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Abstract
Despite annual increases in the incidence and prevalence of neurodegenerative diseases, there is a lack of effective treatment 
strategies. An increasing number of E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) have been observed 
to participate in the pathogenesis mechanisms of neurodegenerative diseases, on the basis of which we conducted a sys-
tematic literature review of the studies. This review will help to explore promising therapeutic targets from highly dynamic 
ubiquitination modification processes.
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Introduction

The increasing prevalence of neurodegenerative diseases is 
partly due to increasing human lifespans. However, there is 
currently a lack of definitive treatment or cure. Although 
some drugs, surgery, and multidisciplinary treatment can 
relieve symptoms, their pathogenesis and therapeutic targets 
require further research [1, 2].

Ubiquitination is the covalent attachment of ubiquitin 
(Ub) to lysine residues of the substrate [3]. Initially, most 
scientists believed lysosomes were the only mechanism for 
degrading proteins that did not require energy. By the late 
1970s and early 1980s, scientists Hershko, Ciechanover, and 
Rose discovered that a polypeptide called ubiquitin plays 
an important role in energy-dependent protein degradation. 
They further discovered the mechanism of the ubiquitin-
dependent protein-degrading system and were awarded 
the Nobel Prize [4–6]. As an enzymatic, posttranslational 
modification, ubiquitination is involved in several critical 
biological processes, such as proteasomal degradation of 
proteins, signal transduction, the cell cycle, transcriptional 
regulation, and DNA repair [7, 8]. Ubiquitination occurs 

through a three-step sequential enzymatic cascade mediated 
by E1 ubiquitin-activating enzymes (E1s), E2 ubiquitin-con-
jugating enzymes (E2s), and E3 ubiquitin ligases(E3s). Deu-
biquitinating enzymes (DUBs) catalyze Ub removal from 
targeted substrates [7, 9]. Complicated and diverse topolo-
gies of ubiquitin chains provide a structural basis for the 
transmission of biological signals. Additionally, ubiquitin 
can bind to different sites and be modified by other post-
translational modification processes, such as acetylation and 
phosphorylation [10]. Specific E3 ubiquitin ligases (E3s) 
and DUBs play key regulatory roles as “pens” and “erasers,” 
respectively. They regulate the structure and properties of 
ubiquitin chains, forming complex and diverse signal trans-
duction systems that tightly regulate important processes in 
living organisms [11].

In the aging process, the balance between ubiquitination 
and deubiquitination strictly regulates neuronal homeostasis 
and has a profound impact on neuronal survival. A hallmark 
of various neurodegenerative diseases is an abnormal accu-
mulation of neurotoxic proteins, such as α-synuclein in Par-
kinson’s disease (PD), amyloid-β (Aβ) and tau in Alzheimer’s 
disease (AD), and mutant huntingtin (mHTT) in Huntington’s 
disease (HD) [12–15]. E3s and DUBs are closely linked to 
the clearance and degradation of proteins, such as proteaso-
mal degradation, autophagy, and endoplasmic reticulum (ER) 
phagocytosis, which suggests that their dysfunction contrib-
utes to the pathology of neurodegenerative diseases [11, 16]. 
Furthermore, E3s and DUBs convey complex and unique 
biological signals that regulate cellular processes associated 
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with the pathology of neurodegenerative diseases, such as 
mitochondrial function, excitotoxicity, and immune inflam-
mation [11, 17]. The roles of E3s and DUBs in neurodegen-
erative diseases have been extensively investigated (Tables 1 
and 2; direct interactors/substrates of E3s/DUBs; for each 
disease, the list is sorted alphabetically by E3s/DUBs).

In this review, we summarize the emerging roles of E3s 
and DUBs in neurodegenerative diseases and elaborate on 
the pathogenesis from the perspective of ubiquitin signaling 
regulation to identify promising therapeutic targets (Fig. 1).

E3s Involved in Neurodegenerative Diseases

Three enzymes play vital roles in the ubiquitination 
machinery. A high-energy thiol ester bond is formed 
between the cysteine residue of E1 and the glycine resi-
due of ubiquitin, which is powered by ATP. The activated 
ubiquitin is then transferred to the cysteine residue of 
E2. E3 catalyzes the final step of the ubiquitin cascade 
by transferring E2-bound ubiquitin to substrates. It cata-
lyzes the isopeptide bond between the glycine residue 

Table 1   E3s in neurodegenerative diseases

Only the direct interactors/substrates for E3s and DUBS are listed. For each disease, the list is sorted alphabetically by “E3 ligase”

Disease E3 ligase Interactor/substrate Functional implication of the E3 ligase Reference

PD CHIP α-synuclein Promote the degradation of α-synuclein by UPS or lysosomes [18]
PD CHIP G2385R LRRK2 Promote G2385R LRRK2 degradation [19]
PD Nedd4 α-synuclein Promote α-synuclein degradation [20]
PD Parkin NEMO Upregulate mitochondrial OPA1 transcription to maintain mitochon-

drial integrity
[21, 22]

PD Parkin RIPK1 Activate NF-κB and MAPKs [23]
PD Parkin Multiple targets Induce mitophagy [24]
AD CHIP BACE1 Reduce APP processing [25]
AD Tau Promote tau proteins degradation [26]
AD CRL BRI2/3 Inhibit APP processing and Aβ oligomerization [27]
AD Itch Tap73 Regulate cell cycle [28]
AD Mdm2 Cav1.2 Regulate calcium homeostasis [29]
AD PIAS1 Endogenous APP Reduce Aβ and amyloid deposition [30]
HD CHIP mHTT Promote mHTT degradation [31]
HD FBXW7 HSF1 Promote HSF1 degradation [32]
HD HACE1 NRF2 Increase antioxidant capacity [33]
HD HOIP mHTT Promote mHTT degradation [34]
HD PIAS1 HTT Regulate PNKP activity [35]
HD UBE3A mHTT Promote the degradation of mHTT by UPS [36]
ALS CHIP Mutant SOD1 Promote mutant SOD1 degradation [37, 38]
ALS GP78 Mutant SOD1 Promote mutant SOD1 degradation [39]
ALS SYVN1 OPTN Promote the degradation of OPTN by UPS [40]

Table 2   DUBs in neurodegenerative diseases

Only the direct interactors/substrates for E3s and DUBS are listed. For each disease, the list is sorted alphabetically by “DUB”

Disease DUB Interactor/substrate Functional implications of the DUB Reference

PD USP8 α-synuclein Prevent lysosomal degradation of α-synuclein [41]
PD USP10 P62 Induce synaptic aggregates formation [42]
PD USP24 ULK1 Downregulate autophagic flux [43]
PD USP33 Parkin Inhibit mitophagy [44]
AD OTUB1 Tau Promote tau protein stability and aggregation [45]
AD USP46 AMPARs Regulate synaptic receptor levels [46]
HD ATXN3 Beclin-1 Regulate autophagy [47]
ALS USP7 Nedd4L Regulate SMAD-mediated protein quality control system [48]

248 Molecular Neurobiology (2023) 60:247–263



1 3

of ubiquitin and the lysine residue in the substrate. The 
cascade is repeated until a complete ubiquitin chain is 
assembled [7, 9].

