epithelium. Biomaterials 32(34):9077–9088

    CAS  PubMed  Google Scholar 

  128. Sharma R, Bose D, Maminishkis A, Bharti K (2020) Retinal pigment epithelium replacement therapy for age-related macular degeneration: are we there yet? Annu Rev Pharmacol Toxicol 60:553–572

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Yoshida K, Moein A, Bittner T, Ostrowitzki S, Lin H, Honigberg L, Jin JY, Quartino A (2020) Pharmacokinetics and pharmacodynamic effect of crenezumab on plasma and cerebrospinal fluid beta-amyloid in patients with mild-to-moderate Alzheimer’s disease. Alzheimers Res Ther 12(1):16

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang S, Tang YJ (2021) Sulforaphane ameliorates amyloid-beta-induced inflammatory injury by suppressing the PARP1/SIRT1 pathway in retinal pigment epithelial cells. Bioengineered 12(1):7079–7089

    CAS  PubMed  Google Scholar 

  131. Hamid MA, Moustafa MT, Nashine S, Costa RD, Schneider K, Atilano SR, Kuppermann BD, Kenney MC (2021) Anti-VEGF drugs influence epigenetic regulation and AMD-specific molecular markers in ARPE-19 cells. Cells 10(4)

  132. Nashine S, Nesburn AB, Kuppermann BD, Kenney MC (2019) Age-related macular degeneration (AMD) mitochondria modulate epigenetic mechanisms in retinal pigment epithelial cells. Exp Eye Res 189:107701

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Hsu TJ, Nepali K, Tsai CH, Imtiyaz Z, Lin FL, Hsiao G, Lai MJ, Cheng YW (2021) The HDAC/HSP90 inhibitor G570 attenuated blue light-induced cell migration in RPE cells and neovascularization in mice through decreased VEGF production. Molecules 26(14)

  134. Luu J, Kallestad L, Hoang T, Lewandowski D, Dong Z, Blackshaw S, Palczewski K (2020) Epigenetic hallmarks of age-related macular degeneration are recapitulated in a photosensitive mouse model. Hum Mol Genet 29(15):2611–2624

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Pan J, Zhao L (2021) Long non-coding RNA histone deacetylase 4 antisense RNA 1 (HDAC4-AS1) inhibits HDAC4 expression in human ARPE-19 cells with hypoxic stress. Bioengineered 12(1):2228–2237

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Wilkinson CP, Ferris FL III, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110(9):1677–1682

    CAS  PubMed  Google Scholar 

  137. Kowluru RA, Kowluru A, Mishra M, Kumar B (2015) Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 48:40–61

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Kowluru RA, Mishra M (2015) Contribution of epigenetics in diabetic retinopathy. Sci China Life Sci 58(6):556–563

    CAS  PubMed  Google Scholar 

  139. Zhong Q, Kowluru RA (2010) Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon. J Cell Biochem 110(6):1306–1313

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Taurone S, de Ponte C, Rotili D, de Santis E, Mai A, Fiorentino F, Scarpa S, Artico M, Micera A (2022) Biochemical functions and clinical characterizations of the sirtuins in diabetes-induced retinal pathologies. Int J Mol Sci 23(7)

  141. Zorrilla-Zubilete MA, Yeste A, Quintana FJ, Toiber D, Mostoslavsky R, Silberman DM (2018) Epigenetic control of early neurodegenerative events in diabetic retinopathy by the histone deacetylase SIRT6. J Neurochem 144(2):128–138

    CAS  PubMed  Google Scholar 

  142. Yang JJ, Tao H, Liu LP, Hu W, Deng ZY, Li J (2017) miR-200a controls hepatic stellate cell activation and fibrosis via SIRT1/Notch1 signal pathway. Inflamm Res 66(4):341–352

    CAS  PubMed  Google Scholar 

  143. Tu Y, Zhu M, Wang Z, Wang K, Chen L, Liu W, Shi Q, Zhao Q, Sun Y, Wang X, Song E, Liu X (2020) Melatonin inhibits Muller cell activation and pro-inflammatory cytokine production via upregulating the MEG3/miR-204/Sirt1 axis in experimental diabetic retinopathy. J Cell Physiol 235(11):8724–8735

