Skip to main content
Log in

Extracellular Vesicles Derived from Bone Mesenchymal Stem Cells Carrying circ_0000075 Relieves Cerebral Ischemic Injury by Competitively Inhibiting miR-218-5p and Up-regulating E3 Ubiquitin Ligase SMURF2

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Extracellular vesicle (EV)–encapsulated circRNAs have the potential role in affecting brain disorders. However, the role of circ_0000075 in cerebral ischemic injury remains unclear. Here, we tried to investigate the mechanism of bone marrow mesenchymal stem cell (BMSC)–derived EVs carrying circ_0000075 in the control of cerebral ischemic injury. Initially, a mouse model with cerebral ischemic injury was induced by middle cerebral artery occlusion (MCAO), followed by the determination of circ_0000075 expression. Then, neurons were isolated and subjected to oxygen–glucose deprivation/reperfusion. BMSCs were isolated for extraction of EVs. The correlation among circ_0000075, microRNA (miR)-218-5p, and Smad ubiquitination regulatory factor 2 (SMURF2) was detected with their roles in cerebral ischemic injury analyzed in vivo and in vitro. circ_0000075 was down-regulated in MCAO mice and engineered RVG-EVs were internalized by neurons to up-regulate circ_0000075 expression. Treatment of RVG-circ_0000075-EVs reduced brain tissue damage, increased neuronal count, and significantly curtailed apoptosis rate, suppressing cerebral ischemic injury in vitro and in vivo. miR-218-5p was targeted by circ_0000075 in neurons, which promoted SMURF2 expression. A negative correlation between SMURF2 and transcriptional regulator Yin Yang 1 (YY1) was identified. In vitro experiments further proved that circ_ 00,000 75 could down-regulate the expression of YY1 through SMURF2, and finally relieving cerebral ischemic injury. Collectively, engineered EVs delivered circ_0000075 into brain tissues and increased circ_0000075 expression, which down-regulated miR-218-5p and up-regulated SMURF2, thus alleviating cerebral ischemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  1. Wei K, Wang P, Miao CY (2012) A double-edged sword with therapeutic potential: an updated role of autophagy in ischemic cerebral injury. CNS Neurosci Ther 18(11):879–886

    Article  PubMed  PubMed Central  Google Scholar 

  2. Singh N, Sharma G, Mishra V (2012) Hypoxia inducible factor-1: its potential role in cerebral ischemia. Cell Mol Neurobiol 32(4):491–507

    Article  CAS  PubMed  Google Scholar 

  3. Chen SD, Yang DI, Lin TK, Shaw FZ, Liou CW, Chuang YC (2011) Roles of oxidative stress, apoptosis, PGC-1alpha and mitochondrial biogenesis in cerebral ischemia. Int J Mol Sci 12(10):7199–7215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen W, Sun Y, Liu K, Sun X (2014) Autophagy: a double-edged sword for neuronal survival after cerebral ischemia. Neural Regen Res 9(12):1210–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaminski N, Koster C, Mouloud Y, Borger V, Felderhoff-Muser U, Bendix I, Giebel B, Herz J (2020) Mesenchymal stromal cell-derived extracellular vesicles reduce neuroinflammation, promote neural cell proliferation and improve oligodendrocyte maturation in neonatal hypoxic-ischemic brain injury. Front Cell Neurosci. 14:601176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ophelders DR, Wolfs TG, Jellema RK, Zwanenburg A, Andriessen P, Delhaas T, Ludwig AK, Radtke S et al (2016) Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia. Stem Cells Transl Med 5(6):754–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saheera S, Jani VP, Witwer KW, Kutty S (2021) Extracellular vesicle interplay in cardiovascular pathophysiology. Am J Physiol Heart Circ Physiol 320(5):H1749–H1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang J, Chen M, Cao RY, Li Q, Zhu F (2018) The Role of Circular RNAs in cerebral ischemic diseases: ischemic stroke and cerebral ischemia/reperfusion injury. Adv Exp Med Biol. 1087:309–325

    Article  CAS  PubMed  Google Scholar 

  9. Zhang PP, Sun J, Li W (2020) Genome-wide profiling reveals atrial fibrillation-related circular RNAs in atrial appendages. Gene. 728:144286

    Article  CAS  PubMed  Google Scholar 

  10. Jin F, Xing J (2017) Circulating pro-angiogenic and anti-angiogenic microRNA expressions in patients with acute ischemic stroke and their association with disease severity. Neurol Sci 38(11):2015–2023

    Article  PubMed  Google Scholar 

  11. Zhu H, Wang X, Chen S (2020) Downregulation of MiR-218–5p protects against oxygen-glucose deprivation/reperfusion-induced injuries of pc12 cells via upregulating N-myc Downstream regulated gene 4 (NDRG4). Med Sci Monit 26:e920101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma X, Zhang H, Yin H, Geng S, Liu Y, Liu C, Zhao J, Liu Y et al (2021) Up-regulated microRNA-218–5p ameliorates the damage of dopaminergic neurons in rats with Parkinson’s disease via suppression of LASP1. Brain Res Bull. 166:92–101

