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Abstract 
Propionic acid (PPA) is a critical metabolite involved in microbial fermentation, which functions to reduce fat production, 
inhibit inflammation, and reduce serum cholesterol levels. The role of PPA in the context of cerebral ischemia–reperfusion 
(I/R) injury has yet to be clarified. Increasing evidence indicate that transcranial direct-current stimulation (tDCS) is a safe 
approach that confers neuroprotection in cerebral ischemia injury. Here, we show that the levels of PPA were reduced in the 
ischemic brain following a rat cerebral I/R injury and in the cultured rat cortical neurons after oxygen–glucose deprivation 
(OGD), an in vitro model of ischemic injury. We found that the decreased levels of transporter protein monocarboxylate 
transporter-1 (MCT1) were responsible for the OGD-induced reduction of PPA. Supplementing PPA reduced ischemia-
induced neuronal death after I/R. Moreover, our results revealed that the neuroprotective effect of PPA is mediated through 
downregulation of phosphatase PTEN and subsequent upregulation of Lon protease 1 (LONP1). We demonstrated that 
direct-current stimulation (DCS) increased MCT1 expression and PPA level in OGD-insulted neurons, while tDCS decreased 
the brain infarct volume in the MCAO rats via increasing the levels of MCT1 expression and PPA. This study supports a 
potential application of tDCS in ischemic stroke.
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Introduction 

Short-chain fatty acids (SCFA) are the main metabolites for 
anaerobic fermentation in the mammal intestinal microbi-
ome. These fatty acids act as gene expression regulators and 
signal molecules that are recognized by specific receptors. 
As energy sources, they are effectively absorbed by intestinal 
mucosa and play an important role in human physiological 
functions [1]. Relevant SCFAs include acetic, propionic, 
butyric, valeric, succinic, and caproic acid [2]. The three 
main short-chain fatty acids, acetic acid, propionic acid, 
(PPA) and butyric acid, have significantly varied effects on 
human physiology. Butyric acid is metabolized as a source 
of source, propionic acid contributes to gluconeogenesis in 
the liver, and acetate exits in the highest concentration in 
the blood [3]. However, the mechanism of PPA in the brain 
is still poorly studied. Recent studies have shown that PPA 
can regulate the conduction process of various neuronal cell 
signals once it enters the brain through the blood–brain bar-
rier, including energy and lipid metabolism, as well as the 
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synthesis and release of neurotransmitters [3]. PPA has been 
shown to inhibit the expression of AKT and PTEN after 
crossing the blood–brain barrier, thus promoting cell pro-
liferation [4]. The impact of PPA in the context of ischemic 
stroke, however, has yet to be explored.

To explore the main pathway of PPA in and out of cells, 
we studied monocarboxylate transporter 1 (MCT1), a 
channel protein. MCT1 is a type of MCTs; its main func-
tion is responsible for the up-taking and release of energy 
substrates including acetate, propionate, and pyruvate [5]. 
MCT1 is expressed in most human cells. The primary ketone 
body, β-hydroxybutyrate, is also a substrate for MCT1; 
during starvation, the circulating levels of this metabolite 
markedly increase to millimolar concentrations from hepatic 
synthesis to serve as the primary metabolic fuel for neurons 
in place of glucose. Moreover, this metabolite crosses the 
blood–brain barrier via MCT1. Increased levels of MCT1 
have been shown to reduce ischemia–reperfusion injury, but 
the exact mechanism remains unclear.

Lonp1 is an important stress response protease that is pre-
dominantly concentrated in the mitochondrial matrix. LonP1 
acts as a major regulator of mitochondrial metabolism, medi-
ating mitochondrial dynamic homeostasis, metabolism, and 
bioenergetics [6]. Furthermore, it has a critical role in the 
maintenance and repair of mitochondrial DNA [7–9]. Recent 
studies have found that deletion of the LONP1 gene, encod-
ing LONP1 protease, can cause a variety of human diseases, 
including mitochondrial related diseases, which can result 
in significant neurological impairment and multiple organ 
dysfunction [10]. LonP1 has also been shown to be involved 
in the pathogenesis of cancer where it promotes the growth 
of primary and metastatic tumors by regulating cell death 
[11–13], ROS levels, and metabolic programming [8, 14]. 
Studies have shown that Akt phosphorylation enhances the 
protease activity of mitochondrial LONP1 under hypoxic 
conditions [15]. The role of LONP1 in the context of 
ischemic stroke, however, remains to be elucidated.