E3s are the most critical and heterogeneous enzymes 
involved in the process of ubiquitination; they specifi-
cally recognize target proteins. Bioinformatics analysis 
has revealed that the human genome encodes more than 
600 E3s [49]. Based on different characteristic domains 
and ubiquitin transfer mechanisms, there are primarily 
three types of E3s, namely, the really interesting new gene 
(RING), homologous to the E6AP C-terminus (HECT), 
and the RING-between-RING (RBR) E3s [49]. Recent 
studies indicate that U-box-containing proteins form 
another class of E3s. The U-box structure is similar to 
the RING domain except that it lacks zinc-binding mods 
and requires a salt bridge to become stable [50].

E3s in PD

PD was first described as “shaking palsy” in 1817 by James 
Parkinson, a British physician [51]. It is the second most 
common neurodegenerative disease characterized by motor 
symptoms, including bradykinesia, muscular rigidity, gait 
impairment, postural impairment, and rest tremor. In addi-
tion to motor symptoms, non-motor features also commonly 
accompany PD. Non-motor features include psychiatric 
symptoms, olfactory dysfunction, sleep disorders, cognitive 
impairment, autonomic dysfunction, fatigue, and pain [52].

In the early twentieth century, spherical eosinophils 
named Lewy bodies were detected in patients’ substantia 
nigra neurons and were the first pathologic feature of PD 
to be identified [53]. In the late 1950s, Carlsson discovered 
that dopamine is an important neurotransmitter in brain tis-
sue and that its deficiency contributes to the occurrence and 
development of PD [54]. PD is currently characterized by 
dopamine neuronal death in the substantia nigra pars com-
pacta and amyloid-like aggregate formation of α-synuclein, 
also known as Lewy bodies [55, 56]. Mutations in leucine-
rich repeat kinase 2 (BACCdk), parkin (PARK2), and PTEN-
induced kinase 1 (PINK1) are the most frequently known 
etiologies of familial PD [57, 58]. There is extensive evidence 
documenting the correlation between E3- and DUB-regulated 
ubiquitination modification and pathogenic mutations in PD.

E3s Linked to α‑Synuclein in PD

The carboxy-terminus of Hsc70-interacting protein (CHIP) 
is a dimeric U-box E3 ligase that is widely expressed in the 
central nervous system. It is closely related to the patho-
genesis of neurodegenerative diseases [26]. CHIP degrades 
α-synuclein directly by targeting the ubiquitin-proteasome 
system (UPS) through the tetrapeptide repeat domain 
and mediates lysosomal phagocytosis through the U-box 
domain. It differentially influences abnormal protein aggre-
gates through the protein quality control function of Hsp70/
Hsp90-based chaperone machinery. The amino-terminal 
TPR domain of CHIP binds to either Hsp70 or Hsp90 and 
exerts opposite effects on target proteins. Hsp70 promotes 
CHIP-mediated UPS activity, whereas Hsp90 plays the 
opposite role by inhibiting ubiquitination and stabilizing 
the substrate [18].

Neural precursor cell expressed, developmentally down-
regulated 4 (Nedd4) belongs to the NEDD-type HECT ligase 
family. NRBPIt has been observed that Nedd4 ubiquitinates 
α-synuclein directly and promotes homeostasis of endoso-
mal transport in Lewy bodies in brain samples collected 
from PD patients [20]. N-aryl benzimidazole (NAB2), a 
compound targeting Nedd4, can effectively reduce the aggre-
gation and toxicity of α-synuclein [59].

Fig. 1   E3 ubiquitin ligases and DUBs act as “pens” and “erasers” to 
write the ubiquitin code and are involved in the regulation of protein 
homeostasis, autophagy, mitochondrial biology, endoplasmic reticu-
lum homeostasis, DNA repair, cell cycle regulation, and other physi-
ological processes. They are closely associated with the occurrence 
and development of neurodegenerative diseases. DUB, deubiquitinat-
ing enzyme; E1, E1 ubiquitin-activating enzyme; E2, E2 ubiquitin-
conjugating enzyme; E3, E3 ubiquitin ligase; Ub, ubiquitin. This 
schematic is created with BioRender.com
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E3s Linked to Mitochondrial Function in PD

Some studies suggest that deficiency in mitophagy and 
mitochondrial dynamics contributes to the pathology 
of PD [24, 60–62]. Mitophagy is a type of selective 
autophagy that depends on polyubiquitination modifica-
tion. Parkin is an RBR E3s and acts as a key regulator 
of mitophagy. In depolarized mitochondria, accumulated 
PINK1 on the mitochondrial outer membrane phosphoryl-
ates ubiquitin to stimulate parkin and recruit it to mito-
chondria [63, 64]. Parkin assembles ubiquitin chains (Lys 
6, Lys 11, and Lys 63) on the outer membrane of damaged 
mitochondria and mediates mitochondrial sequestration 
through interaction with adaptor proteins on the separation 
membrane [64–66]. Several mitochondrial-mapped DUBs 
constantly function against this process by deconstructing 
ubiquitin chains from mitochondria until parkin’s ubiquitin 
activity takes over. For example, ubiquitin-specific pro-
tease 30 (USP30) prefers removing K6- and K11-linked 
polyubiquitin chains [65, 66].

In addition to parkin, mutations in LRRK2 are another 
common genetic cause of familial PD [57]. Under ER stress, 
LRRK2 regulates the activities of E3 ubiquitin ligases in a 
PERK kinase activity-dependent manner, including mem-
brane-associated ring finger (C3HC4) 5 (MARCH5), MUtabil-
ity LANdscape inference (MULAN), and parkin. MARCH5, 
MULAN, and parkin localize to mitochondria and ubiquit-
inate mitochondria-associated membrane (MAM) components 
to regulate MAM formation and mitochondrial genesis [19]. 
CHIP ubiquitinates different regions of LRRK2, thereby medi-
ating its degradation. G2385R LRRK2 has a higher affinity for 
CHIP than wild-type LRRK2 [19]. These findings suggest that 
CHIP is an ideal candidate target for PD treatment.

Multiple familial Parkinson’s disease–related gene studies 
conducted on several populations have identified mutations 
in F-box domain-containing protein (Fbxo7) [67], which is 
the substrate recognition component of the Skp1-Cullin-F-
box protein E3 ubiquitin ligase complex [68]. Studies on 
Fbxo7 in PD have primarily focused on the maintenance 
of mitochondrial function. Stress upregulates endogenous 
Fbxo7 expression, which in turn induces Fbxo7 aggregates 
in mitochondria and impairs mitochondrial bioenergetics. 
High expression and aggregation of Fbxo7 have been found 
in brains from PD or AD patients. However, Fbxo7 defects 
induce NAD+ deficiency and poly (ADP-ribose) polymer-
ase (PARP) overactivation, eventually resulting in impaired 
mitochondrial respiration and mitochondrial dysfunction 
[68]. In addition, recent studies found reduced proteasome 
activity and early‐onset motor deficits together with prema-
ture death in Fbxo7 knockout mice [69]. The role of Fbxo7 
expression in mitochondria and PD requires further explora-
tion to reach consensus.

