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Abstract
Schizophrenia is a neurodevelopmental disorder with genetic and environmental factors involved in its aetiology. Genetic 
liability contributing to the development of schizophrenia is a subject of extensive research activity, as reliable data regarding 
its aetiology would enable the improvement of its therapy and the development of new methods of treatment. A multitude of 
studies in this field focus on genetic variants, such as copy number variations (CNVs) or single-nucleotide variants (SNVs). 
Certain genetic disorders caused by CNVs including 22q11.2 microdeletion syndrome, Burnside-Butler syndrome (15q11.2 
BP1-BP2 microdeletion) or 1q21.1 microduplication/microdeletion syndrome are associated with a higher risk of developing 
schizophrenia. In this article, we provide a unifying framework linking these CNVs and their associated genetic disorders 
with schizophrenia and its various neural and behavioural abnormalities.
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Introduction

Schizophrenia is a chronic and complex mental disorder that 
affects about 0.5% of the population [1]. Patients usually 
present first symptoms of schizophrenia around the age of 
16–30 years [2, 3]. Schizophrenia is mainly characterized 
by relapsing episodes of psychosis; however, occurring 
symptoms can be divided into two main categories: positive 
and negative symptoms. Positive symptoms include vari-
ous types of hallucinations and delusions. In turn, negative 
symptoms include social withdrawal, diminished emotional 
range, avolition, anhedonia and alogia. There is accumu-
lating evidence that specific dimensions of psychopathol-
ogy in schizophrenia might be characterized by distinct 

neurobiological mechanisms. For instance, Carpenter et al. 
[4] differentiated the deficit subtype of schizophrenia, 
which is characterized by primary and enduring negative 
symptoms, from non-deficit schizophrenia, which is char-
acterized by mild negative symptoms. Further studies have 
demonstrated that patients showing deficit and non-deficit 
schizophrenia differ in clinical characteristics, neurobiologi-
cal features, risk factors and family history [5–8]. Unlike 
non-deficit schizophrenia, deficit schizophrenia is associated 
with alterations of the brain structure, brain activation, worse 
sensory integration and impaired motor coordination. The 
existence of a significant relationship between deficit schizo-
phrenia and more severe cognitive impairment has also been 
suggested [9–14].

Numerous mental disorders, including schizophrenia, 
have multifactorial backgrounds based on complex inter-
actions between genetic and environmental factors [5]. 
Among known genetic alterations reported in patients with 
schizophrenia, copy number variants (CNVs) are one of the 
most often genetic alterations that might be causative. There 
are some reports on the presence of the highest burden of 
larger (> 500 kb) exonic CNVs in schizophrenia and the 
possibility that carrying these alterations may modify the 
phenotype in patients at risk of schizophrenia [15–18]. The 
phenotype of patients carrying CNVs might include schizo-
phrenia as the only clinical manifestation. However, in other 
cases, schizophrenia develops as a part of known genetic 
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syndromes attributable to CNVs, such as 1q21.1 microdele-
tion/microduplication syndrome, 15q11.2 BP1-BP2 micro-
deletion syndrome or 22q11.2 deletion syndrome [19–22]. 
The development of the array comparative genomic hybridi-
zation (aCGH) and the next-generation sequencing (NGS) 
methods together with an array of bioinformatic approaches 
has largely improved our understanding of the association 
between CNVs and various neurodevelopmental disorders, 
including schizophrenia [23].

CNVs can be defined as alterations of the number of cop-
ies in specific regions of the genome (chromosomal duplica-
tions and deletions), which vary between individuals. Nota-
bly, CNVs represent 4.8–9.5% of the human genome and 
have been observed to exert an effect on the expression, as 
well as the function of genes [24]. It has been demonstrated 
that approximately 70% of all individuals carry at least one 
rare CNV. Among them, deletions are less common than 
duplications [25–28].

Existing methods for detecting CNVs in the genome are 
typically based on DNA probes, such as the multiplex liga-
tion-dependent probe amplification (MLPA), aCGH or NGS. 
Results for alterations above 40 kbp can also be verified 
using the fluorescence in situ hybridization (FISH). In recent 
years, there has been a rapid technological development of 
molecular biology methods, which is why an increasing use 
of aCGH and NGS is observed both in the diagnostics of 
SNVs and CNVs. However, in many countries, this is still 
limited by the relatively high cost of the test and the high 
skill requirements of personnel [29].