Transcranial direct-current stimulation (tDCS) is a non-
invasive brain stimulation technique that can be used to 
modulate central nervous system excitability in humans to 
promote post-stroke recovery [16–18]. We have previously 
demonstrated that tDCS treatment promotes axonal regener-
ation and neuronal growth and that physiological intensity of 
DC can guide nerve stem/progenitor cell (NSPC) migration 
[16]. In rats with ischemic injury, cathodal electrodes placed 
on the ischemic side of the brain with low-intensity direct-
current stimulation increase the number of endogenous neu-
ral stem cells in the subependymal ventricular zone (SVZ) 
and promotes NSPC migration towards the ischemic area, 
thereby reducing ischemia–reperfusion injury [19]. These 
studies raise the potential for tDCS as a noninvasive treat-
ment for neurological diseases. However, the mechanism 
underlying tDCS-induced neuroprotection remains unclear.

Here, we employed a rat middle cerebral artery occlu-
sion (MCAO) model system to explore the functional 
role of PPA within damaged neurons following cerebral 
ischemia–reperfusion (I/R) injury. We found that follow-
ing cerebrovascular injury, intracortical PPA was reduced. 
Under oxygen–glucose deprivation (OGD) conditions, we 
observed a consequential decrease in intracortical neuron 
PPA levels. The exogenous addition of PPA resulted in 
the alleviation of neuronal injury. Mechanistically, PPA 
was found to act upstream of phosphatase PTEN, with 
the LONP1 functioning as a downstream phosphatase 
PTEN target that has a PPA-induced neuroprotective 
role within the brain following I/R injury. Notably, DCS 
treatment resulted in increased PPA levels within cor-
tical cells in OGD model rats. tDCS treatment further 
decreased the cerebral infarct volume in rats following 
cerebral I/R injury via the increase of intraneuronal PPA 
concentrations.

Results

PPA Levels Are Decreased Following Rat Cerebral I/R 
Injury

To explore the functional importance of PPA in the context 
of cerebral I/R injury, we began by assessing levels of PPA 
in CSF samples collected from rats at 0, 3, or 6 h following 
MCAO modeling via HPLC. This analysis revealed signifi-
cantly decreased PPA levels within the CSF following cer-
ebral I/R injury (Fig. 1a), suggesting that the extracellular 
levels of this PPA reduced in damaged brain tissue following 
ischemic injury.

To extend the above results to an in vitro system, we 
assessed PPA levels within cultured rat neurons following 
OGD treatment via HPLC. Neurons cannot produce PPA; 
thus, to verify the effect of PPA on neurons, we added PPA 
to neurons before OGD. Consistently, intraneuronal PPA lev-
els were decreased following OGD-induced injury (Fig. 1b).

OGD‑Induced Decrease of Membrane MCT1 
Leads to the Reduction of Intraneuronal PPA

To better clarify the mechanisms whereby OGD induced 
intraneuronal PPA decrease, we next assessed the functional 
importance of MCT1 as a regulator of PPA concentrations 
within neurons. HPLC analyses revealed that the treatment 
of cells with the MCT1 inhibitor, AZD3965, markedly sup-
pressed intraneuronal PPA levels (Supplementary Fig. 1a). 
Western blotting further revealed that the levels of MCT1, 
associated with neuronal membranes, decrease following 
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I/R modeling (Supplementary Fig.  1b). This suggested 
decreased membrane-associated MCT1 mediated the accu-
mulation of PPA within neurons following OGD injury.

Supplementing PPA Is Neuroprotective 
in Cerebral I/R Injury

To determine the role of PPA on neuronal survival in the 
context of cerebral I/R injury, the effect of PPA treatment in 
the rat MCAO model was assessed. Intraperitoneal injection 
of PPA decreased the average infarct volume in the stroke 
animals (Fig. 2a). Similarly, PPPA treatment reduced the 
neuronal death in cortical cultures following OGD injury 

(Fig. 2b–c). We next assessed the effect of AZD3965 treat-
ment in the rat MCAO model. We found that AZD3965 
increased the average infarct volume after I/R injury 
(Fig. 2d) and reduced the neuronal viability in cortical cul-
tures following OGD injury (Fig. 2e–f). Together, these data 
indicate that PPA is neuroprotective in cerebral I/R injury. 
PPA supplement is a potential therapeutic approach for acute 
ischemic stroke.

The Neuroprotective Effect of PPA Is 
Mediated through Downregulation of PTEN 
and Upregulation of LONP1

To elucidate the mechanisms whereby PPA reduces neuronal 
death, in the context of I/R injury, we next assessed LONP1 
expression in our experimental systems. LONP1 was detect-
able in rat brain samples and was downregulated in tissues 
from the cortical penumbral region following MCAO mod-
eling and in primary neuronal cultures following OGD treat-
ment (Supplementary Fig. 2a; Fig. 3a–c). We found that the 
LONP1 inhibitor, bortezomib, promoted the death of OGD-
induced cortical neurons (Supplementary Fig. 3a–b).

