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Abstract 
Examination of post-mortem brain tissues has previously revealed a strong association between Parkinson’s disease (PD) 
pathophysiology and endoplasmic reticulum (ER) stress. Evidence in the literature regarding the circulation of ER stress-
regulated factors released from neurons provides a rationale for investigating ER stress biomarkers in the blood to aid diag-
nosis of PD. The levels of ER stress-regulated proteins in serum collected from 29 PD patients and 24 non-PD controls were 
measured using enzyme-linked immunosorbent assays. A panel of four biomarkers, protein disulfide-isomerase A1, protein 
disulfide-isomerase A3, mesencephalic astrocyte-derived neurotrophic factor, and clusterin, together with age and gender 
had higher ability (area under the curve 0.64, sensitivity 66%, specificity 57%) and net benefit to discriminate PD patients 
from the non-PD group compared with other analyzed models. Addition of oligomeric and total α-synuclein to the model 
did not improve the diagnostic power of the biomarker panel. We provide evidence that ER stress-regulated proteins merit 
further investigation for their potential as diagnostic biomarkers of PD.
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Introduction

Parkinson’s disease (PD) is the second most common neu-
rodegenerative disorder of the central nervous system. It is 
characterized by a progressive loss of dopaminergic neurons 

in the substantia nigra pars compacta and the accumulation 
of misfolded α-synuclein fibrils in glial and neuronal inclu-
sions called Lewy bodies [1]. Making an accurate diagnosis 
of PD is difficult, time-consuming and is based on the clini-
cal assessment of symptoms, medical history, physical and 
neurological examination, and responsiveness to the drug 
Levodopa. Imaging methods, such as magnetic resonance 
imaging (MRI), photon emission tomography (PET), and 
single-photon emission computed tomography (SPECT) are 
used to exclude conditions not associated with dopamine 
deficiency [1, 2]. Unfortunately, these methods are costly 
and some involve the exposure of patients to radiation. Thus, 
there is an urgent need for a non-invasive and rapid diagnos-
tic test for PD [3]. Blood-based biomarker(s) monitoring 
pathological processes associated with the disease are eco-
nomic, minimally invasive, and easily accessible methods 
that are readily used by clinicians for the diagnosis of vari-
ous other diseases.

Neuropathological examination of post-mortem brain 
tissues from PD patients has revealed a strong association 
between PD pathophysiology and endoplasmic reticulum 
(ER) stress [4–9]. Studies using animal and cellular models 
of PD, including patient-derived induced pluripotent stem 
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cells, indicate that ER dysfunction is an early event in PD 
pathogenesis contributing to neurodegeneration [6, 10, 11]. 
The ER plays a central role in the secretory pathway and it 
houses several resident chaperone proteins, which mediate 
the folding of transmembrane and secreted proteins [12]. 
These proteins contain Lys-Asp-Glu-Leu (KDEL)-like ER 
retention sequences and, while they are normally local-
ized to the ER, they can be released from cells upon ER 
stress [13–16]. ER stress is induced by the accumulation 
of misfolded and unfolded proteins in the ER and it trig-
gers the unfolded protein response (UPR). The UPR leads to 
the upregulation of ER-resident chaperone proteins, which 
restore proteostasis by facilitating proper folding and post-
translational modifications of transmembrane and secretory 
proteins [17].

Systemic communication of stress signals between neu-
rons and distal tissues has been recognized to affect non-cell 
autonomous control of homeostasis [18–20]. Indeed, stress 
proteins from neurons have been detected in the bloodstream 
[21, 22]. This offers an opportunity to uncover blood-based 
biomarkers of neurodegeneration that are related to ER 
stress. We hypothesized that ER stress-regulated chaperones 
that have been previously reported to (1) be upregulated in 
brain tissues of PD patients, (2) exhibit altered secretion 
from cells upon ER stress, and (3) have been detected in 
blood/cerebrospinal fluid (CSF) may have potential as blood-
based biomarkers for PD. In this pilot study, we assessed lev-
els of several ER stress-regulated chaperones in serum from 
PD patients and non-PD controls. We show that, while none 
of the analyzed proteins could independently discriminate 
between PD and non-PD groups, multiple logistic regression 
analysis and generation of a mathematical model comprising 
PDIA1, PDIA3, MANF, clusterin, and two confounding fac-
tors, age and gender, allowed for discrimination between the 
two diagnostic groups. These findings suggest that this panel 
of ER stress-regulated chaperones may have the potential 
as a diagnostic tool for PD, albeit with moderate sensitivity 
and specificity.