    CAS  PubMed  Google Scholar 

  144. Tu Y, Song E, Wang Z, Ji N, Zhu L, Wang K, Sun H, Zhang Y, Zhu Q, Liu X, Zhu M (2021) Melatonin attenuates oxidative stress and inflammation of Muller cells in diabetic retinopathy via activating the Sirt1 pathway. Biomed Pharmacother 137:111274

    CAS  PubMed  Google Scholar 

  145. Picconi F, Parravano M, Sciarretta F, Fulci C, Nali M, Frontoni S, Varano M, Caccuri AM (2019) Activation of retinal Muller cells in response to glucose variability. Endocrine 65(3):542–549

    CAS  PubMed  Google Scholar 

  146. Kadiyala CS, Zheng L, Du Y, Yohannes E, Kao HY, Miyagi M, Kern TS (2012) Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC). J Biol Chem 287(31):25869–25880

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Chen E, Looman M, Laouri M, Gallagher M, van Nuys K, Lakdawalla D, Fortuny J (2010) Burden of illness of diabetic macular edema: literature review. Curr Med Res Opin 26(7):1587–1597

    CAS  PubMed  Google Scholar 

  148. Desjardins D, Liu Y, Crosson CE, Ablonczy Z (2016) Histone deacetylase inhibition restores retinal pigment epithelium function in hyperglycemia. PLoS One 11(9):e0162596

    PubMed  PubMed Central  Google Scholar 

  149. Abouhish H, Thounaojam MC, Jadeja RN, Gutsaeva DR, Powell FL, Khriza M, Martin PM, Bartoli M (2020) Inhibition of HDAC6 attenuates diabetes-induced retinal redox imbalance and microangiopathy. Antioxidants (Basel) 9(7)

  150. Che S, Wu S, Yu P (2022) Downregulated HDAC3 or up-regulated microRNA-296-5p alleviates diabetic retinopathy in a mouse model. Regen Ther 21:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang W, Wang Q, Wan D, Sun Y, Wang L, Chen H, Liu C, Petersen RB, Li J, Xue W, Zheng L, Huang K (2017) Histone HIST1H1C/H1.2 regulates autophagy in the development of diabetic retinopathy. Autophagy 13(5):941–954

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Daniel S, Meyer KJ, Clark AF, Anderson MG, McDowell CM (2019) Effect of ocular hypertension on the pattern of retinal ganglion cell subtype loss in a mouse model of early-onset glaucoma. Exp Eye Res 185:107703

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Pelzel HR, Schlamp CL, Waclawski M, Shaw MK, Nickells RW (2012) Silencing of Fem1cR3 gene expression in the DBA/2J mouse precedes retinal ganglion cell death and is associated with histone deacetylase activity. Invest Ophthalmol Vis Sci 53(3):1428–1435

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Kimura A, Guo X, Noro T, Harada C, Tanaka K, Namekata K, Harada T (2015) Valproic acid prevents retinal degeneration in a murine model of normal tension glaucoma. Neurosci Lett 588:108–113

    CAS  PubMed  Google Scholar 

  155. Sharma A, Anumanthan G, Reyes M, Chen H, Brubaker JW, Siddiqui S, Gupta S, Rieger FG, Mohan RR (2016) Epigenetic modification prevents excessive wound healing and scar formation after glaucoma filtration surgery. Invest Ophthalmol Vis Sci 57(7):3381–3389

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Guo X, Kimura A, Azuchi Y, Akiyama G, Noro T, Harada C, Namekata K, Harada T (2016) Caloric restriction promotes cell survival in a mouse model of normal tension glaucoma. Sci Rep 6:33950

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Schmitt HM, Grosser JA, Schlamp CL, Nickells RW (2020) Targeting HDAC3 in the DBA/2J spontaneous mouse model of glaucoma. Exp Eye Res 200:108244