CNVs in Schizophrenia

However, CNVs associated with schizophrenia lack diag-
nostic specificity, that is, the presence of certain CNVs in 
the genome can increase a risk of several other neurode-
velopmental disorders, including autism spectrum disorder, 
attention-deficit hyperactivity disorder and intellectual dis-
ability [30–32]. According to recent studies, schizophrenia 
has been associated with several recurrent CNVs, which are 
major risk factors of the disorder, occurring in 3.5–5% of 
cases (see Table 1 and Fig. 1) [20, 33, 34]. However, due 
to the fact that those CNVs are not completely penetrant 
(reduced penetrance) and expressed on different levels (vari-
able expressivity), they are not sufficient to cause schizo-
phrenia by themselves. The percentage of individuals with 
CNVs who develop symptoms may vary depending on the 
type of CNVs and other factors (i.e., those related to interac-
tions with other genes and the impact of environment) [35].

Interestingly, CNVs associated with schizophrenia have 
also been observed in healthy individuals, and thus, it may 
suggest that either environmental factors or additional 
genetic abnormalities contribute to the development of Ta
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Fig. 1   Simplified overview of the phenotype and specific genes associated with CNVs located at 22q11.2, 15q11.2 and 1q21.1. p. 12
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schizophrenia. Moreover, some genetic syndromes such 
as 22q11.2 microdeletion syndrome, Burnside-Butler syn-
drome (15q11.2 microdeletion) or 1q21.1 microduplica-
tion/microdeletion are strongly associated with a risk of 
schizophrenia among other CNVs [34, 36, 37]. Table 1 
and Fig. 1 show an overview of clinical characteristics of 
these genetic syndromes.

In the next subsections, we review genetic syndromes 
commonly associated with a risk of schizophrenia. Recent 
studies report that other CNVs can also be associated with 
a higher risk of schizophrenia. Those CNVs (listed in 
Table 2) include deletions and duplications on chromo-
somes 2, 3, 7, 8, 9, 13, 16 and sex chromosome X [20, 49].

15q11.2 Microdeletion Syndrome

Burnside-Butler syndrome is a neurodevelopmental disor-
der with a genetic basis, i.e., the occurrence of this syn-
drome is correlated with the presence of pathogenic CNV. 
Symptoms of Burnside-Butler syndrome include altered 
brain morphology, cognitive impairment and behavioural 
alterations. This disease is caused by the 15q11.2 BP1-BP2 
deletion, which is a rare CNV spanning about 500 kbp. This 
region includes four highly conservative genes, including 
TUBGCP5, CYFIP1, NIPA1 and NIPA2 that are expressed 
in the brain. The dysfunction of their protein products is 
also associated with Prader-Willi syndrome (PWS) and 
Angelman syndrome (AS). The 15q11.2 BP1-BP2 dele-
tion is present in 0.57–1.27% of the world population [50]. 
Inter-individual variability in clinical manifestation might 
be the consequence of incomplete penetrance and variable 
expression levels of genes located in the 15q11.2 BP1-BP2 
region [40, 50].

Apart from CNVs covering the above-mentioned genes, 
the presence of pathogenic variants, commonly referred 
to as single nucleotide variants (SNVs), is reported as the 
mechanism underlying the development of Burnside-Butler 
syndrome which has been previously reported [40, 50].

22q11.2 Microdeletion Syndrome

Around 30 years ago, it was demonstrated that schizophrenia 
tends to co-occur with velocardiofacial syndrome [51]. In 
the same year, both velocardiofacial syndrome and 22q11.2 
microdeletion syndrome (formerly known as DiGeorge syn-
drome), two clinical syndromes that were later classified into 
the spectrum of one syndrome of congenital abnormalities, 
were associated with deletions of the 22q11.2 region [52, 
53]. However, the first genome-wide analysis of CNVs in 
patients with schizophrenia was published in 2007 [54].