E3s Linked to Neuroinflammation in PD

In PD, there is ongoing and end-stage neuroinflammation, 
as demonstrated by neurohistological and neuroimaging 
studies. In addition, changes in inflammatory markers and 
immune cell populations may initiate or exacerbate neuro-
inflammation and perpetuate neurodegenerative processes 
[70]. Mitochondrial stress in PINK1- and parkin-knockout 
mice leads to STING-mediated type I interferon responses, 
which supports a role for PINK1/parkin-mediated mitophagy 
in restraining innate immunity [61]. Recruitment of parkin 
into mitochondria also increases linear ubiquitination of 
nuclear factor-kB (NF-kB) essential modulator (NEMO), 
which then upregulates transcription of mitochondrial 
guanosine triphosphatase optic atrophy 1 (OPA1) to main-
tain mitochondrial integrity. This mechanism links NF-kB to 
mitochondrial integrity through linear ubiquitination [21]. In 
addition, parkin also modulates the K63 ubiquitination status 
of RIPK1 to promote the activation of NF-κB and mitogen-
activated protein kinases (MAPKs) [23].

E3s Linked to Excitotoxicity in PD

Excitotoxicity is prevalent in various neurodegenerative dis-
eases [71]. Activity of the Nedd4-2 ubiquitin ligase medi-
ates abnormal transport of glutamate translocator induced 
by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 
and upregulates excitotoxicity. Knockdown of Nedd4-2 was 
found to improve motor dysfunction and glial proliferation 
in MPTP-treated mice [72].

E3s Linked to ER Stress in PD

Mutation of parkin is a genetic cause of PD. Pael receptor 
(Pael-R) is a substrate of parkin and leads to ER stress when 
it accumulates in the ER of dopaminergic neurons. CHIP 
enhances the dissociation of Hsp70 from parkin and Pael-
R, accelerating Pael-R ubiquitination mediated by parkin. 
Overexpression of CHIP enhances parkin-mediated ubiq-
uitin degradation of Pael-R, which inhibits neuronal death 
induced by ER stress [26].

E3s Linked to Apoptosis in PD

X-linked IAP (XIAP) is the most widely expressed IAP 
and has three BIR domains and one ring domain. The 
BIR domain possesses anti-caspase activity, and the ring 
domain mediates the E3 ubiquitin ligase activity of XIAP 
[73]. The RING domain of XIAP can be S-nitrosodized by 
nitric oxide. S-nitrosylated XIAP has been detected in the 
brains of patients with various neurodegenerative diseases. 
In PD patients and animals, increased nitrosylation impairs 
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the anti-apoptotic ability of XIAP, but does not affect its 
E3 ubiquitin ligase activity [74]. However, another study 
claimed that S-nitrosylation of XIAP downregulates its own 
E3 ligase activity, thereby negatively regulating the anti-
apoptotic function of XIAP [75]. Its role as an E3 ligase in 
PD remains unclear.

E3 Ligases in AD

Alzheimer’s disease (AD) is a progressive neurodegenerative 
disease and the most common form of dementia. The clinical 
features of the patient are initial memory impairment and 
cognitive decline, and later impairment of behavior, visuos-
patial orientation, and motor system [76]. Extracellular Aβ 
plaques and intracellular neurofibrillary tangles containing 
tau proteins were discovered in the brains of AD patients in 
1984 and 1986 respectively, and they were established as the 
pathological diagnostic criteria for AD [77, 78].

E3s Linked to Aβ and Tau in AD

CHIP is essential for amyloid-β precursor protein (APP)-
induced autophagy dysfunction. Depletion of CHIP effec-
tively alleviates pathological symptoms induced by APP 
in flies. β-site app-cleaving enzyme 1 (BACE1) catalyzes 
the rate-limiting step of Aβ generation and is considered 
to be a prime target for AD [79]. Nevertheless, CHIP over-
expression downregulates BACE1 by promoting ubiqui-
tin-dependent degradation, thus reducing APP processing. 
This process is dependent on the U-box and TPR domains 
of CHIP [26]. This means that CHIP is two-sided, both 
inhibiting APP clipping and contributing to APP-induced 
autophagy dysfunction [25]. In AD, CHIP overexpression 
directly ubiquitinates and degrades tau proteins and reduces 
their phosphorylation. CHIP is more susceptible to conju-
gate tauD421 proteins than to full-length tau. CHIP inhibits 
caspase-6 ubiquitin independently, which contributes to the 
homeostasis of tau. Interestingly, a study demonstrated that 
CHIP mediates the effects of Aβ on tau proteins. Aβ42 
downregulates CHIP expression and hinders tau protein 
degradation, which can be alleviated by restoring CHIP 
expression. These studies confirm that CHIP mutations 
play an essential role in AD pathology [26].

Homodimeric nuclear receptor binding protein 1 
(NRBP1) assembles into Cul2- and Cul4A-containing 
heterodimeric Cullin-RING ubiquitin ligase (CRL). 
NRBP1-containing CRL2/CRL4A targets integral mem-
brane protein 2b (ITM2b, also known as BRI2) and brain 
protein I 3 (BRI3) for degradation, which inhibits APP 
processing and Aβ oligomerization [27]. BRI2 depends 
on its extracellular Brichos domain to reduce Aβ aggre-
gation and tau phosphorylation in AD. A BRI2 mutant 

designed with a stable monomer state effectively pro-
tected against Aβ42-induced neurotoxicity [80]. In AD, 
both BRI2 and BRI3 reduce Aβ and amyloid deposition 
in lesions. However, the effects exerted by BRI2 and 
BRI3 are inconsistent. The efficiency of the Brichos 
domain of BRI3 in reducing Aβ production and neu-
rofibrillary tangle formation is significantly lower than 
that of the domain of BRI2 [81, 82].

Protein inhibitor of activated STAT 1 (PIAS1) ubiquit-
inates the endogenous APP intracellular domain to enhance 
its combination with Fe65 and nuclear translocation, lead-
ing to a reduction in Aβ and amyloid deposition, as well 
as the activation of neprilysin and transthyretin, two major 
Aβ-degrading enzymes, respectively [30]. PIAS1 also 
mediates SUMOylation of the ETS transcription fac-
tor ELK1, an endogenous defense regulator against Aβ 
in APP/PS1 mice [83]. RNA sequencing was conducted 
to evaluate and quantify the gene expression profiles in 
response to PIAS1 overexpression in HT-22 cells. Five 
transcription factor–binding site genes that were sig-
nificantly downregulated were identified, including early 
growth response 1 (Egr1), a downstream target of NF-kB 
in neurons. In this study, the authors constructed a regula-
tory network for PIAS1 overexpression, including nuclear 
receptor subfamily 3 group C member 2 (NR3C2), which 
directly interacts with PIAS1. However, further studies on 
these downstream targets are necessary [84].

Recent studies have demonstrated that E3 ubiquitin 
ligase activity is related to the phagocytosis of Aβ aggre-
gates through microglial cells in AD. Pellino E3 ubiqui-
tin protein ligase 1 (Peli1) is upregulated in the micro-
glia of 5 × FAD mice and directly ubiquitinates CCAAT/
enhancer-binding protein β (C/EBPβ) to inhibit its func-
tion in blocking CD36 transcription. Consequently, Aβ 
phagocytosis by microglia is decreased [85].