    Article  CAS  PubMed  Google Scholar 

  13. Yu YL, Chou RH, Shyu WC, Hsieh SC, Wu CS, Chiang SY, Chang WJ, Chen JN et al (2013) Smurf2-mediated degradation of EZH2 enhances neuron differentiation and improves functional recovery after ischaemic stroke. EMBO Mol Med 5(4):531–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu H, Sun S, Liu B (2021) Smurf2 exerts neuroprotective effects on cerebral ischemic injury. J Biol Chem 297(2):100537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ramkumar C, Cui H, Kong Y, Jones SN, Gerstein RM, Zhang H (2013) Smurf2 suppresses B-cell proliferation and lymphomagenesis by mediating ubiquitination and degradation of YY1. Nat Commun. 4:2598

    Article  PubMed  Google Scholar 

  16. Liu W, Guo Q, Zhao H (2018) Oxidative stress-elicited YY1 potentiates antioxidative response via enhancement of NRF2-driven transcriptional activity: a potential neuronal defensive mechanism against ischemia/reperfusion cerebral injury. Biomed Pharmacother. 108:698–706

    Article  CAS  PubMed  Google Scholar 

  17. Zhao H, Tao Z, Wang R, Liu P, Yan F, Li J, Zhang C, Ji X et al (2014) MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res. 1592:65–72

    Article  CAS  PubMed  Google Scholar 

  18. Fan Y, Xiong X, Zhang Y, Yan D, Jian Z, Xu B, Zhao H (2016) MKEY, a peptide inhibitor of CXCL4-CCL5 heterodimer formation, protects against stroke in mice. J Am Heart Assoc 5(9):e003615

  19. Hong M, Kim M, Kim TW, Park SS, Kim MK, Park YH, Sung YH, Shin MS (2020) Treadmill exercise improves motor function and short-term memory by enhancing synaptic plasticity and neurogenesis in photothrombotic stroke mice. Int Neurourol J 24(Suppl 1):S28-38

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li F, Geng X, Huber C, Stone C, Ding Y (2020) In search of a dose: the functional and molecular effects of exercise on post-stroke rehabilitation in rats. Front Cell Neurosci. 14:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brooks MJ, Rajasimha HK, Roger JE, Swaroop A (2011) Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes. Mol Vis. 17:3034–3054

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D et al (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 7:11215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martinez Escude, de Castilla P, Tong L, Huang C, Sofias AM, Pastorin G, Chen X, Storm G, Schiffelers RM et al (2021) Extracellular vesicles as a drug delivery system: a systematic review of preclinical studies. Adv Drug Deliv Rev. 175:113801

    Article  Google Scholar 

  24. Chen C, Chu SF, Liu DD, Zhang Z, Kong LL, Zhou X, Chen NH (2018) Chemokines play complex roles in cerebral ischemia. Neurochem Int. 112:146–158

    Article  CAS  PubMed  Google Scholar 

  25. Radak D, Katsiki N, Resanovic I, Jovanovic A, Sudar-Milovanovic E, Zafirovic S, Mousad SA, Isenovic ER (2017) Apoptosis and Acute Brain Ischemia in Ischemic Stroke. Curr Vasc Pharmacol 15(2):115–122

    Article  CAS  PubMed  Google Scholar 

  26. Xin D, Li T, Chu X, Ke H, Liu D, Wang Z (2021) MSCs-extracellular vesicles attenuated neuroinflammation, synapse damage and microglial phagocytosis after hypoxia-ischemia injury by preventing osteopontin expression. Pharmacol Res. 164:105322

    Article  CAS  PubMed  Google Scholar 

  27. Mehta SL, Pandi G, Vemuganti R (2017) Circular RNA expression profiles alter significantly in mouse brain after transient focal ischemia. Stroke 48(9):2541–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Q, Liu X, Zhao J, Zhu R (2020) Circular RNAs: novel diagnostic and therapeutic targets for ischemic stroke. Expert Rev Mol Diagn 20(10):1039–1049. https://doi.org/10.1080/14737159.2020.1826313

    Article  CAS  PubMed  Google Scholar 

  29. (2020) Erratum: Bai et al., “Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity”. J Neurosci 40(44):8601

  30. Zhang Y, Liu Y, Liu H, Tang WH (2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 9:19

    Article  PubMed  PubMed Central  Google Scholar 

  31. Khan H, Pan JJ, Li Y, Zhang Z, Yang GY (2021) Native and bioengineered exosomes for ischemic stroke therapy. Front Cell Dev Biol. 9:619565

    Article  PubMed  PubMed Central  Google Scholar 

  32. Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K et al (2015) Circular RNA: A new star of noncoding RNAs. Cancer Lett 365(2):141–148

    Article  CAS  PubMed  Google Scholar 

  33. Lin SP, Ye S, Long Y, Fan Y, Mao HF, Chen MT, Ma QJ (2016) Circular RNA expression alterations are involved in OGD/R-induced neuron injury. Biochem Biophys Res Commun 471(1):52–56