The 22q.11.2 deletion occurs approximately in 1 of every 
4000 live births and is equally distributed between males 
and females. The 22q11.2 microdeletion syndrome is associ-
ated with clinical manifestations with considerable interin-
dividual variability; however, most frequently, they include 
immunodeficiency, congenital cardiac anomalies and palatal 
abnormalities (each one being present in ~ 75% of individu-
als diagnosed with 22q11.2 microdeletion syndrome) [55]. 
The prevalence of schizophrenia in subjects with 22q11.2 
microdeletion syndrome has been estimated at 25%, and 
this syndrome is known to be the strongest genetic factor of 
schizophrenia [56].

Major microdeletions, causative for the syndrome, are 
classified as CNVs and are usually larger than 1 kb. The 
inheritance of 22q11.2 microdeletion syndrome is autoso-
mal dominant, as deletion of one copy chromosome 22 is 
sufficient to cause the disorder. However, most frequently, 

Table 2   The comparison of schizophrenia-associated CNV loci 
according to “Schizophrenia-associated genomic copy number vari-
ants and subcortical brain volumes in the UK Biobank” [20] and 
“Contribution of copy number variants to schizophrenia from a 
genome-wide study of 41,321 subjects” [65]. Only two publications 
were used as sources to create the said table, as they contained the 
most information about multiple CNVs compared to others. p. 14, 15

Schizophrenia-associated CNV 
loci according to Warland et al., 
2019

Schizophrenia-associated CNV 
loci according to Marshall et al., 
2017

Deletions Deletions
1q21.1 1q21.1
2p16.3 (NRXN1) 2p16.3
3q29 3q29
- 7q11.21 (ZNF92)
- 7p36.3 (VIPR2; WDR60)
- 8q22.2 (VPS13B)
- 9p24.3 (DMRT1)
15q11.2 15q11.2
15q13.3 15q13.3
16p12.1 -
- 16p11.2 (distal)
22q11.2 22q11.2(1)
Duplications Duplications
1q21.1 1q21.1
- 7q11.21 (ZNF92)
7q11.23 7q11.23
- 7p36.3 (VIPR2; WDR60)
- 9p24.3 (DMRT1)
- 13q12.11 (ZMYM5)
15q11-q13 -
16p11.2 16p11.2 (proximal)
16p13.11 -
- 22q11.21
- Xq28 (distal)
- Xq28 (MAGEA11)
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the 22q11.2 microdeletion occurs spontaneously during 
gametogenesis. Parental studies show no association of 
the deletion with age of the parents [57–60]. This hemizy-
gous deletion includes typically around 90 genes (~ 3 Mb). 
Parental studies show that the deletion inheritance occurs 
approximately in 10% of cases, while ~ 90% are caused by 
random deletion during gametogenesis or early development 
of the foetus [61]. Most of 22q11.2 microdeletions (~ 90%) 
are approximately 3 Mb in size; the remaining 10% include 
a nested deletion (~ 1.5–2 Mb) or atypical, non-nested distal 
microdeletions. Recent studies on CNVs in schizophrenia 
demonstrated that 5% of cases showed associations with rare 
CNVs rather than common CNVs. Furthermore, individu-
als with previously mentioned rare CNVs are about twenty 
times more likely to develop schizophrenia, indicating that 
the 22q11.2 microdeletion should be considered when 
diagnosing schizophrenia [26, 62, 63] (Table 1). Notably, 
microdeletions of various sizes in the 22q11.2 region also 
predispose to the development of other neurodevelopmental 
disorders, including attention-deficit/hyperactivity disorder 
(ADHD) and autism spectrum disorder [57, 64].

1q21.1 Microdeletion/Microduplication Syndrome

The 1q21.1 region contains many low-copy repeat 
sequences, and thus, it is susceptible to deletions and dupli-
cations occurring during meiotic division. The 1q21.1 locus 
is divided into four segment breakpoints (BP): BP1, BP2, 
BP3 and BP4. Therefore, two classes of the 1q21.1 microde-
letion/microduplication-related CNVs have been described 
and include smaller 1.35 Mb class I CNVs and larger ~ 3 Mb 
class II CNVs. Class I CNVs involve the segment between 
BP3 and BP4, which is localised in the distal part of the 
1q21.1 region. Class II microdeletion/microduplications 
are placed from the distal 1q21.1 to the proximal 1q21.1 
regions, between BP2 and BP4 [17, 65]. Both microdeletions 
and microduplications can occur de novo or can be inherited 
in an autosomal dominant manner. Importantly, CNVs in the 
1q21.1 region are characterized by incomplete penetration 
and variable expression [66].