Given that PPA can regulate PI3K/Akt signaling and Akt 
phosphorylation enhances the protease activity of mitochon-
drial LonP1, under hypoxia conditions, we hypothesized that 
PPA may function as an upstream LONP1 signaling regula-
tor [15]. We found that the intraperitoneal administration 
of PPA in rats increased cortical LONP1 levels (Fig. 4a). 
In line with these results, treatment with PPA increased 
LONP1 expression in cultured neurons (Fig. 4b). As such, 
PPA functions as an upstream regulator to promote LONP1 
upregulation.

Given that PPA induced LONP1 upregulation, we next 
explored the ability of PPA to reduce OGD-induced neu-
ronal death through a mechanism dependent on LONP1 
upregulation. We found that LONP1 inhibition exacerbated 
such neuronal injury following OGD (Fig. 4c–d). These 
results suggest that LONP1 mediates PPA-induced neuronal 
protection.

Downregulating PTEN Promotes LONP1 
Upregulation to Mediate PPA‑Induced 
Neuroprotection

PTEN is an essential regulator of cellular viability [20–22]. 
PTEN can lead to cardiac injury in diabetic patients by 
acting on the PI3K/AKT pathway. Akt phosphorylation 
enhances the protease activity of mitochondrial LonP1 under 
hypoxia conditions [15, 23]. We hypothesized that PTEN 
functions as a mediator of neuronal damage in a LONP1-
dependent manner, following OGD. Our data showed that 

Fig. 1  Intraneuronal PPA is decreased after rat cerebral ischemia–
reperfusion injury. a HPLC analyses of PPA levels within rat cerebro-
spinal fluid following cerebral ischemia modeling revealed reduced 
levels of extra-neuronal PPA after cerebral ischemia–reperfusion 
injury. Levels of PPA were measured at 0, 3, and 6 h following a 1-h 
occlusion period (n = 6/ group, *p < 0.05 vs. 3 h control, #p < 0.05 vs. 
6  h control, one-way ANOVA). b HPLC analyses of PPA levels in 
primary cultured neurons following OGD injury revealed decreased 
intraneuronal PPA levels following I/R injury. Primary cortical neu-
rons were collected for analysis at 0, 3, and 6 h following reperfusion. 
(n = 6/group, *p < 0.05 vs. 3 h control, #p < 0.05 vs. 6 h control, one-
way ANOVA)

7425Molecular Neurobiology (2022) 59:7423–7438



1 3

LONP1 levels rose following PTEN siRNA (Fig. 5a). In 
contrast, LONP1 inhibition had no impact on PTEN levels 
(Fig. 5b). Thus, LONP1 is a downstream target of PTEN.

We further showed PTEN upregulation following 
ischemia–reperfusion injury (Fig.  5c–d). The siRNA 
of PTEN resulted in LONP1 upregulation in these cells 

Fig. 2  Increased intraneuronal 
PPA reduced neuronal injury 
following cerebral ischemia–
reperfusion in rats. a TTC 
staining revealed that PPA 
supplementation resulted in 
a decrease in infarct volume. 
PPA was injected intraperi-
toneally 1 h after reperfusion 
(n = 6/group, *p < 0.05 vs. I/R, 
one-way ANOVA). b Cel-
lular viability assays revealed 
that PPA treatment decreased 
primary cultured neuron death 
following OGD injury. PPA 
(1 mM) was administered to 
primary neuronal cultures fol-
lowing reoxygenation for 1 h 
(n = 6/group, F (2, 15) = 22.4, 
*p < 0.05 vs. O/R, one-way 
ANOVA). c LDH release assays 
revealed that PPA decreased 
primary cultured neuron death 
following OGD injury. Primary 
neuronal cultures were treated 
with PPA (50 μM) following 1 h 
of reoxygenation (n = 6/group, 
F (2, 15) = 42.2, *p < 0.05 vs. 
O/R, one-way ANOVA). d 
TTC staining of brain sec-
tions revealed that intrave-
nous injection of the MCT1 
inhibitor AZD3965 (10 μM, 1 
μL) prior to MCAO modeling 
increased the infarct area (n = 6 
in each group, *p < 0.05 vs. I/R, 
one-way ANOVA). e Cellular 
activity assays using primary 
cultured neurons revealed that 
MCT1 inhibition increased 
OGD-induced neuronal death. 
Neurons were treated for 1 h 
with AZD3965 (10 μM) prior 
to OGD modeling (n = 6/group, 
F (3, 20) = 10.45, *p < 0.05 vs. 
O/R, #p < 0.05 vs. PPA + O/R, 
one-way ANOVA). f LDH 
release assays using primary 
cultured neurons revealed that 
MCT1 inhibition increased 
OGD-induced neuronal death. 
Neurons were treated for 1 h 
with AZD3965 (10 μM) prior 
to OGD modeling (n = 6/group, 
F (3, 20) = 22.31, *p < 0.05 vs. 
O/R, #p < 0.05 vs. PPA + O/R, 
one-way ANOVA)
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(Fig. 6a). These data further support a model wherein PTEN 
upregulation results in LONP1 downregulation following 
OGD injury.