E3s Linked to Mitochondrial Function in AD

PARK2 mutations can be detected in patients with 
tauopathies [86, 87]. In transgenic mice with overex-
pression of mutant human FTDP-17 Tau and knockout 
of PARK2, parkin deficiency results in abnormal hyper-
phosphorylated tau protein aggregates [88]. Impaired 
mitochondrial clearance occurs early in AD progres-
sion, and several studies have examined the regulation 
of mitophagy by parkin in AD [89–91]. Pathological 
tau proteins disrupt mitochondrial physiology, includ-
ing mitochondrial quality control, by inhibiting parkin 
recruitment into defective mitochondria. Tau pathology 
and mitochondrial disorders promote each other, forming 
a vicious cycle [87].
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E3s Linked to Calcium Overload in AD

Cav1.2 plays a vital role in calcium overload and neuronal 
death in AD [29, 92]. In APP/PS1 double-mutant mice, 
the E3 ligase MDM2 proto-oncogene (Mdm2) facilitates 
Cav1.2 ubiquitination and degradation in vivo, and ulti-
mately improves cognitive function. The expression of 
Mdm2 can be upregulated by estrogen receptor α (ERα) 
agonists [29]. Another Nedd4 family member, Nedd4-1, is 
required by Aβ to reduce the density and synaptic strength 
of AMPA receptors on the plasma membrane [93, 94].

E3s Linked to the Cell Cycle in AD

Anaphase-promoting complex/cyclosome (APC/C) is 
a multisubunit E3 ubiquitin ligase that regulates cell 
cycle by assembling multiubiquitin chains onto regula-
tory proteins and degrading them. Cyclin B1, which is 
the substrate of the E3 ligase APC/C, has been found to 
accumulate in brain lesions of AD patients. In cortical 
neurons with NMDA receptors overstimulation, cyclin-
dependent kinase-5 (Cdk5) mediates the phosphorylation 
of Cdh1 and inactivates downstream APC/C, ultimately 
resulting in the accumulation of cyclin B1 in the nucleus. 
Cyclin B1 accumulation induced apoptosis in neurotoxic-
ity [95]. Aβ treatment induces increased levels of super-
natant glutamate in primary neurons. In the absence of the 
APC/C-Cdh1 complex, neurons tend to suffer excitotoxic-
ity induced by glutamate. Pharmacological inhibition of 
glutaminase, a known target of ubiquitin ligase, reverses 
this process [96].

In AD mice and Aβ42-treated neurons, the Nedd4 family 
E3 ligase Itch exerts a regulatory role in the apoptosis of 
terminally differentiated neurons induced by the abnormal 
cell cycle [28]. In Aβ42-treated neurons or neurons from 
an AD transgenic mouse model, secondary to the activation 
of the JNK pathway, Itch hyperphosphorylation induces its 
own ubiquitination, thereby promoting TAp73 degradation. 
TAp73 participates in the transcription of genes that inhibit 
cell cycle progression and negatively regulate neuronal 
apoptosis caused by cell cycle re-entry [28].

E3 Ligases in HD

HD is an inherited neurodegenerative disorder character-
ized by movement disorders (most common dance form), 
neuropsychiatric symptoms, and progressive cognitive 
impairment [97]. The pathological hallmark of HD is an 
expansion mutation of trinucleotide CAG​ in exon 1 of 
the huntingtin gene (HTT) [98]. The gene is localized to 

human chromosome 4 by genetic linkage [99]. Mutant HTT 
(mHTT) is abnormally modified after translation, resulting 
in disturbed transcription and immune and mitochondrial 
functions. Mutant HTT is the earliest biomarker that can be 
detected in the serum of patients with HD [15].

E3s Linked to mHTT in HD

In astrocytes, increased activity of monoubiquitinated CHIP 
promotes the K48-linked polyubiquitination and degrada-
tion of mHTT. However, in neurons, CHIP activity is inhib-
ited by high expression of HSPA (Hsp70)-binding protein 
1 (HspBP1). This may be the reason why neurons are more 
sensitive to external stress than astrocytes in HD and other 
neurodegenerative diseases [31].

The Skp1-Cul1-F-box (SCF) complex is one of the most 
typical ubiquitin ligases and plays a role in maintaining the 
integrity of postmitotic neurons. SCF deficiency contrib-
utes to the pathology of polyglutathione (polyQ) diseases. 
In R6/2 transgenic mouse models of HD, Cul1 and Skp1 are 
downregulated. Overexpression of Cul1 exerts a dominant 
negative effect on mutant huntingtin aggregation [100].

Ubiquitin protein ligase E3 component n-recognin 5 
(UBR5) is a HECT domain E3 ligase. Studies conducted 
on Caenorhabditis elegans and human cell lines have dem-
onstrated that UBR5 promotes proteasomal amplification of 
normal and polyQ-amplified HTT, depending on its ubiquit-
ination activity. Silent UBR5 results in mHTT aggregates in 
HD iPSCs. Other E3s highly expressed in iPSCs have not been 
reported to exert such a role, such as UBR7, ubiquitin protein 
ligase E3A (UBE3A), and RNF181. They deserve attention 
and study [101].

Heat shock transcription factor 1 (HSF1) expression 
plays a vital role in the clearance of mHTT aggregates and 
is significantly reduced in brains from HD patients. In HD 
mouse models, mHTT upregulates F-box and WD repeat 
domain-containing 7 (FBXW7), resulting in the degradation 
of HSF1 via ubiquitin-dependent degradation. Phosphoryla-
tion of S303 and S307 by CK2α′ kinase is required for the 
interaction of HSF1 with Fbxw7, which is responsible for 
ubiquitin-dependent degradation of HSF1 in pathogenic 
polyQ-expressing cells and tissues [32].

PIAS1 is believed to selectively regulate the accumula-
tion of mHTT and sumoylated proteins. PIAS1 specificity 
enhances HTT modification by SUMO-1 and SUMO-2, lead-
ing to increased insoluble HTT aggregation. PIAS1 deficiency 
is found to significantly improve the behavioral phenotype 
and microglial activation in the R6/2 HD mouse model [102, 
103]. PIAS1 also interacts with HTT to regulate polynucleo-
tide kinase–phosphatase (PNKP) activity and genomic sta-
bility in vivo. PIAS1 deletion upregulates PNKP activity, an 
important protein for DNA damage repair (DDR) in HD. The 
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PIAS1-DDR pathway is important for the progression of HD 
[35].

UBE3A is decreased in aged mouse brain. Aging-dependent 
UBE3A levels result in differential ubiquitination and degrada-
tion of HTT fragments, thereby contributing to the age-related 
neurotoxicity of mHTT. In both in vitro and in vivo HD models, 
the E3 ligase UBE3A degrades mHTT by K63-mediated ubiq-
uitination and targets it to the UPS [36].

E3s Linked to Antioxidants in HD

In striatal tissue from HD patients, HECT domain and 
ankyrin repeat–containing E3 ubiquitin protein ligase 1 
(HACE1) expression levels are downregulated. A study 
demonstrated that HACE1 can activate nuclear factor 
erythroid 2 like 2 (NRF2) and increase its antioxidant 
capacity by promoting NRF2 protein synthesis, stabili-
zation, and nuclear localization. This requires HACE1 
ankyrin repeats as well as its HECT domain, but is inde-
pendent of its E3 ubiquitin ligase activity [33].