The proximal part of the 1q21.1 region includes the 
RBM8A gene that is causally associated with the thrombo-
cytopenia-absent radius (TAR) syndrome. However, micro-
deletions covering the distal part of the 1q21.1 region may 
manifest in developmental disorders, microcephaly and 
schizophrenia [67]. Many patients with the 1q21.1 micro-
duplication show other signs of psychopathology, including 
anxiety, depression and ADHD. Neurological manifestations 
that include epilepsy and hypotonia might also occur leading 
to developmental delay. In paediatric patients, microduplica-
tion in this region might be associated with macrocephaly, 
developmental delay and autism spectrum disorder. In turn, 

the 1q21.1 microdeletions are predominant in patients diag-
nosed with schizophrenia and microcephaly [67].

Association Between CNVs and Clinical 
Features of Schizophrenia

There are many possibilities of how the different CNVs con-
tribute to the development of schizophrenia and its numerous 
clinical features, including deficits in social skills, learning 
processes, emotional recognition and cognitive flexibility 
[47, 63, 68–70]. Moreover, it is reported that patients with 
schizophrenia and pathogenic CNVs are more likely to pre-
sent treatment resistance [71]. The mechanism of how CNVs 
influence symptoms of schizophrenia remains unclear. How-
ever, mouse models and induced pluripotent stem cells have 
successfully been used by studies addressing the neurobiol-
ogy of CNVs associated with schizophrenia [72–77]. Abnor-
malities of basic associative learning processes have long 
been correlated with this particular disorder. These obser-
vations have been followed by many researchers, including 
studies conducted in 2017, results of which show that CNVs 
impact inhibitory learning in schizophrenia, which poten-
tially contributes to the development of core symptoms in 
this disorder [63]. Genes associated with processes involved 
in synaptic plasticity (such as genes encoding components of 
the NMDA receptor complex, connected with glutamatergic 
signalling, but also genes involved in inhibitory GABAer-
gic modulation of neuronal signalling) have been shown to 
be affected by CNVs [78, 79]. Products of these genes are 
synaptic proteins regulating the molecular processes directly 
related to associative learning and memory. Deficits in asso-
ciative learning in individuals with schizophrenia have been 
assumed to contribute to the development and persistence of 
psychotic and cognitive symptoms. Patients with schizophre-
nia typically show the persistence of delusional beliefs, and 
thus, impairment of extinction learning could be an explana-
tion of the core symptoms of schizophrenia [19, 33, 80, 81].

The study conducted in young patients diagnosed with 
22q11.2 deletion syndrome has demonstrated that both nega-
tive and positive symptoms of schizophrenia were escalated 
in individuals with worst social skills. In the study from 
2016, symptoms typical for schizophrenia, such as social 
anxiety and lack of close friends, were found to be increased 
in individuals with 22q11.2 DS [68–70].

22q11.2 deletion and other high-risk CNVs also con-
tribute to a large extent to the intellectual disability, which 
was proved in a study using genome-wide microarrays. 
Moreover, scores of attention tests correlate with particular 
symptoms of schizophrenia. Lower scores are associated 
with negative symptoms, but not positive symptoms in this 
disorder. Also, low IQ test scores achieved by children can 
predict the likelihood of developing schizophrenia during 
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adulthood. Lower scores for social and cognitive tests are 
frequent in young individuals at risk mental states, compared 
with controls. All mentioned low scores provide probabil-
istic, not categorical, predictors for schizophrenia develop-
ment [34, 61, 62, 82, 83].

Single Nucleotide Variants (SNVs) and Gene 
Expression in Schizophrenia

Studies on single nucleotide variants in schizophrenia are 
crucial for understanding the pathological mechanism of 
this condition. This subject has been discussed previously in 
details by several authors [22, 84–91]. Two different mecha-
nisms (deletion and point mutations) for loss of function 
observed for genes critical to any condition with genetic 
background confirm their clinical significance and support 
the hypothesis about double-hits while loss of heterozygo-
sity (LOH) co-occurring with a functional variants may be 
relevant [85].