To clarify whether LONP1 functions as a downstream tar-
get of PTEN when facilitating OGD-induced PPA-mediated 

neuronal death, we next demonstrated that PPA treatment 
resulted in PTEN downregulation and consequential LONP1 
upregulation (Fig.  6b). Cell viability and LDH release 
assays revealed that the treatment of cells with the PTEN 
inhibitor BpV (pic) resulted in PPA having a protective 

Fig. 3  LONP1 levels are 
decreased in damaged neurons 
following ischemia-repression 
injury. a Western blotting con-
ducted at 3 and 6 h following 
OGD injury revealed reduced 
LONP1 levels in primary 
cortical neurons following OGD 
injury. Primary cortical neurons 
were collected for analysis at 3 
and 6 h following OGD for 1 h 
(n = 6/group, F (4, 25) = 5.56, 
*p < 0.05 vs. sham 3 h, 
#p < 0.05 vs. sham 6 h, one-way 
ANOVA). b Western blotting 
revealed reduced LONP1 levels 
within the rat cerebral cortex 
following cerebral ischemia–
reperfusion injury. Peri-infarct 
cortical tissue was collected for 
analysis at 3 and 6 h following 
occlusion for 1 h (n = 6/group, 
F (4, 25) = 3.99, *p < 0.05 vs. 
sham 3 h, #p < 0.05 vs. sham 
6 h, one-way ANOVA). c 
Immunofluorescent LONP1 
staining suggested a reduc-
tion in LONP1 levels within 
neurons following OGD injury. 
Staining was performed at 3 
and 6 h following a 1-h OGD 
injury period. LONP1 (red) was 
primarily detected within the 
cytoplasm, and neurons were 
labeled with MAP2 (green) 
(n = 6/group)
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effect on neuronal injury as well as it stopping cellular 
death (Fig. 6c–d). Together, these results suggest that the 
PTEN-LONP1 signaling pathway can control OGD-induced 
neuronal death through mechanisms tied to increased PPA 
levels.

DCS Increased Membrane MCT1 Expression 
and Neuronal PPA Levels After OGD

MCT1 is expressed not only in the apical membrane but 
also in the basolateral membrane, suggesting a role in 
the efflux of SCFA from the cells to the serosal side. The 

electroneutral co-transport of  SCFA− with  H+ via MCT1 
could occur in either direction (influx or efflux) depending 
on the transmembrane concentration gradient for a given 
 SCFA− [24]. These data suggest that an increase of MCT1 
reduces ischemic damage following I/R injury in the rat 
brain through the PPA-PTEN-LONP1 signaling axis.

We first found that DCS was able to increase MCT1 
levels on neuronal membranes, in addition to increas-
ing levels of PPA within cultured neurons (Figs. 7a, b). 
MCT1 inhibitor treatment decreased intraneuronal PPA 
concentrations; however, administering DCS did not fur-
ther increase intraneuronal PPA levels (Fig. 7b). This 
indicated that DCS may increase the levels of PPA within 

Fig. 4  PPA upregulates LONP1 and reduces neuronal death follow-
ing OGD injury. a Western blotting conducted following the intra-
peritoneal injection of PPA (0.2 mL/10 g) 6 h prior to cortical extrac-
tion revealed that PPA induced LONP1 upregulation within the rat 
cerebral cortex. (n = 6/group, *p < 0.05 vs. sham by Student’s t-test). 
b Western blotting conducted following the 6-h treatment of pri-
mary cultured neurons with PPA (1 mM) revealed that PPA induced 
LONP1 upregulation within these cells (n = 6/group, *p < 0.05 vs. 
sham by Student’s t-test). c Cell survival experiments revealed that 
the inhibition of LONP1 resulted in more pronounced PPA-induced 
neuronal damage following OGD injury. Primary cultured neurons 