In the polyubiquitin chain, the C-terminal glycine of 
donor ubiquitin is generally connected to one of the seven 
lysine residues of receptor ubiquitin by an isopeptide bond 
or to the N-terminal methionine of receptor ubiquitin by a 
peptide bond, causing linear or M1 ubiquitination [104]. 
This type of ubiquitin ligation is generated only by a ubiq-
uitin E3 ligase complex known as the linear ubiquitin chain 
assembly complex (LUBAC), which is to date the only E3 
ligase capable of forming linear ubiquitin chains. LUBAC 
consists of two RBR E3s, HOIP and RanBP-type and 
C3HC4-type zinc finger containing 1 (Rbck1, also known 
as HOIL-1 L) [105]. HOIP is the catalytic active component 
of LUBAC and the only known E3 ubiquitin enzyme that 
can assemble linear ubiquitin chains because of a unique 
ubiquitin-binding domain between its C-terminal and RBR 
domains [106]. In HD, linear ubiquitin chains are enriched 
in HTT aggregates. HOIP is collected into misfolded HTT 
aggregate through its N-terminal PUB domain in a P97/
VCP-dependent manner, thus promoting the effective 
recruitment of chain quality control components. HOIP-
catalyzed linear ubiquitination can enhance the clearance 
of HTT-polyQ and reduce protein toxicity [34].

E3 Ligases in ALS

ALS is an adult-onset motor neuron disorder that is 
characterized by progressive motor symptoms, such as 
muscle weakness, muscle atrophy, and spasticity [107]. 
The dominant mutant superoxide dismutase 1 (SOD1) is 
the first gene identified to cause ALS. Misfolded SOD1 

forms ubiquitinated cytoplasmic inclusions that accumu-
late as the disease progresses. In parallel, another mecha-
nism is the aggregation of TAR DNA-binding protein 
(TARDBP, also known as TDP43) in the cytoplasm due 
to mutations in TARDBP and repeated amplification of 
C9orf72 [108].

E3s Linked to Mutant SOD1 in ALS

SOD1 mutation is one of the common mutational causes of 
familial ALS [109]. CHIP selectively and indirectly pro-
motes the degradation of mutant SOD1, but it has no signifi-
cant impact on wild-type SOD1, which is dependent on the 
HSP-mediated chaperone mechanism [37, 38].

Ring finger protein 19A (Rnf19a, also known as dorfin) 
is the first identified E3 ligase that can specifically ubiq-
uitinate SOD [26]. Previous results indicated that dorfin 
ubiquitylates mutant SOD1 and improves disease pheno-
types. However, there has been limited new research since 
then [37].

GP78 is a RING E3 that can promote proteasome-
dependent degradation of mutant SOD1 proteins and is 
involved in ER-related degradation. GP78 expression is 
upregulated in cells transfected with mutant SOD1 as well 
as in ALS mice [39]. Overexpression of GP78 promotes 
ubiquitination and degradation of SOD1 and protects cells 
against mutant SOD1 and ataxin-3-induced ER stress and 
neurotoxicity [39].

E3s Linked to TDP43 in ALS

CCNF mutations exist in patients with sporadic ALS. CCNF 
encodes cyclin F, a component of an E3 ubiquitin ligase 
SCFcyclin F complex that is responsible for ubiquitylating pro-
teins for degradation by the UPS. Mutant cyclin F disrupts ubiq-
uitylation at Lys48, resulting in the accumulation of substrates 
and autophagic defects that are implicated in ALS pathogenesis. 
Mutant cyclin F has also been reported to cause abnormal ubiq-
uitination and accumulation of TDP43 [110, 111].

E3s Linked to Mutant OPTN in ALS

Synoviolin 1 (SYVN1) promotes ubiquitin–proteasome-
dependent degradation of misfolded proteins in the ER-
associated process [40]. Mutations in OPTN are associated 
with ALS. In two variants of OPTN, E50K OPTN is found 
to be more unstable than the other variant, E478G OPTN. 
SYVN1 induces ubiquitination-dependent degradation of 
wild-type and E50K OPTN. Interestingly, when UPS is 
blocked, SYVN1 may instead promote the aggregation of 
wild-type and E478G OPTN [112]. The exact underlying 
mechanism remains unclear.
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DUBs Involved in Neurodegenerative 
Diseases

DUBs can specifically remove ubiquitin from substrates to 
reverse the ubiquitination process. Monomeric modifiers 
produced by DUBs process ribosome fusion and polyubiq-
uitin cassettes to generate free ubiquitin. The former is a 
mechanism whereby resting cells maintain ubiquitin, and the 
latter can rapidly release ubiquitin under stress. Free ubiqui-
tin is then captured by ubiquitination machinery to maintain 
the operation of the ubiquitination system [7].

In mammals, approximately 100 DUBs depolymerize 
and remove ubiquitin adducts. DUBs are divided into six 
families according to the conserved sequence and domain 
as follows: ubiquitin-specific proteases (USPs); ubiquitin 
carboxy-terminal hydrolases (UCHs); Machado–Josephin 
domain-containing proteases (MJDs); ovarian tumor pro-
teases (OTUs); motif-interacting with ubiquitin-containing 
novel DUB family (MINDYs); and JAB1, MPN, MOV34 
family (JAMMs). DUBs are cysteine peptidases, except for 
JAMM, which is a zinc metallopeptidase [113].

DUBs in PD

DUBs Linked to α‑Synuclein in PD

Mass spectrometry studies have demonstrated the pres-
ence of OTU deubiquitinase, ubiquitin aldehyde binding 
1 (OTUB1) in Lewy bodies of PD patients, and in amy-
loid plaques of AD patients [45, 114]. OTUB1 has several 
intrinsic properties of amyloid, forming inclusion bodies in 
neurons during rotenone-induced cytotoxicity. This oligomer 
destroys the neuronal membrane and cytoskeleton and 
simultaneously upregulates the expression of α-synuclein. 
This suggests that OUTB1 is cytotoxic and contributes to PD 
pathologically by forming α-synuclein [45].

YOD1 deubiquitinase (YOD1) is an important deubiqui-
tination enzyme involved in ER stress–induced degradation 
[115]. It has been found that YOD1 is upregulated by both 
mutant mHTT and aggregated α-synuclein. The location of 
YOD1 has been observed in the Lewy bodies of patients 
with PD [116]. YOD1 inhibits Lewy body formation and its 
toxicity through deubiquitination activity [117].

In DA neurons, ubiquitin-specific protease 8 (USP8) is 
located in the Lewy body and uncouples the K63-linked 
ubiquitin chain on α-synuclein. It prevents lysosomal deg-
radation of the aggregating proteins and increases their 
toxicity, which may be the key mechanism underlying 
α-synuclein accumulation [41]. Therefore, USP8 may con-
tribute to the occurrence and development of PD pathology.

Ubiquitin regulates the distribution of α-synuclein in 
different protein degradation systems. Monoubiquitination 

preferentially mediates proteasome-dependent degra-
dation, whereas deubiquitination more likely induces 
autophagy. In general, when monoubiquitination is domi-
nant, the α-synuclein level is downregulated, and when 
deubiquitination prevails, the event goes the other way, 
suggesting that UPS is the primary pathway for the deg-
radation of α-synuclein [118]. In PD, ubiquitin-specific 
protease 9X (USP9X)-mediated deubiquitination regulates 
the degradation of α-synuclein. In the substantia nigra 
of PD patients, both the expression and deubiquitinase 
activity of USP9X are found to be significantly reduced, 
and α-synuclein tends to be allocated to the proteasome 
compartment. Impaired proteasome function in PD causes 
aggregative monoubiquitination of α-synuclein. In this 
case, enhanced autophagy coupled with activation of 
USP9X deubiquitinase activity may alleviate symptoms 
by enhancing degradation [118, 119].