Results

Comparison of Serum Levels of Candidate 
Biomarker Proteins Between Non‑PD and PD Groups

Based on our review of the literature to find proteins which 
met the selection criteria, chaperones PDIA1, PDIA3, 
MANF, GRP78, calreticulin, and clusterin were selected 
for validation as potential PD serum-based biomarkers. All 
of these proteins have been reported to be upregulated in PD 
[7, 9, 11, 23–28]. With the exception of clusterin, they are all 
KDEL-containing proteins that are residents in the ER [29, 
30]. Clusterin is normally secreted through the ER-Golgi 

secretory pathway, but under conditions of ER stress it is 
redirected to the cytosol where it may be involved in the traf-
ficking of misfolded proteins for degradation by the protea-
some and/or autophagy [31, 32]. All of these proteins have 
been found in blood/CSF, which demonstrates their potential 
to be detected in serum [33–36].

We performed enzyme-linked immunosorbent assay 
(ELISA) analysis to determine the concentrations of these 
proteins in serum taken from PD patients and non-PD con-
trols. This revealed higher levels of PDIA1 (p = 0.096) 
(Fig. 1a), MANF (p = 0.17) (Fig. 1b), and clusterin (p = 0.31) 
(Fig. 1c), and reduced levels of PDIA3 (p = 0.27) (Fig. 1d) 
in PD patients, while GRP78 (p = 0.63) (Fig. 1e) and calreti-
culin (p = 0.56) (Fig. 1f) levels were similar in both groups. 
We noted that one of the PD values for clusterin (333.71 µg/
ml) deviated very far from the mean value, and that if this 
sample was omitted from the calculation the mean changed 
from 54.69 to 42.56 µg/ml, which was similar to the mean 
for non-PD group (Table 1). We also examined levels of the 
oligomeric form of α-synuclein and total α-synuclein, since 
both have been previously flagged as promising biomark-
ers of PD. Levels of oligomeric α-synuclein were higher 
in serum from PD patients (p = 0.40) (Fig. 1g), while total 
α-synuclein levels were not different between diagnostic 
groups (p = 0.51) (Fig. 1h). However, the levels of exam-
ined proteins considerably overlapped between diagnostic 
groups, and the observed differences in mean protein levels 
between diagnostic groups did not reach the statistical sig-
nificance, indicating that none of the tested proteins were 
able to distinguish between PD and non-PD groups as single 
biomarkers (Table 1).

A Panel of Biomarkers Discriminates PD Patients 
from Control Group

Levels of single biomarkers often show considerable overlap 
between diagnostic groups [37, 38]. In such circumstances, 
a combination of multiple biomarkers is a better strategy for 
obtaining a more accurate diagnosis [39, 40]. We performed 
multiple logistic regression analysis and identified a panel of 
four proteins PDIA1, PDIA3, MANF, and clusterin, which 
together with two confounders age and gender, provided the 
greatest discrimination of PD patients from the non-PD con-
trol group, with an accuracy measured by an area under the 
curve (AUC) of 0.64, calculated from the receiver operating 
characteristic (ROC) curve (sensitivity 66%, specificity 57%) 
(Fig. 2a). Decision curve analysis of this model including 
significant variables and the two confounders consistently 
demonstrated higher net benefit value in disease detection 
compared to “diagnose all,” “diagnose none,” and “diagnose 
based on age and gender” models (Fig. 2b).

Conversion of monomeric α-synuclein into oligomers 
and fibrils is a major neuropathological hallmark of PD and 
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oligomeric α-synuclein has gained attention as a promising 
diagnostic biomarker [40–42]. We measured levels of oligo-
meric and total α-synuclein in serum (Table 1) and performed 
logistic regression analysis to test if  α-synuclein can contrib-
ute to the performance of our biomarker panel. A combined 
assessment revealed that neither total α-synuclein (Fig. 3a, b), 
oligomeric α-synuclein (Fig. 3c, d) nor both combined together 
with the biomarker panel (Fig. 3e, f) improved the diagnostic 
discriminatory power and benefit of this biomarker panel.