were treated with the LONP1 inhibitor bortezomib for 72 h prior to 
OGD injury and were treated with PPA following a 1-h reoxygenation 
period (n = 6/group, F (3, 20) = 12.78, *p < 0.05 vs. O/R, #p < 0.05 vs. 
PPA + O/R, one-way ANOVA). d LDH release assays revealed that 
the inhibition of LONP1 resulted in more pronounced PPA-induced 
neuronal damage following OGD injury. Primary cultured neurons 
were treated with the LONP1 inhibitor bortezomib for 72 h prior to 
OGD injury and were treated with PPA following a 1-h reoxygenation 
period (n = 6/group, F (3, 20) = 16.41, *p < 0.05 vs. O/R, #p < 0.05 vs. 
PPA + O/R, one-way ANOVA)
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Fig. 5  The downregulation of 
PTEN enhances LONP1 expres-
sion following OGD injury. 
a Western blotting analyses 
indicated that PTEN regulates 
the expression of LONP1 within 
neurons. Primary neurons were 
treated with siRNA of PTEN 
for 72 h, after which Western 
blotting was conducted (n = 6/
group, *p < 0.05 vs. sham, 
#p < 0.05 vs. sham, Student’s 
t-test). b Western blotting 
indicated that LONP1 had 
no impact on PTEN expres-
sion within neurons. Neurons 
were treated with bortezomib 
for 72 h, after which Western 
blotting was conducted (n = 6/
group, *p < 0.05 vs. sham, 
Student’s t-test). c Western 
blotting conducted at 3 and 
6 h following reoxygenation 
indicated that neurons exhibited 
PTEN upregulation in cultured 
cortical neurons (n = 6/group, 
F (4, 25) = 8.37, *p < 0.05 vs. 
sham 3 h, #p < 0.05 vs. sham 
6 h, one-way ANOVA). d West-
ern blotting revealed increased 
PTEN levels within the rat cer-
ebral cortex following cerebral 
ischemia–reperfusion injury. 
Peri-infarct cortical tissue was 
collected for analysis at 3 and 
6 h following occlusion for 1 h 
(n = 6/group, F (4, 25) = 4.72, 
*p < 0.05 vs. sham 3 h, #p < 0.05 
vs. sham 6 h, one-way ANOVA)
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neurons by increasing MCT1 expression on ischemic neu-
ronal membranes.

tDCS Protects against Ischemic Neuronal 
Death through Increase of PPA Level

As cathodal tDCS has been shown to protect against cerebral 
ischemic injury [18], we next sought to determine whether 
such tDCS-mediated neuroprotective functions occur in an 
MCT1-dependent manner. To that end, we initially con-
firmed that cathodic tDCS exhibited neuroprotective effects 
in our rat MCAO model system (Fig. 7c), and we then dem-
onstrated that exogenous PPA administration increased these 
neuroprotective effects for both DCS and tDCS in our OGD 
and MCAO model systems. We did, on the other hand, find 
that MCT1 inhibitor, AZD3965, eliminated the neuroprotec-
tive effects after ischemic intensity or associated neuronal 
injury following DCS or tDCS application (Fig. 7c–d, Sup-
plementary Fig. 4). Together, these results suggest that tDCS 
can increase the level of MCT1, thereby reducing the degree 
of associated ischemic neuronal injury.

Discussion

Undigested dietary ingredients such as dietary fiber and 
starch are transported to the lower digestive tract where 
they are fermented by anaerobic bacteria to produce short-
chain fatty acids, such as acetic acid, propionic acid, and 
butyric acid [1]. Moreover, SCFAs will be almost com-
pletely absorbed by the intestine, thus providing energy to 
the body. In addition, SCFAs can also affect gastrointesti-
nal function, colonic blood flow [25], pancreatic secretion 

[26], intestinal mucosal growth [27], and cholesterol levels 
[28]. With that said, the precise role of PPA in the context 
of ischemic stroke remains unclear. Our present analyses 
highlighted a non-canonical role for PPA in a rat model of 
cerebral I/R injury, revealing decreased levels of this PPA 
within the CSF following MCAO modeling. Consistently, 
the concentration of intraneuronal PPA decreased following 
the OGD treatment of cultured primary neurons. Increasing 
these intraneuronal PPA levels suppressed OGD-induced 
neuronal death, whereas the lack of PPA exacerbated such 
injury. As such, the intraneuronal accumulation of PPA 
represents a viable therapeutic target for the treatment of 
ischemic stroke patients.

MCT1 is a monocarboxylic acid transporter in the cere-
bral microvascular endothelium. Factors that regulate MCT1 
function may be critical in controlling the extent of lactic 
acidosis and, consequently, brain damage, during stroke 
[29]. Previous studies have shown that electroacupuncture 
upregulates astrocytic MCT1 expression to improve neuro-
logical deficit in middle cerebral artery occlusion rats [30]. 
However, the regulatory mechanisms of MCT1 in cerebral 
ischemia remain undefined. Herein, we found that PPA 
was able to aggravate neuronal death through a mechanism 
dependent on decreased MCT1 expression on neurons fol-
lowing OGD injury.