Previous research has demonstrated that ubiquitin-spe-
cific protease 10 (USP10) interacts with P62 in PD to induce 
the formation of synaptic aggregates, including α-synuclein 
[42]. Overlocalization of USP10 with toxic protein aggre-
gates has been found in the brains of both PD and AD 
patients. This finding suggests that USP10 is a key factor in 
regulating the production of harmful aggregates and their 
toxic effects in neurodegenerative diseases [120].

Ubiquitin-specific protease 13 (USP13) overexpression 
can be observed in PD patient brains. USP13 knockdown 
increases α-synuclein ubiquitination and leads to clear-
ance of α-synuclein-containing vacuoles via the lysosome 
[121]. In animal models and cell culture, USP13 indepen-
dently regulates the E3 ubiquitin ligase parkin, which is 
associated with autosomal recessive PD. Knocking down 
USP13 increases ubiquitinated α-synuclein and promotes 
its clearance independent of parkin [122].

DUBs Linked to Mitochondrial Function in PD

Ubiquitin C-terminal hydrolase L1 (UCH-L1) is the first 
DUB found to possess neuronal function. In AD and PD, 
UCH-L1 is modified by oxidation, resulting in reduced sol-
ubility, low hydrolytic activity, and increased accumulation 
[123, 124]. Several studies have investigated the relation-
ship between UCH-L1 and PD. In vitro and in vivo, par-
kin mediates K63-linked polyubiquitination of UCH-L1, 
increasing its degradation through the autophagy–lysoso-
mal pathway. The PD-associated parkin mutation weakens 
this linkage [125]. It has been demonstrated that UCH-L1 
knockdown can downregulate Mfn2 in different cell lines, 
causing mitochondrial enlargement and tubular network 
collapse, as well as reduced mitochondria-ER connection 
and Ca2+ absorption. This effect depends on the cytoplas-
mic localization and deubiquitination activity of UCH-L1. 
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As PD is highly associated with mitochondrial biology and 
quality control, UCH-L1 may be a target for regulating 
mitochondrial function in PD [126].

Ubiquitin-specific protease 14 (USP14) maintains free 
monomer ubiquitin storage and regulates autophagy and pro-
teasome activity in the nervous system. Targeting USP14 has 
demonstrated some efficacy in neurodegenerative diseases 
[127]. Inhibitors of USP14 are found to reduce cerebral 
ischemia/reperfusion-induced neuronal damage and improve 
motor function recovery by reducing protein aggregation and 
enhancing proteasome activity [128]. Joy Chakraborty first 
reported that the specific inhibitor IU1 and USP14 knock-
out protected against mitochondrial dysfunction in PINK1/
parkin-deficient models. It enhanced mitophagy by promot-
ing a PINK1/parkin-independent pathway to clear damaged 
mitochondria, emphasizing its potential in PD treatment 
[129]. The potential of USP14 inhibitors in PD rodents and 
key factors to determine the administration regimen have 
been reported [130].

Previous research has reported that ubiquitin-specific pro-
tease 15 (USP15) antagonizes parkin-mediated mitochondrial 
ubiquitination and that USP15 knockout can rescue mitophagy 
impairment in PD patient brains with PARK2 mutation [131].

USP30 is a key factor involved in the ubiquitin system to 
regulate mitochondrial import and mitophagy [132–134]. 
In oxygen–glucose deprivation/reperfusion (OGDR) 
models, USP30 overexpression inhibits OGDR-induced 
ubiquitination and degradation of Mfn2 and reduces mito-
chondrial fragmentation [135]. Mitochondrial dysfunc-
tion plays a vital role in the pathological process of PD. 
In dopaminergic neurons, USP30 overexpression reduces 
rotenone -induced cell death, although it does not improve 
dopamine-treated cells [136].

Ubiquitin-specific protease 33 (USP33) is another 
direct target of parkin and antagonizes parkin’s role as 
a precursor for phagocytosis. USP33 deubiquitinates 
Lys435 of parkin and inhibits its mediated clearance of 
damaged mitochondria. Knocking out USP33 reduces the 
degradation of parkin, increases its recruitment to depo-
larized mitochondria and upregulates mitophagy. USP33 
inhibitors may be candidates for regulating mitochondrial 
function in PD [44].

DUBs Linked to Neuroinflammation in PD

However, studies have demonstrated that USP8 promotes the 
transformation of microglia from the M1 phenotype to the 
M2 phenotype through the TLR4/MyD88/NF-KB pathway, 
thereby alleviating inflammation and movement disorders 
induced by LPS [137]. Neuroinflammation is one of the typi-
cal pathological features of PD [138]. Therefore, the effect 
of USP8 in PD must be further investigated.

DUBs Linked to Excitotoxicity in PD

Excitotoxicity is a common event in various neurodegen-
erative diseases and involves calcium overload, oxida-
tive stress, mitochondrial damage, and other pathological 
processes [139, 140]. Recent studies have demonstrated 
that inhibiting USP15 prevents glutamate-induced oxi-
dative stress and neuronal apoptosis by activating the 
NRF2/heme oxygenase 1 (HO-1) signaling pathway in 
HT22 cells [141].

DUBs Linked to Autophagy in PD

A meta-analysis identified novel susceptibility genes for PD 
to validate the previously nominated candidate genes within 
the PARK10 region, of which ubiquitin-specific protease 
24 (USP24) is one [142]. The association between single-
nucleotide polymorphisms in USP24 and PD was also veri-
fied in a Han population [132]. A quantitative high-through-
put screening in the human genome-wide siRNA library 
identified USP24 as one of the candidate genes regulating 
autophagy. USP24 expression is upregulated in the sub-
stantia nigra of PD patients, suggesting that USP24 exerts 
its negative effect on autophagy in PD [141]. USP24 deu-
biquitinates ULK1, an autophagy mediator downstream of 
mTOR, inhibits its activity and downregulates autophagic 
flux. This conclusion has been confirmed in IPSC-derived 
human dopaminergic neurons [43]. However, the effect of 
USP24 on autophagy in a specific animal or cell model of 
PD remains to be investigated.

DUBs in AD

DUBs Linked to Aβ and Tau in AD

Neurofibrillary tangles (NFTs) and neural plaques are 
characteristic of AD. Polypeptides in NFT total homoge-
nates were identified by tandem mass spectrometry. The 
results indicate that UCH-L1 colocalizes with highly 
phosphorylated tau proteins [143]. Aβ42 activates the 
NF-kB pathway and downregulates UCH-L1. This process 
blocks the brain-derived neurotrophic factor (BDNF)/neu-
rotrophic receptor tyrosine kinase 2 (NTRK2)-mediated 
retrograding signal, reduces the degradation of ubiquitina-
tion and hyperphosphorylated tau proteins, and promotes 
inflammation [144].