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Siwak M, Maślankiewicz M, Nowak-Zduńczyk A, Rozpędek W, Wojtczak R, Szymanek K, Szaflik M, Szaflik J, Szaflik JP, Majsterek I (2018) The relationship between HDAC6, CXCR3, and SIRT1 genes expression levels with progression of primary open-angle glaucoma. Ophthalmic Genet 39(3):325–331

    CAS  PubMed  Google Scholar 

  159. Yang Y, Abdulatef ALSWA, Zhang LS, Jiang H, Zeng Z, Li H, Xia X (2020) Cross-talk between MYOC p. Y437H mutation and TGF-beta2 in the pathology of glaucoma. Int J Med Sci 17(8):1062–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Fujimoto T, Inoue-Mochita M, Iraha S, Tanihara H, Inoue T (2021) Suberoylanilide hydroxamic acid (SAHA) inhibits transforming growth factor-beta 2-induced increases in aqueous humor outflow resistance. J Biol Chem 297(3):101070

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Zaidi SAH, Guzman W, Singh S, Mehrotra S, Husain S (2020) Changes in class I and IIb HDACs by delta-opioid in chronic rat glaucoma model. Invest Ophthalmol Vis Sci 61(14):4

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Bermudez JY, Webber HC, Patel GC, Liu X, Cheng YQ, Clark AF, Mao W (2016) HDAC inhibitor-mediated epigenetic regulation of glaucoma-associated TGFbeta2 in the trabecular meshwork. Invest Ophthalmol Vis Sci 57(8):3698–3707

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Fuchshofer R, Tamm ER (2012) The role of TGF-beta in the pathogenesis of primary open-angle glaucoma. Cell Tissue Res 347(1):279–290

    CAS  PubMed  Google Scholar 

  164. Danford ID, Verkuil LD, Choi DJ, Collins DW, Gudiseva HV, Uyhazi KE, Lau MK, Kanu LN, Grant GR, Chavali VRM, O'Brien JM (2017) Characterizing the “POAGome”: a bioinformatics-driven approach to primary open-angle glaucoma. Prog Retin Eye Res 58:89–114

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19(1):128–139

    CAS  PubMed  Google Scholar 

  166. Dai C, Webster KA, Bhatt A, Tian H, Su G, Li W (2021) Concurrent physiological and pathological angiogenesis in retinopathy of prematurity and emerging therapies. Int J Mol Sci 22(9)

  167. Iizuka N, Morita A, Kawano C, Mori A, Sakamoto K, Kuroyama M, Ishii K, Nakahara T (2018) Anti-angiogenic effects of valproic acid in a mouse model of oxygen-induced retinopathy. J Pharmacol Sci 138(3):203–208

    CAS  PubMed  Google Scholar 

  168. Bonanni D, Citarella A, Moi D, Pinzi L, Bergamini E, Rastelli G (2022) Dual targeting strategies on histone deacetylase 6 (HDAC6) and heat shock protein 90 (Hsp90). Curr Med Chem 29(9):1474–1502

    CAS  PubMed  Google Scholar 

  169. Wang X, Wang L, Sun Y, Chen B, Xiong L, Chen J, Huang M, Wu J, Tan X, Zheng Y, Huang S, Liu Y (2020) MiR-22-3p inhibits fibrotic cataract through inactivation of HDAC6 and increase of alpha-tubulin acetylation. Cell Prolif 53(11):e12911

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Ran J, Liu M, Feng J, Li H, Ma H, Song T, Cao Y, Zhou P, Wu Y, Yang Y, Yang Y, Yu F, Guo H, Zhang L, Xie S, Li D, Gao J, Zhang X, Zhu X, Zhou J (2020) ASK1-mediated phosphorylation blocks HDAC6 ubiquitination and degradation to drive the disassembly of photoreceptor connecting cilia. Dev Cell 53(3):287–299.e5

    CAS  PubMed  Google Scholar 

  171. Ran J, Zhang Y, Zhang S, Li H, Zhang L, Li Q, Qin J, Li D, Sun L, Xie S, Zhang X, Liu L, Liu M, Zhou J (2022) Targeting the HDAC6-cilium axis ameliorates the pathological changes associated with retinopathy of prematurity. Adv Sci (Weinh) 9(21):e2105365