PTEN phosphatase was first identified as a potent tumor 
suppressor [31], but was more recently demonstrated by Wan 
et al. to prevent neuronal death when downregulated by pre-
serving GABA(A)R function in ischemic stroke [32]. In this 
study, we found that inhibiting the expression of PTEN in 
neurons reduced the death of neurons after I/R injury. In 
addition, we proved that the increase of PPA reduced the 
level of PTEN in neurons and that PTEN was connected with 
the process of PPA-induced death of neurons after OGD.

LONP1 is one of the major proteases patrolling the mito-
chondrial matrix and is also a mitochondrial protease and 
chaperone located in the mitochondrial matrix. Initial stud-
ies classified LonP1 as a “stress response protein,” which 
are upregulated in response to cellular stress [33]. More 
recently, LONP1 has been involved in the control of mito-
chondrial metabolic networks in melanoma cells as well 
as being involved in hypoxia adaptation in glioma cells. 
Researchers have demonstrated that AKT phosphorylation 
enhances the protease activity of mitochondrial LONP1 
under hypoxia conditions [34]. The role of LONP1 in the 
context of ischemic stroke, however, remains to be eluci-
dated. Herein, we provided novel evidence that reduction of 
LONP1 expression within ischemic neurons results in neu-
ronal death following I/R injury. Moreover, we found that 
increases in PPA levels result in increases in LONP1 levels 
within ischemic neurons. This mediates OGD-induced neu-
ronal death in response to PPA. In this study, we found that 
LONP1 expression increased after PTEN expression was 

Fig. 6  PPA promotes PTEN downregulation and LONP1 upregula-
tion within neurons following OGD injury. a Western blotting indi-
cated that PTEN controls LONP1 expression within neurons follow-
ing OGD injury. Neurons were treated siRNA of PTEN 72 h prior to 
a 1-h hypoxic treatment period and were then harvested for Western 
blotting following a 6-h reoxygenation period (n = 6/group, *p < 0.05 
vs. O/R, #p < 0.05 vs. O/R, one-way ANOVA). b Western blotting 
revealed that PPA decreased PTEN expression and increased LONP1 
expression following OGD injury. After a 1-h reoxygenation period, 
primary neuron cultured were treated with PPA (1 mM), with West-
ern blotting being conducted at 6 h post-reoxygenation (n = 6/group, 
*p < 0.05 vs. O/R, #p < 0.05 vs. O/R, one-way ANOVA). c Cell sur-
vival assays revealed that PTEN-mediated PPA promoted neuronal 
death following OGD injury, with cells having been treated with the 
PTEN inhibitor BpV(pic) 1  h prior to OGD treatment (n = 6/group, 
F (3, 20) = 10.24, *p < 0.05 vs. sham, #p < 0.05 vs. O/R, ★p < 0.05 
vs. PPA + O/R, one-way ANOVA). d LDH release assays revealed 
that PTEN-mediated PPA promoted neuronal death following OGD 
injury, with cells having been treated with the PTEN inhibitor 
BpV(pic) 1 h prior to OGD treatment (n = 6/group, F (3, 20) = 31.6, 
*p < 0.05 vs. sham, #p < 0.05 vs. O/R, ★p < 0.05 vs. PPA + O/R, one-
way ANOVA)

◂
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inhibited, whereas LONP1 inhibited failed to impact PTEN 
expression. PTEN inhibited induced neuroprotective effects 
of LONP1 against I/R-induced injury. These results thus 
suggest that PTEN can regulate neuroprotective activities via 
multiple mechanisms including the PTEN-LONP1 signaling 

axis. With that said, further research still is requited to fully 
clarify the underlying molecular mechanisms.