Discussion

This exploratory study is the first to report on the perfor-
mance of a panel of ER stress-regulated chaperone proteins, 
analyzed in serum, in discriminating between PD patients 
and non-PD controls. We tested ER stress-related proteins 
that met our criteria of being increased in PD, displaying 
altered secretion upon ER stress and reported to be found in 
blood/CSF. We were able to detect each of the six proteins 
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Fig. 1   Serum concentrations of a PDIA1, b MANF, c clusterin, 
d PDIA3, e GRP78, f calreticulin, g oligomeric α-synuclein, and h 
total α-synuclein plotted as individual values in indicated diagnostic 
groups. The line through the middle of the boxes in box-and-whiskers 

plots corresponds to the median and the lower and the upper lines to 
the 25th and 75th percentiles, respectively. The whiskers extend from 
the minimum value at the bottom to the maximum value at the top

Table 1   Serum concentrations of proteins in indicated diagnostic groups

Mean biomarker concentrations, standard deviations (SD), and 95% confidence intervals (CI) are given in serum of non-Parkinson’s disease 
(PD) and PD diagnostic groups. *23 non-PD samples

Non-PD (n = 24) PD (n = 29) P-value

PDIA1 (ng/ml), mean ± SD, (95% CI) 2.55 ± 0.44, (2.37–2.74) 2.81 ± 0.67, (2.56–3.07) 0.096
MANF (ng/ml), mean ± SD, (95% CI) 0.39 ± 0.16, (0.32–0.46) 0.47 ± 0.24, (0.34–0.56) 0.17
Clusterin (μg/ml), mean ± SD, (95% CI) 44.12 ± 7.82, (40.82–47.42) 54.69 ± 54.00, (34.14–75.23) 0.31
PDIA3 (pg/ml), mean ± SD, (95% CI) *97.61 ± 54.43, (74.08–121.20) 78.12 ± 71.23, (51.03–105.20) 0.27
GRP78 (μg/ml), mean ± SD, (95% CI) 4.65 ± 1.34, (4.09–5.21) 4.82 ± 1.28, (4.34–5.31] 0.63
Calreticulin (ng/ml), mean ± SD, (95% CI) *0.163 ± 0.047, (0.143–0.183) 0.172 ± 0.067, (0.147–0.198) 0.56
Oligo α-synuclein (pg/ml), mean ± SD, (95% CI) 11.49 ± 22.03, (2.18–20.79) 22.01 ± 61.97, (− 1.56–45.58) 0.40
α-Synuclein (ng/ml), mean ± SD, (95% CI) 2.57 ± 1.21, (2.06–3.07) 2.84 ± 1.80, (2.16–3.53) 0.51
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in serum from PD patients and non-PD controls, although 
none of the proteins tested were able to distinguish between 
PD and non-PD groups when used individually. However, 
multiple logistic regression analysis identified a panel con-
taining PDIA1, PDIA3, MANF, and clusterin that could 
discriminate between PD and non-PD groups, with PDIA1 
and MANF contributing most to the discriminatory power. 
This study underscores the value of combining multiple bio-
markers and the potential of ER stress-regulated proteins as 
serum-based biomarkers for PD.

A recent systematic review provided evidence that bio-
marker panels increase diagnostic accuracy and outperform 
single biomarkers in the detection of Alzheimer’s disease 
[39]. Similar findings were described in a review focused on 
biomarkers for PD [2]. For example, a combination of oli-
gomeric/total α-synuclein, phosphorylated α-synuclein, and 
phosphorylated tau in CSF discriminates PD from healthy 
controls significantly better than each biomarker individually 
[40]. Similarly, CSF neurofilament contributes to a panel of 
CSF α‐synuclein species in distinguishing PD from non-PD 
groups, even though neurofilament levels largely overlapped 
between the two groups [37]. In agreement with these stud-
ies, we found that a panel of ER stress-regulated biomark-
ers could discriminate PD and non-PD groups, while each 
protein individually could not.

Our findings show for the first time that ER stress-reg-
ulated proteins are worthy of investigation as serum bio-
markers for PD. Indeed, higher levels of MANF and clus-
terin have already been reported in serum samples of PD 
patients [35, 43]. Increased concentrations of clusterin in 
CSF were reported to be predictive of PD [27]. Clusterin is 
an extracellular chaperone secreted through the ER-Golgi 
secretory pathway but its localization can be altered upon 
ER stress, with clusterin trafficking to the cytosol [31]. 