Genome-wide association studies have identified OUTB1 
as a deubiquitinase at Lys48 of tau proteins that upregu-
lates their phosphorylation and oligomerization. It increases 
tau protein stability and aggregation. Inhibitors targeting 
OUTB1 may provide novel therapies for AD [114].
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A study demonstrated that knocking down USP8 can 
upregulate BACE1 ubiquitination-mediated lysosomal deg-
radation in H4 cells and reduce the production of Aβ, which 
provides an idea for AD treatment [145].

As mentioned earlier, USP10 is excessively colocalized 
with toxic proteins in the brains of AD patients [120]. USP10 
has been demonstrated to be a key factor in the formation 
of tau-positive stress granules in neurons. In HT22 cells, 
USP10 overexpression induces TIA1/Tau/USP10-positive 
SGs. It is important to note that this process is independent 
of deubiquitinase activity [146].

In transgenic animal models overexpressing murine tau 
proteins, USP13 knockdown reduces amyloid levels and 
increases p-tau ubiquitination, allowing its clearance by 
autophagy/proteasome [147].

DUBs Linked to Excitotoxicity in AD

Excitotoxicity is a common event in neurodegenerative dis-
eases and plays a vital role in the occurrence and devel-
opment of diseases [148]. Reversible ubiquitination of 
AMPARs regulates synaptic receptor levels and synaptic 
strength. In C. elegans and mammals, the WD40-repeat 
protein WDR-20 binds to WDR-48 and activates USP46. 
Ubiquitin-specific protease 46 (USP46) deubiquitinates 
the glutamate receptors GLR-1 and AMPAR, resulting 
in increased surface levels of these receptors [149, 150]. 
Downregulation of AMPAR expression is one of the early 
pathologies of AD. In AD brains and neurons incubated 
with Aβ, USP46 expression is downregulated, triggering 
ubiquitination, and clearance of AMPARs. It has been sug-
gested that USP46 dysfunction is one of the reasons for the 
downregulation of AMPARs in AD [46]. However, in HD, 
intervention with USP46 does not rescue mHTT-mediated 
neurodegeneration [151]

DUBs in HD

DUBs Linked to mHTT in HD

Ataxin-3 (ATXN3) is a DUB closely related to protein 
quality control and is important for ataxia type 3 and other 
polyQ diseases. PolyQ-amplified ATXN3 continues to 
bind and cleave the polyQ chain. In addition to maintain-
ing protein homeostasis, ATXN3 is involved in regulating 
autophagy, DNA damage and repair, microglial activa-
tion, and other pathologies associated with polyQ disor-
ders [152]. Together with ATXN3, DNA repair enzyme 
polynucleotide-kinase-3′-phosphatases (PNKP) and cyclic 
AMP-response element-binding protein (CBP), HTT causes 
transcription-coupled DNA repair (TCR), which can iden-
tify damage in the template DNA chain and mediate its 
repair in the process of transcriptional extension [153]. 

PolyQ amplification in mHTT impairs the activities of 
sATXN3 and destroys the functional integrity of the TCR 
complex, thus being detrimental to transcription and DNA 
repair [154]. Moreover, low ATXN3 activity increases CBP 
ubiquitination and degradation, which negatively influ-
ences CREB-dependent transcription [154]. Therefore, 
therapies targeting ATXN3 may be effective against polyQ 
diseases, including HD. To ensure normal autophagy, the 
polyQ domain of wild-type ATXN3 enables it to interact 
with Beclin-1 and protects Beclin-1 from proteasome-
mediated degradation, depending on ATXN3’s deubiquit-
ination enzyme activity. Other soluble proteins with polyQ 
fragments competitively bind to Beclin-1 with wild-type 
ATXN3, e.g., full-length huntingtin protein amplified by 
mutant polyQ; this results in impaired autophagy in mHTT-
expressing cells or animal models [47].

Abnormal interactions between soluble mHTT oligomers 
encoded by the mutated exon 1 fragment and other proteins 
have been analyzed, wherein ubiquitin-specific protease 7 
(USP7) is one of the subjects. Western blotting analysis of 
striatal and cortical lysates from mice indicated that USP7 
interacts with both wild-type and mutant HTT but prefer-
entially with polyQ-amplified HTT [155]. However, PLA 
analysis of patient-derived cells showed no significant dif-
ferences, possibly because the heterozygosity of the HTT 
allele masks differences in this interaction. PolyQ expan-
sion within the androgen receptor (AR) causes progressive 
neuromuscular toxicity in the spinal cord and medullary 
muscular atrophy (SBMA). An analysis of the interacting 
genomes indicated that USP7 preferentially interacts with 
polyQ-amplified AR in vitro and in vivo, especially soluble 
aggregates. Knocking out USP7 rescues polyQ amplifica-
tion-induced AR aggregation and improves other charac-
teristic pathologies of SBMA in Drosophila, depending on 
its deubiquitinase activity [155]. The critical role of USP7 
in the pathophysiology of SBMA suggests a similar role in 
HD. Further experiments are required to clarify the underly-
ing mechanisms and the significance of differences in USP7 
interactions with wild-type and mutated HTT proteins.

Ubiquitin-specific protease 12 (USP12) has a specific 
inhibitory effect on mHTT toxicity, rescuing mHTT-medi-
ated neurodegeneration in an animal or Drosophila model 
of HD. This effect cannot be replaced by USP46, nor can it 
be reproduced in the neurotoxicity induced by TDP43 and 
α-synuclein. USP12 inhibits mHTT neurotoxicity independ-
ent of its deubiquitinase activity. This suggests that USP12 
has a unique noncatalytic function in addition to deubiquit-
ination [151]. Recent studies have demonstrated that USP12 
plays a neuroprotective role by inducing autophagy in HD 
models. This may be because polyQ-containing proteins 
interfere with Beclin-1-induced autophagy, and USP12 
specifically compensates for the mHTT-related defects in 
autophagy [151]. The conserved association between USP12 
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and mHTT is worthy of further investigation aimed at reveal-
ing the specific mechanism [151].

An imbalance of ubiquitin levels may partly contribute 
to HD pathology [156]. In the above-described context, 
downregulating USP14 expression is preferable in treat-
ing PD and AD. In cells and animals expressing mHTT, 
USP14 overexpression inhibits the phosphorylation-
dependent activation of IRE1α, which is a serine-threo-
nine kinase involved in ER stress and reduces insoluble 
mHTT [157]. The effects of USP14 on different protein 
aggregates are quite different, and this warrants further 
exploration of the reasons for this difference [157].

As mentioned earlier, linear ubiquitination helps reduce 
the toxicity of the mHTT protein. OTULIN is a specific deu-
biquitinating enzyme required for linear polyubiquitination. 
Silencing OTULIN significantly reduces HTT-Q97-induced 
toxicity by reducing c-Jun phosphorylation and caspase-3 
activation [34].

DUBs in ALS

DUBs Linked to Mutant SOD1 and TDP43 in ALS

Nedd4 L is an E3 ligase that targets SMAD [48]. Nedd4 L 
enhances the polyubiquitination and degradation of mutated 
SOD1 in the spinal cord of ALS patients [158]. USP7 inter-
acts directly with and deubiquitinates Nedd4 L, regulating 
the SMAD-mediated protein quality control system and the 
toxicity of SOD1 and TDP-43 [48]. USP7 also interacts with 
the AR amplified by polyQ to reduce mutant AR aggrega-
tion. USP7 knockout improves motor dysfunction in trans-
genic SBMA mice [159].