The tDCS technique relies on the stimulation of corti-
cal regions by emitting a low-intensity (1–2 mA) direct-
current that can enhance or suppress neurological activity 

Fig. 7  tDCS decreases ischemia neuronal death by increased MCT1 
expression and the levels of intraneuronal PPA. a Western blotting 
revealed decreased MCT1 expression within neurons following OGD 
injury, while this expression was increased following DCS treatment. 
DCS was performed as detailed above, and at 6 h post-reoxygenation, 
primary cultured cortical neurons were isolated for analysis (n = 6/
group, F (2, 15) = 11.88, *p < 0.05 vs. O/R, one-way ANOVA). b 
HPLC analyses of intraneuronal PPA in primary cultured neurons 
revealed reductions in these levels following MCT1 inhibition and 
increased in these levels following DCS treatment. Primary neurons 
were treated with AZD3965 at the initiation of hypoxic brain injury 
(n = 6/group, F (4, 25) = 14.04, *p < 0.05 vs. OGD + PPA, #p < 0.05 
vs. DCS + OGD + PPA. ★p < 0.05 vs. OGD + DCS + PPA, one-way 
ANOVA). c tDCS treatment increased MCT1 and thereby reduces 

infarct size following ischemic stroke. All tDCS treatment was per-
formed in rats at 3  h post-reperfusion, with AZD3965 being intra-
peritoneally injected prior to surgery and PPA (10 mg/kg) addition-
ally being intraperitoneally injected 1  h post-reperfusion. Brain 
tissue samples were selected for TTC staining at 23 h post-reperfu-
sion (n = 6/group, *p < 0.05 vs. I/R, #p < 0.05 vs. I/R, ★p < 0.05 vs. 
tDCS + I/R, one-way ANOVA). d Cell viability assays indicated that 
DCS treatment increased MCT1 and thereby reduces neuronal death. 
DCS treatment was performed as above, and AZD3965 treatment of 
primary neurons was performed at the start of OGD. Following a 1-h 
reoxygenation period, neurons were treated with PPA (n = 6/group, F 
(4, 25) = 22.61, *p < 0.05 vs. O/R, #p < 0.05 vs. PPA + O/R, ★p < 0.05 
vs. PPA + DCS + O/R, one-way ANOVA)
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in a noninvasive, pain-free, easy-to-implement approach. 
Clinical studies have demonstrated that tDCS can be 
effectively used to treat conditions including chronic pain, 
schizophrenia, stroke, depression, and Parkinson’s disease 
[17]. Herein, tDCS was found to exert neuroprotective 
efficacy in the context of cerebral I/R injury by regulat-
ing the PPA-dependent signaling pathway. These results 
highlight the promise of tDCS as a neuroprotective treat-
ment option for stroke patients.

In summary, this study for the first time demonstrates 
that cerebral ischemia injury results in decreased lev-
els of intraneuronal PPA, which promotes neuronal cell 
death. We provided novel evidence that the tDCS acts 
on the MCT1-PPA-PTEN-LONP1 signal pathway to pro-
tect against neuronal death following cerebral I/R injury. 
These results support PPA could become an attractive 
candidate for stroke treatment and revealed a potential 
application of tDCS for the treatment of ischemic stroke.

Materials and Methods

Animals

All animal experiments were performed in accordance to 
the IACUC guidelines of Qingdao University School of 
Medicine. All animals used and experimental protocols 
were approved and carried out in accordance with the 
IACUC guidelines and the Qingdao University Animal 
Protection and Ethics Committee. All animal studies were 
conducted in accordance with the Guidelines for Report-
ing Animal Experiments [35]. Male adult Sprague–Daw-
ley (SD) rats, 250 g (Qingdao Daren Fucheng Animal 
Husbandry Co., Ltd.), were housed in 2–3 rats per cage 
with a 12-h light/dark cycle, at 23–25 °C in a tempera-
ture-controlled room with free access to food and water. 
The animals were given more than 3 days to acclimatize 
before the experiment. After ischemia–reperfusion, using 
a 1-cm syringe, cerebrospinal fluid (≈50 μL) was col-
lected from the foramen magnum of the occipital bone 
at 0 h and 6 h in rats fixed with a 27-mm winged needle 
[36]. Samples were randomly assigned to experimental 
groups using a randomization method, and data collec-
tion and processing were performed. Animal handling 
and all experiments were performed in accordance with 
international guidelines for animal welfare, and measures 
were taken to minimize animal pain and discomfort. The 
grouping of animals was conducted as a blinded experi-
ment, and the researchers did not know the grouping 
information.

Experimental Groups

Experiment 1: To detect PPA in cerebrospinal fluid and 
neuron, we divided the rats into Control, Sham, and 
I/R and the neuron into Control + PPA, Sham + PPA, 
O/R + PPA, and O/R + PPA + AZD3965. In order to fur-
ther detect the content of PPA in neuron after DCS treat-
ment, we divided the neuron into Sham + PPA, O/R + PPA, 
O/R + PPA + DCS, and O/R + PPA + DCS + AZD3965 
(n = 6 per group).