Neurostructural Abnormalities Associated 
with Schizophrenia Risk CNVs

Schizophrenia risk CNVs have been noticed to have correla-
tion with certain morphological brain abnormalities. Espe-
cially early-onset schizophrenia patients have been noticed 
to show dysmorphic features. Early detection of individuals 
with high risk of schizophrenia development is crucial for 
creating suitable prevention and/or therapy [92].

Windows of vulnerability occurring multiple times dur-
ing the brain development are when abnormalities might 
progress which can lead to the development of the symptoms 
of mental disorders. One of the most popular neurodevelop-
mental theories in schizophrenia pathogenesis is the two-hit 
model, which states that there are two points of aberrant 
development (early brain development and adolescence) that 
significantly increase the risk for schizophrenia-like symp-
toms in the individual [93].

The study conducted by Warland et al. (2019) focused 
on the association of schizophrenia CNVs with subcortical 
brain volumes [20]. The authors used samples of participants 
from the UK Biobank. The analysis of MRI data focused 
on 15 metrics of subcortical volumes, out of which 5 brain 
regions (right thalamus, left putamen, right pallidum, right 
hippocampus and right accumbens) presented the signifi-
cant association with schizophrenia-related CNVs. All of 
these subcortical structures showed a reduction in volume in 
patients with schizophrenia and CNVs [20]. Reduced volume 
of subcortical structures in patients carrying schizophrenia-
related CNVs compared to unaffected CNVs carriers were 
also reported by previous studies [94, 95]. Reduction in 

volumes of subcortical structures, such as the hippocampus 
and thalamus, was observed in individuals with high risk 
of developing schizophrenia, compared to healthy controls 
[96]. Changes in brain cortical anatomy associated with the 
presence of rare CNVs have been observed by Caseras et al. 
in 2021 [97]. The 1q21.1 deletion and the 15q11.2 deletion 
CNVs were associated with reduced gyrus surface area in 
carriers. Also, it appeared that the 15q11.2 deletion corre-
lates with thicker cortex in carriers [97]. Finally, the 22q11.2 
microdeletion has been associated with thicker cortex and 
reductions in the cortical surface area [98].

Discussion

The correlation of selected CNVs at specific loci with 
risk factors for several neuropsychiatric disorders, such as 
schizophrenia, autism spectrum disorder, intellectual dis-
ability and depression, has been reported previously [21, 
31, 99]. Further research is needed to determine which 
genetic abnormalities or genetic variants are related to the 
phenotypic expression of schizophrenia symptoms, includ-
ing negative, positive and cognitive abnormalities. For 
example, the BCL9 gene polymorphisms are thought to be 
associated with negative symptoms in schizophrenia, as 
mentioned gene product is involved in the Wnt signalling 
pathway, a conserved pathway regulating crucial processes 
of cell fate determination in metazoan animals, including 
humans, which is significant in neuroplasticity, neurogenesis 
and cell survival [46, 100–103].

Genetic background for schizophrenia should not be 
considered without other crucial aspects of the expressed 
phenotype—such as differences in synaptic signalling and 
plasticity, abnormalities in micro and macrostructures of the 
brain or even environmental factors, which are significant 
in many psychiatric disorders. Determining which genes 
are involved in the development of schizophrenia is the first 
step of determining the role of mentioned genes’ products 
in molecular pathways leading to the expression of schizo-
phrenia symptoms. The phenotype may also depend on the 
type of particular CNVs—microdeletion and microduplica-
tion phenotypes often appear to be on the two ends of the 
spectrum. This situation is especially apparent in patients 
with 1q21.1 microdeletion/microduplication syndrome. 
Microdeletion in this region is correlated with schizophrenia 
and microcephaly; microduplication, on the other hand, is 
prevalent in individuals with autism spectrum disorder and 
macrocephaly [38].

There are also some reports on 3q29 deletion syndrome 
which is connected with > 40-fold higher risk for schizo-
phrenia and the presence of treatment-resistant psychotic 
symptoms, multiple medical comorbidities and early-onset 
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dementia [104, 105], 16p11.2 duplication and [106] and 
17q12 deletion [107].