ERdj3 is another ER-resident protein whose secretion is 
elevated upon ER stress [44]. Unfortunately, we were unable 
to include ERdj3 in our analysis due to a lack of suitable 
ELISA. However, it would be very interesting to include 
this in the model.

Proteins, such as MANF, PDIA1, PDIA3, GRP78, and 
calreticulin are normally ER resident chaperones due to the 
presence of ER-localizing C-terminal KDEL-like sequence 
[30]. KDEL proteins are recognized by KDEL receptors in 
the Golgi and recycled back to the ER [45]. Upon ER stress, 
the increased expression of KDEL-containing ER resident 
proteins can overwhelm the KDEL-dependent retrieval sys-
tem which results in their secretion from cells [30]. More-
over, imperfect KDEL sequences, such as the C-terminal 
RTDL sequence in MANF, can lead to poorer ER retention 
and easier diversion of the protein. KDEL-like sequences 
have been found in more than 70 human proteins [29, 30]. 
Given that biomarker panels exhibit improved performance 
over single biomarkers, it is worth considering whether 
other KDEL proteins could contribute to the enhanced per-
formance of the panel.

The diagnostic accuracy of the ER stress-regulated bio-
marker panel was moderate at best, with an AUC of 0.64. 
This indicates a need for further panel evaluation to bet-
ter understand the dynamics and confounders that affect its 
performance. For example, age-related changes in chaper-
one expression might occur due to a decline in proteostasis 
in neurons [46]. Biological sex is also an important factor 
contributing to the clinical features of PD [47]. Indeed, we 
observed that age and gender contributed to the performance 
of the biomarker panel and therefore, they were included 
in the analysis. By incorporating sex into the model, the 
unbalanced male/female ratio in the samples collected was 
also taken into account. It is possible that other factors, for 

Fig. 2   Diagnosis of Parkinson’s 
disease using serum PDIA1, 
MANF, clusterin, and PDIA3. a 
Receiver operating characteris-
tic (ROC) curve and b decision 
curve analysis of PD versus 
non-PD groups
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example, disease duration and severity, may influence chap-
erone levels in the serum of PD patients. For example, it 
has been reported that MANF levels in serum are higher in 
PD patients classified as depressed based on Beck Depres-
sion Inventory scoring [35]. A better understanding of con-
founding factors could help to explain why some patients 
had significantly higher values for specific biomarkers, like 
clusterin, than the group mean values. This needs to be 
investigated further in a larger cohort study.

Furthermore, combining biomarkers reflecting the mul-
tiple neuropathological processes that are associated with 
PD may improve the diagnostic accuracy of the biomarker 
panel. Apart from ER stress, inflammation, lysosomal dys-
function, metabolic impairment, aberrant autophagy, amyloid 
pathology, tauopathy, and synucleinopathy have also been 
implicated in PD [2]. Interestingly, ER stress impacts most 

of those processes [48, 49]. For example, ER stress has been 
reported to induce α-synuclein oligomerization [50, 51]. Pre-
viously, it has been suggested that oligomeric α-synuclein in 
serum might be a potential biomarker for the diagnosis of PD 
[41, 52]. The reports on total α-synuclein levels in the blood 
of PD patients and non-PD controls are conflicting [53–55]. 
We did not observe significant differences in levels of total 
and oligomeric forms of α-synuclein between diagnostic 
groups. The inclusion of total and oligomeric α-synuclein in 
our model did not improve the performance of the biomarker 
panel in discriminating between PD and non-PD groups.

In conclusion, the data presented here show for the first 
time a panel of PDIA1, PDIA2, MANF, and clusterin that 
could be useful in the diagnosis of PD. This pilot study pro-
vides a rationale for further validation of ER stress-regu-
lated chaperone proteins in a larger cohort study as well as 
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longitudinal studies to assess the dynamics of changes as a 
function of PD stage and duration. It will be important to 
evaluate the model in cohorts of patients representing a spec-
trum of neurodegenerative diseases and ER stress-related 
disorders. The results also underscore the potential added 
benefit of including other biomarkers in the panel in order 
to improve its diagnostic performance.