    PubMed  Google Scholar 

  172. Deng B, Luo Q, Halim A, Liu Q, Zhang B, Song G (2020) The antiangiogenesis role of histone deacetylase inhibitors: their potential application to tumor therapy and tissue repair. DNA Cell Biol 39(2):167–176

    CAS  PubMed  Google Scholar 

  173. Zhao K, Jiang Y, Zhang J, Shi J, Zheng P, Yang C, Chen Y (2022) Celastrol inhibits pathologic neovascularization in oxygen-induced retinopathy by targeting the miR-17-5p/HIF-1alpha/VEGF pathway. Cell Cycle 21(19):2091–2108

    CAS  PubMed  Google Scholar 

  174. Schmitt HM, Schlamp CL, Nickells RW (2016) Role of HDACs in optic nerve damage-induced nuclear atrophy of retinal ganglion cells. Neurosci Lett 625:11–15

    CAS  PubMed  Google Scholar 

  175. Biermann J, Grieshaber P, Goebel U, Martin G, Thanos S, Giovanni SD, Lagrèze WA (2010) Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells. Invest Ophthalmol Vis Sci 51(1):526–534

    PubMed  Google Scholar 

  176. Pelzel HR, Schlamp CL, Nickells RW (2010) Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis. BMC Neurosci 11:62

    PubMed  PubMed Central  Google Scholar 

  177. Zhang ZZ, Gong YY, Shi YH, Zhang W, Qin XH, Wu XW (2012) Valproate promotes survival of retinal ganglion cells in a rat model of optic nerve crush. Neuroscience 224:282–293

    CAS  PubMed  Google Scholar 

  178. Schmitt HM, Pelzel HR, Schlamp CL, Nickells RW (2014) Histone deacetylase 3 (HDAC3) plays an important role in retinal ganglion cell death after acute optic nerve injury. Mol Neurodegener 9:39

    PubMed  PubMed Central  Google Scholar 

  179. Schmitt HM, Schlamp CL, Nickells RW (2018) Targeting HDAC3 activity with RGFP966 protects against retinal ganglion cell nuclear atrophy and apoptosis after optic nerve injury. J Ocul Pharmacol Ther 34(3):260–273

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Sung MS, Moon MJ, Thomas RG, Kim SY, Lee JS, Jeong YY, Park IK, Park SW (2020) Intravitreal injection of liposomes loaded with a histone deacetylase inhibitor promotes retinal ganglion cell survival in a mouse model of optic nerve crush. Int J Mol Sci 21(23)

  181. Alsarraf O, Fan J, Dahrouj M, Chou CJ, Menick DR, Crosson CE (2014) Acetylation: a lysine modification with neuroprotective effects in ischemic retinal degeneration. Exp Eye Res 127:124–131

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Fan J, Alsarraf O, Chou CJ, Yates PW, Goodwin NC, Rice DS, Crosson CE (2016) Ischemic preconditioning, retinal neuroprotection and histone deacetylase activities. Exp Eye Res 146:269–275

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Sung MS, Heo H, Eom GH, Kim SY, Piao H, Guo Y, Park SW (2019) HDAC2 regulates glial cell activation in ischemic mouse retina. Int J Mol Sci 20(20)

  184. Crosson CE, Mani SK, Husain S, Alsarraf O, Menick DR (2010) Inhibition of histone deacetylase protects the retina from ischemic injury. Invest Ophthalmol Vis Sci 51(7):3639–3645

    PubMed  PubMed Central  Google Scholar 

  185. Zhang Z, Tong NT, Gong YY, Qiu QH, Yin LL, Lv XH, Wu XW (2011) Valproate protects the retina from endoplasmic reticulum stress-induced apoptosis after ischemia-reperfusion injury. Neurosci Lett 504(2):88–92