Cylindromatosis (CYLD) in ALS

Familial amyotrophic lateral sclerosis accounts for approx-
imately 10% of ALS cases [160]. To date, more than 50 
related genes have been identified, among which the most 
well-known are SOD1, TDP43, FUS RNA-binding protein 
(FUS), and C9orf72-SMCR8 complex subunit (C9orf72). In 
recent years, several novel related genes have been identi-
fied, and CYLD is one of them [161]. CYLD is a deubiq-
uitination enzyme that specializes in removing K63-linked 
polyubiquitin chains from several substrates [162]. Based 
on complete gene sequencing of a large European Austral-
ian family, a study demonstrated the segregation of a novel 
missense variant in CYLD (c.2155A > G, p. M719 V) within 
the linkage region as the genetic cause of disease in this fam-
ily [163]. Another research team detected that the variant 
g.50825515A > G causes the substitution of methionine with 
valine at amino acid position 719 of CYLD. This variant is 
present within the region of overlap with the chromosome 

16q12.1-linked ALS pedigree [164]. ALS caused by this 
gene mutation is still under further exploration and may be 
associated with the regulation of autophagy [163].

Targeting Ubiquitin or Deubiquitin Signaling 
to Treat Neurodegenerative Disease

The above review concludes that dynamic regulation of the 
ubiquitin system is the key to removing toxic metabolites 
from neurons. Strategies targeting ubiquitin signal transduc-
tion, including substrate recognition, ubiquitin enzymes, 
DUBs, and proteasome activity, modulate the clearance of 
toxic or misfolded proteins. Some of the compounds devel-
oped have shown promising potential in alleviating neuro-
degenerative diseases.

Proteasomal Activators

Activation of proteasomal enzymes allows neurons to 
maintain a homeostatic state by reducing their proteo-
toxic burden. Several small molecule agonists of 20S 
proteasome activity have been developed and are being 
investigated for therapeutics for neurodegenerative dis-
eases. For example, dihydroquinazolines stimulate three 
catalytic sites of the 20S proteasome and the degrada-
tion of α-synuclein [165]. Pyrazolones were identified as 
proteasome activators in 2014. They have shown initial 
therapeutic potential in ALS cells and animal models, 
and the mechanism of action depends on the activation of 
the proteasome [166]. The 26S proteasome targets ubiq-
uitinated protein substrates, whereas the 20S proteasome 
is limited to disordered protein degradation. Few small 
molecules have been developed that directly activate the 
26S proteasome. Modulation of posttranslational modifi-
cations and gene manipulation are commonly used to indi-
rectly enhance 26S proteasome, for example, inhibition of 
DUBs, modulation of camp-dependent protein kinase A 
(PKA) and CTMP-dependent protein kinase G, and inhi-
bition of P38 mitogen-activated protein kinase (MAPK).

Allosteric Modification of the Substrate‑binding 
Region

Allosteric modification of the substrate-binding region of 
the ubiquitin enzyme with small molecules can regulate sub-
strate specificity and thus regulate protein degradation. Such 
drugs have been used to treat cancers but have rarely been 
administered in neurodegenerative diseases, such as argi-
nine- and proline-rich peptides, chloroquine and its deriva-
tives, clioquinol, dicarboxylic acid compound (SCF-I2), and 
pentanoic acid compound (CC0651) [167–170].
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DUB Inhibitors

DUBs affect various neurodegenerative diseases by regu-
lating substrate ubiquitination and equilibrium substrate 
abundance by lysosomal or proteasome degradation. The 
administration of DUB inhibitors can enhance the deubiq-
uitination of mutated polyubiquitin chains, thus reducing 
the substrate burden of the proteasome and facilitating the 
UPS machinery to function efficiently. DUB inhibitors also 
protect E1, E2, and E3 enzymes from self-ubiquitination and 
degradation, ensuring their clearance of harmful proteins 
under pathological conditions [171].

DUB inhibitors are being progressively developed and stud-
ied, and their efficacy in neurodegenerative disease has been 
partly investigated (Table 3, for each disease, the list is sorted 
alphabetically by compounds). More data are needed to eluci-
date the potential regulatory mechanisms of different types of 
DUB inhibitors in neurodegenerative diseases. To date, the effi-
cacy of DUB inhibitors against other diseases, such as cancer, 
has also been proven [172]. In contrast, DUB inhibitors have 
not been adequately studied for neurodegenerative diseases.

Development of Proteolysis‑targeting Chimeras 
(PROTAC)

Because of structural similarities between (de)ubiquitinases, 
the development of substrate-specific drugs still faces chal-
lenges. PROTAC, a newly developed technology, is revolu-
tionizing therapies for various neurodegenerative diseases. 
The PROTAC is composed of hetero bifunctional mol-
ecules, including a ligand for an intracellular target protein, 
a recruiting group for a E3 ligase, and a linker that connects 
these ligands. PROTACs stimulate the formation of ternary 
complexes between target proteins and specific E3 ligase. 
Polyubiquitin modification and 26S proteasome–mediated 
degradation were subsequently performed. In this process, 
only target proteins are degraded, while PROTACs do not 
disintegrate and continue to operate [182, 183]. PROTACs 
have the advantage of high blood–brain barrier permeability 
and can be administered in multiple routes. Their potential 
for treating neurodegenerative diseases such as AD and PD 
is being explored [184, 185].

Despite the tremendous advances in PROTAC, development 
challenges remain, such as the lack of ligands for E3 ligase. Cur-
rently, only about 1% of human E3s have small molecule ligands. 
The development of novel ligands will facilitate the wider appli-
cation of PROTACs to target various pathogenic proteins in neu-
rodegenerative diseases. In addition, the lack of pharmacokinetic 
data, ternary crystal structure analysis techniques, and reliable 
bioactivity assessment are also urgent challenges [186].

Conclusion

Ubiquitination and deubiquitination generally regulate 
protein levels through ubiquitin-mediated proteasome 
degradation and are also associated with autophagy, mito-
chondrial function, apoptosis, and other signal transduction 
pathways. Over the past few decades, there has been a sig-
nificant amount of research on the association of E3s and 
DUBs with neurodegenerative diseases. Numerous stud-
ies have disclosed that adjusting their stability or activity 
through gene mutation or posttranslational modification 
can cause or inhibit multiple neurological diseases. Several 
studies have also identified critical E3s and DUBs in PD, 
AD, HD, and ALS, as well as sites for ubiquitination and 
deubiquitination of target proteins. However, the underly-
ing mechanisms of some of them remain unclear, and even 
contradictory conclusions exist. Moreover, a few research-
ers have considered E3s and DUBs together, which have 
mutually repelling effects. Further studies are required to 
gain a complete understanding of the importance of the 
balance between E3-mediated ubiquitination and DUB-
mediated deubiquitination for the development of thera-
peutic strategies for treating neurodegenerative diseases.
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AD IU1 USP14 Accelerate tau degradation [175–177]
AD LDN57444 UCHL1 Inhibit tau aggregation and affect APP processing [178–180]
ALS HBX41108 USP7 Inhibit the toxicity of the mutant SOD1 in neurons [181]
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