Methods

Participant Recruitment and Assessment

This cross-sectional pilot study was approved by the Univer-
sity Hospital Galway Research Ethics Committee and writ-
ten informed consent was obtained from the subjects. Blood 
samples were collected from 29 idiopathic PD patients and 
24 non-PD controls. Patients diagnosed with PD before the 
onset of the study were recruited from a tertiary referral 
movement disorders clinic and all patients were diagnosed 
with idiopathic Parkinson’s disease by a movement disorder 
specialist in accordance with current Movement Disorder 
Society (MDS) clinical diagnostic criteria [56]. Hoehn & 
Yahr (H&Y) staging and Mini-Mental State Examination 
(MMSE) score assessments were completed for the enrolled 
patient on the day of blood collection. Patients were eligible 
for inclusion if they were diagnosed with idiopathic PD by 
a movement disorders specialist, with no signs of dementia 
(MMSE score ≥ 24), and moderate disease severity (H&Y 
stages 2 and 3). Clinical data, such as disease duration and 
medication, were obtained. Unrelated non-PD subjects or 
spouses of patients were enrolled from the local commu-
nity. Volunteers with neurological disorders on cytotoxic 
drugs or a family history of neurodegenerative diseases were 
excluded. The demographic and clinical characteristics of 
the enrolled subjects listed in Table 2 show the distribution 
of age and sex between the diagnostic groups.

Collection and Processing of Human Serum Samples

Venous blood was collected by a trained phlebotomist into 
BD Vacutainer serum tubes (Becton, Dickinson, NJ, USA; 

#367,895) containing silica for clot activation. Samples 
were left to coagulate in a dark at room temperature for 1 h. 
Tubes were centrifuged at 1300 × g for 10 min. Serum was 
collected, aliquoted into polypropylene 0.5 ml tubes, and 
stored at − 80 °C within 50 min from centrifugation. Serum 
samples were validated for hemolysis.

The Biomarker Selection Process

PubMed was used to search English language publications. 
The initial database search used the following search terms: 
(endoplasmic reticulum stress OR the unfolded protein 
response) AND (protein secretion OR secretory proteins). 
The literature search identified two sets of proteins whose 
secretion is under the control of ER stress: (1) proteins that 
are normally resident in the ER, due to the presence of a 
C-terminus KDEL-like retention sequence but have been 
demonstrated to be released from cells upon ER stress; and 
(2) secretory proteins that are folded in the ER and whose 
secretion is altered upon ER stress. We searched through 
the list of proteins to identify chaperones. From the list 
of proteins with KDEL-like motif [29, 30], we selected 
chaperones PDIA1, PDIA3, GRP78, calreticulin, MANF, 
and CDNF, because they were previously reported to (1) 
be upregulated in brain tissues of PD patients [7, 9, 11, 
23–28], (2) exhibit altered secretion from cells upon ER 
stress [13, 57–59], and (3) have been detected in blood/CSF 
[33–36, 60, 61]. From the list of secreted chaperones, only 
the localization of clusterin and ERdj3 have been reported 
to be altered upon ER stress [32, 44]. We tested clusterin, 
for which higher levels have been reported in serum and 
CSF samples of PD patients [27, 43]. We did not analyze 
CDNF or ERdj3 due to the lack of a suitable ELISA that 
would enable us to measure protein levels in serum without 
a matrix effect.

Enzyme‐Linked Immunosorbent Assay (ELISA)

Protein concentrations in serum were measured by 
enzyme‐linked immunosorbent assays: PDIA1 (Abbexa, 
Cambridge, UK; abx152685), MANF (Abcam, Cam-
bridge, UK; ab215417), PDIA3 (Abbexa; abx252930), 

Table 2   The demographic and 
clinical characteristics of the 
enrolled subjects

Demographic data are given as mean ± SD except dichotomous values. F, female; H&Y, Hoehn and Yahr 
scale; M, male; MMSE, mini-mental state examination; n/a; not applicable; nd, not determined