In some cases, like in Burnside-Butler syndrome, the 
clinical phenotype of the child depends on the origin of 
parental deletion—if deletion is inherited from the father, 
there is a higher risk of congenital heart defects in the off-
spring; however, if deletion is maternal then the risk for 
intellectual disability and autism is increased [108]. In this 
situation, awareness of the genetic profiles of the parents 
can determine abnormalities which their future offspring is 
more prone to, and it can also increase the quality of genetic 
counselling.

Conclusions and Futures Directions

Numerous disorders with a genetic background such as 
previously mentioned 22q11.2 microdeletion syndrome, 
Burnside-Butler Syndrome (15q11.2 BP1-BP2 microdele-
tion) or 1q21.1 microduplication/microdeletion syndrome 
have been noticed to contribute to a higher risk of schizo-
phrenia development. Patients with said disorders often dis-
play psychiatric (i.e., cognitive impairment, psychosis) and 
neurostructural symptoms (i.e., brain volumetric reduction, 
increased cortical thickness) that are observed in schizo-
phrenic patients which further highlights the importance of 
CNVs in the understanding of the genetic background of 
schizophrenia [38, 40, 43, 109].

It is worth acknowledging that many CNVs occur among 
the human population and show no pathogenic impact, while 
others can be associated with a predisposition to various psy-
chiatric disorders. Only 3.5–5% of individuals with schizo-
phrenia are carriers of major-risk CNVs. Moreover, men-
tioned CNVs have also been observed in healthy individuals, 
which may suggest that other factors such as epigenetics or 
environmental conditions could be involved in schizophrenia 
development [34, 36].

Further research of CNVs that are associated with the 
development of schizophrenia could contribute to new pros-
pects of therapies and prevention in people with a higher 
genetic risk of the disorder. More GWAS analyses could 
also reveal novel copy number variations associated with 
schizophrenia which, combined with current knowledge 
about single-gene copy number variants and gene expres-
sion, could be vital in the understanding of the aetiology of 
this psychiatric disorder.

The application of genome–wide experiments not only 
allows us to better understand the genetic background of 
schizophrenia but also supports the thesis about its poly-
genic inheritance and genetic overlap with other mental 
disorders including autism spectrum disorder or bipolar 
disorder. A thorough understanding of the genetic basis 
of this disorder could enable predictive testing, early 

diagnosis and more effective therapy. Due to the complex-
ity of schizophrenia and a variety of underlying genetic 
mechanisms, including CNVs, this appears to be a difficult 
task, but a promising next step may be to apply machine 
learning techniques together with high-throughput gene 
research technologies and clinical data analysis.

It is also important to note the complexity of schizo-
phrenia in terms of exposure to environmental factors 
known to affect a risk of psychosis, clinical manifesta-
tion, course of the disorder and clinical and functional 
outcomes. Moreover, certain aspects of psychopathologi-
cal symptoms and behavioural abnormalities, which are 
known to be present in schizophrenia, cross traditional 
diagnostic boundaries established by ICD and DSM clas-
sification systems [110]. These include positive, nega-
tive, mood and disorganization symptoms and cognitive 
impairment [8, 111]. In this regard, future studies that 
aim to provide new insights into the role of CNVs need 
to deconstruct the psychosis spectrum by dissecting spe-
cific dimensions of psychopathology or symptom clus-
ters. Studies in this field may also use existing approaches 
related to the Research Domain Criteria (RDoC) and the 
Hierarchical Taxonomy of Psychopathology (HiTOP) 
[111, 112]. Also, investigating CNVs with respect to spe-
cific endophenotypes that capture phenotype constructs 
characterized by the association with illness in the popula-
tion, heritability, state-independent manifestation (expres-
sion of the phenotype independent of the illness activity) 
and the association with illness in families might be help-
ful in addressing the heterogeneity of the diagnostic con-
struct called schizophrenia [113, 114]. Nevertheless, large 
samples of individuals with psychosis spectrum disorders 
will be needed due to relatively low effect size estimates 
of specific CNVs. However, these research efforts might 
uncover on how CNVs build up specific phenotypes at the 
continuum of psychosis.
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