    Article  CAS  PubMed  Google Scholar 

  34. Liu C, Zhang C, Yang J, Geng X, Du H, Ji X, Zhao H (2017) Screening circular RNA expression patterns following focal cerebral ischemia in mice. Oncotarget 8(49):86535–86547

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dong S, Liu J, Li L, Wang H, Ma H, Zhao Y, Zhao J (2019) The HECT ubiquitin E3 ligase Smurf2 degrades mu-opioid receptor 1 in the ubiquitin-proteasome system in lung epithelial cells. Am J Physiol Cell Physiol 316(5):C632–C640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jo DH, An H, Chang DJ, Baek YY, Cho CS, Jun HO, Park SJ, Kim JH et al (2014) Hypoxia-mediated retinal neovascularization and vascular leakage in diabetic retina is suppressed by HIF-1alpha destabilization by SH-1242 and SH-1280, novel hsp90 inhibitors. J Mol Med (Berl) 92(10):1083–1092

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yue Liu and You-Ping Li conceived and designed research. Li-Min Xiao and Li-Ke Chen performed experiments. Su-Yue Zheng and Er-Ming Zeng interpreted results of experiments. Yue Liu and Chun-Hua Xu drafted paper. You-Ping Li edited and revised manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chun-Hua Xu.

Ethics declarations

Ethics Approval

This study was ratified by the Animal Ethics Committee of the First Affiliated Hospital of Nanchang University and all procedures were carried out per the Guide for the Care and Use of Laboratory Animals.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary File 1

(DOCX 21 kb)

Supplementary Fig. 1

Effect of exogenous circ_0000075 on cerebral ischemic injury in MCAO mice. A, The overexpression efficiency of circ_0000075 assayed within BMSCs. B, Foot fault test from 1 day before to 28 days after MCAO. C, Rota-rod test from 1 day before to 28 days after MCAO. D, E, Adhesive removal from 1 day before to 28 days after MCAO. F, Time to locate the mice to the platform (escape latency) measured 22 - 26 days after MCAO. G, Spatial memory assessed by measuring the time spent in the target quadrant during platform removal 27 days after MCAO. H, RT-qPCR of circ_0000075 expression in mouse brain tissues 7 days after MCAO; n = 8. * p < 0.05 vs. the LV-NC group. (PNG 210 kb)

High resolution image (EPS 945 kb)

Supplementary Fig. 2

Extraction and identification of BMSCs and neurons. A, Flow cytometry of surface markers of BMSCs. B, Induction of multifunctional differentiation of BMSCs. i: Alizarin red cytochemical staining for osteogenic differentiation, scale bar = 50 μm; ii: Oil red O cytochemical staining for adipogenic differentiation; iii: Alcian Blue cytochemical staining for chondrogenic differentiation, scale bar = 50 μm. C, Primary Neuronal MAP-2 staining; red: MAP-2, blue: Hoechst (bar = 25 μm). All experiments were repeated 3 times independently. (PNG 717 kb)

High resolution image (EPS 5995 kb)

Supplementary Fig. 3

Target miRNAs of circ_0000075 and target genes of miRNA. A, Volcano map of differentially expressed miRNAs in MCAO mice (n = 10) and sham-operated mice (n = 10). B, Venn diagram displaying the intersection of up-regulated miRNAs in cerebral ischemic injury and target miRNAs of circ_0000075. C, Venn diagram displaying the intersection of target genes of miR-218-5p and cerebral ischemic injury-related genes. (PNG 329 kb)

High resolution image (EPS 2066 kb)

Supplementary Fig. 4

Effect of down-regulated miR-218-5p expression on neuronal damage after OGD/R. A, RT-qPCR to detect miR-218-5p expression in each group of cells after OGD/R treatment. B, CCK-8 assay to detect cell survival. C, TUNEL staining to detect apoptosis. D, LDH release to assess neuronal injury. * p < 0.05 vs. the OGD/R + inhibitor NC group. The cell experiment was repeated 3 times independently. (PNG 82 kb)

High resolution image (EPS 1215 kb)

Supplementary Fig. 5

Effect of SMURF2 overexpression on neuronal damage after OGD/R. A, Western blot assay to detect SMURF2 expression in each group of cells after OGD/R treatment. B, CCK-8 assay for cell survival. C, TUNEL staining for apoptosis. D, LDH release to assess neuronal damage. * p < 0.05 vs. the OGD/R + vector group. The cell experiment was repeated 3 times independently. (PNG 126 kb)

High resolution image (EPS 1500 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, YP., Xiao, LM. et al. Extracellular Vesicles Derived from Bone Mesenchymal Stem Cells Carrying circ_0000075 Relieves Cerebral Ischemic Injury by Competitively Inhibiting miR-218-5p and Up-regulating E3 Ubiquitin Ligase SMURF2. Mol Neurobiol 60, 2801–2818 (2023). https://doi.org/10.1007/s12035-022-03192-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03192-9

Keywords

Navigation