PD (n = 29) Non-PD (n = 24) P-value

Age (years), mean ± SD 68.5 ± 9.94 64.3 ± 10.97 0.15
Gender (F/M) 13/16 15/9 0.21
MMSE score, mean ± SD 28.73 ± 1.55 nd nd
H&Y stage (number per stage 2/3) 12/17 n/a nd
PD duration (months), mean ± SD 124.4 ± 60.09 n/a nd
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GRP78 (Enzo, NY, USA; ADI-900–214), Calreticulin 
(Abbexa; abx250954), Clusterin (BioVendor, Heidelberg, 
Germany; RD194034200R), α-synuclein (Invitrogen, CA, 
USA; KHB0061), and oligomeric α-synuclein (Analytic-
Jena, Jena, Germany; BM-847–0,104,000,108) according 
to the manufacturer’s protocols. Protein standard dilutions 
and blank (1 × dilution buffer) were prepared and 100 μl 
of each were added in duplicate to a pre-coated plate. 
The serum samples were either undiluted (for detection 
of PDIA1, PDIA3, calreticulin, oligomeric α-synuclein) 
or diluted in a sample diluent buffer (1:25 for GRP78, 
1:8 for MANF, 1:2 for α-synuclein, 1:3,000 for clusterin) 
and 100 μl were added in duplicate into wells. For the 
GRP78 ELISA, 50 μl of antibody were added into each 
well, except the blank wells. The plates were incubated 
at room temperature for 1 h with shaking. The wells were 
washed 5 times with 300 μl 1 × wash solution except for 
the GRP78 ELISA. After the final wash, any remaining 
solution was removed. A secondary antibody solution 
was added into each well (100 μl for detection of MANF, 
clusterin, calreticulin, PDIA1, and PDIA3 or 50 μl for 
detection of GRP78). The plates were incubated for 1 h 
at room temperature on a shaker. The wells were washed 
5 times. Substrate solution (100 μl or 200 μl for GRP78 
detection) was added and plates were incubated for up 
to 30 min at room temperature with shaking. The plates 
were sealed at every incubation step. The stop solution 
(100 μl or 50 μl for GRP78 detection) was pipetted into 
each well. The absorbance at 450 nm was measured using 
a VICTOR3™ Multilabel Plate Reader (Perkin Elmer, 
MA, USA). For the calculation of protein concentration, 
the mean absorbance of the blank was subtracted from all 
readings. The protein concentrations were interpolated 
from the standard curve and multiplied by the respec-
tive dilution factor. The standard curve was generated by 
plotting the mean absorbance of the standards against the 
known concentration of the standards in a logarithmic 
scale, using the four-parameter algorithm.

Statistical Analysis

Quantitative variables were compared using an unpaired 
two-tailed t-test with Welch’s correction. P-values were 
considered significant if p < 0.05. Patient information 
including serum levels of ER stress-regulated chaper-
ones were used to build a statistical model to predict PD. 
Biomarker concentrations were adjusted between plates 
for the biomarkers that showed a significant difference 
between the plate means.

For oligomerized α-synuclein, 31% of the values 
were below the detection limit of the analytical proce-
dure. These values called censored were different from 
missing values as they lie between zero and the detection 

limit. Cohen’s method was used for the imputation of data 
below the detection limit considering the sample size and 
the percentage of censoring [62]. The data were imputed 
using the inverse cumulative normal distribution with the 
adjusted sample mean and standard deviation using the 
maximum likelihood estimation.

The stepwise variable selection technique was used to 
identify a combination of biomarkers which could distin-
guish Parkinson’s disease patients from the control group 
[63]. The effects of selected biomarkers were modelled 
using logistic regression [64]. Ten-fold cross validation 
was used for internal validation of the models to confirm 
that no patient was used to both develop and test the model 
[65]. Ten-fold cross validation involves randomly divid-
ing the data into ten evenly sized subgroups (fold). The 
data from the first nine folds were used for modelling and 
applied to the tenth fold as the validation set. The model 
building and validation process was repeated ten times 
with each fold of patients used once as the validation set. 
The accuracy of the models was determined using the area 
under the curve (AUC) calculated from the receiver opera-
tor characteristic (ROC) by plotting the sensitivity and 
specificity at each of its risk thresholds [66]. The closer 
the AUC value to 1, the better the panel of biomarkers can 
distinguish PD patients from the control group. Decision-
curve analysis was also undertaken to examine the poten-
tial net benefit of the application of each model where 
a higher net benefit value shows improvement in disease 
detection [67].
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