    CAS  PubMed  Google Scholar 

  186. Fan J, Alsarraf O, Dahrouj M, Platt KA, Chou CJ, Rice DS, Crosson CE (2013) Inhibition of HDAC2 protects the retina from ischemic injury. Invest Ophthalmol Vis Sci 54(6):4072–4080

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Mishra M, Zhong Q, Kowluru RA (2014) Epigenetic modifications of Nrf2-mediated glutamate-cysteine ligase: implications for the development of diabetic retinopathy and the metabolic memory phenomenon associated with its continued progression. Free Radic Biol Med 75:129–139

    CAS  PubMed  Google Scholar 

  188. Yuan H, Li H, Yu P, Fan Q, Zhang X, Huang W, Shen J, Cui Y, Zhou W (2018) Involvement of HDAC6 in ischaemia and reperfusion-induced rat retinal injury. BMC Ophthalmol 18(1):300

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Burke TL, Miller JL, Grant PA (2013) Direct inhibition of Gcn5 protein catalytic activity by polyglutamine-expanded ataxin-7. J Biol Chem 288(47):34266–34275

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Palhan VB, Chen S, Peng GH, Tjernberg A, Gamper AM, Fan Y, Chait BT, la Spada AR, Roeder RG (2005) Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. Proc Natl Acad Sci U S A 102(24):8472–8477

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Helmlinger D, Hardy S, Sasorith S, Klein F, Robert F, Weber C, Miguet L, Potier N, van-Dorsselaer A, Wurtz JM, Mandel JL, Tora L, Devys D (2004) Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes. Hum Mol Genet 13(12):1257–1265

    CAS  PubMed  Google Scholar 

  192. Helmlinger D, Hardy S, Abou-Sleymane G, Eberlin A, Bowman AB, Gansmüller A, Picaud S, Zoghbi HY, Trottier Y, Tora L, Devys D (2006) Glutamine-expanded ataxin-7 alters TFTC/STAGA recruitment and chromatin structure leading to photoreceptor dysfunction. PLoS Biol 4(3):e67

    PubMed  PubMed Central  Google Scholar 

  193. Chen YC, Gatchel JR, Lewis RW, Mao CA, Grant PA, Zoghbi HY, Dent SYR (2012) Gcn5 loss-of-function accelerates cerebellar and retinal degeneration in a SCA7 mouse model. Hum Mol Genet 21(2):394–405

    CAS  PubMed  Google Scholar 

  194. Kizilyaprak C, Spehner D, Devys D, Schultz P (2011) The linker histone H1C contributes to the SCA7 nuclear phenotype. Nucleus 2(5):444–454

    PubMed  Google Scholar 

  195. Kaczmarek JV, Bogan CM, Pierce JM, Tao YK, Chen SC, Liu Q, Liu X, Boyd KL, Calcutt MW, Bridges TM, Lindsley CW, Friedman DL, Richmond A, Daniels AB (2021) Intravitreal HDAC inhibitor belinostat effectively eradicates vitreous seeds without retinal toxicity in vivo in a rabbit retinoblastoma model. Invest Ophthalmol Vis Sci 62(14):8

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of Yao laboratory for their kind suggestion and technical assistance.

Funding

This work was supported by the National Natural Science Foundation of China (No. 31970930), Hubei Natural Science Foundation (No. 2020CFA069, No. 2018CFB434), and Neuroscience Team Development Project of Wuhan University of Science and Technology (No. 1180002).

Author information

Authors and Affiliations

Authors

Contributions

JW and SF: conceptualization, design, writing—original draft, visualization; QZ, HQ, and CX: data curation and review and editing; XF, LY, and YZ: literature search and collection; KY: writing—review and editing, supervision, and funding resources.

Corresponding author

Correspondence to Kai Yao.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

The authors mentioned have participated in this article.

Consent for Publication

The authors approved the publication of article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Feng, S., Zhang, Q. et al. Roles of Histone Acetyltransferases and Deacetylases in the Retinal Development and Diseases. Mol Neurobiol 60, 2330–2354 (2023). https://doi.org/10.1007/s12035-023-03213-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03213-1

Keywords

Navigation