Experiment 2: To study the effect of PPA on ischemic 
injury, we divided the rats into Sham, I/R, I/R + PPA, 
and I/R + AZD3965 and the neuron into Sham, O/R, 
O/R + PPA, and O/R + PPA + AZD3965. To study the 
protective effect of tDCS, we divided the rats into Sham, 
I/R, tDCS + I/R, and tDCS + I/R + AZD3965 and the neu-
ron into Sham, O/R, O/R + PPA, O/R + PPA + DCS, and 
O/R + PPA + DCS + AZD3965.

Experiment 3: To investigate the signaling path-
ways of PPA for protection against ischemic injury and 
to detect the neuroprotective effects of LONP1 and 
PTEN, we divided the rats into Control, Sham, I/R 3 h, 
and I/R 6  h and the neuron into Control, Sham, O/R 
3 h, and O/R 6 h, O/R + PPA, O/R + PPA + bortezomib, 
O/R + PPA + BpV(pic).

Experiment 4: To verify that PPA functions through the 
PTEN/LONP1 signaling pathway, we divided the neuron 
into Sham, O/R, O/R + siRNApten, and O/R + PPA.

Experiment 5: To demonstrate that tDCS exerts neuro-
protective effects by increasing PPA content, we divided 
the neuron into Sham, O/R, and O/R + DCS.

Transient Focal Cerebral Ischemia

A rat model of transient focal cerebral ischemia was oper-
ated on using the suture occlusion technique described 
in our previous study [35, 37]. Male SD rats weighing 
250–300 g were anesthetized under a gas mixture of 4% 
isoflurane, 70%  N2, and 30%  O2. Their body temperatures 
were maintained at a constant degree intra- and postop-
eratively using an even heat blanket. An incision was 
first made through the middle of the neck, and the right 
external carotid artery (ECA) was resected. A 6–0 nylon 
suture was carefully inserted through the ECA into the 
right internal carotid artery to block the beginning of the 
right middle cerebral artery (MCA). After 1 h of block-
age, the suture was removed for reperfusion, the ECA 
was ligated, and the wound was finally closed. The sham-
operated group of rats underwent the same procedure, the 
difference being that the sutures were not inserted into 
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the internal carotid artery [21, 38]. The body temperature 
was maintained at 37.0 ± 0.5 °C using an even heat blan-
ket and a heat lamp. Twenty-four h after middle cerebral 
artery occlusion (MCAO), brain tissue specimens were 
obtained, anaesthetized, and executed at various times 
depending on the need for reperfusion. Peri-infarct tis-
sue samples, from the ipsilateral cerebral hemisphere, was 
obtained for Western blotting. Subsequently samples were 
frozen and stained with TTC (2,3,5-triphenyltetrazolium). 
In appropriate experiments, an intravenous injection of 
AZD3965 (10 μM, 1 μL, S80362, Yuanye, Shanghai) was 
delivered prior to MCAO modeling, while propionic acid 
(0.2 mL/10 g, 200 mM, Sigma-Aldrich) was intraperito-
neally injected 1 h after MCAO injury.

TTC Staining and Infarct Volume 
Measurement

2, 3, 5-triphenyltetrazoliumchloride (TTC, Sigma, USA) was 
used to determine and infarct volume and was performed 
as previously described [38]. Animals were executed 24 h 
after surgical reperfusion in MCAO. After which, rats were 
perfused with 0.9% saline, and brain tissue was quickly 
removed in a cooled matrix. Two-mm coronal slices were 
obtained to calculate infarct volume (in  mm3). Brain slices 
were stained with 2% TTC in phosphate-buffered saline at 
37 °C for 30 min and fixed overnight in 4% paraformalde-
hyde (PFA) at 4 °C. Normal brain areas appeared red in 
color, while infarcted areas were not stained. After film-
ing with a scanner, all data were collected together, and the 
areas of the cerebral infarct, ipsilateral cerebral hemisphere, 
and contralateral cerebral hemisphere were measured using 
an image analysis software (NIH Image J). The edema-cor-
rected cerebral infarct area (area of the contralateral cerebral 
hemisphere minus the area of healthy tissue in the ipsilat-
eral cerebral hemisphere) was integrated to yield the infarct 
volume.

Primary Cortical Neuron Culture

Female SD rat embryos were subjected to cortical neu-
ronal culture on day 17, as we previously described [39]. 
Briefly, the embryonic brain was isolated, the meninges 
were stripped and digested with 0.05% trypsin at 37 °C for 
20 min, and the isolated neurons were suspended in a plate 
medium (neural basal medium, 2% B-27 additive, 0.5% fetal 
bovine serum, 0.5 μM L-glutamine, and 25 μM glutamic 
acid). Subsequently, the obtained tissue was inoculated in 
Petri dishes coated with poly-D-lysine. After 1.0 day of incu-
bation, half of the medium was replaced with the mainte-
nance solution (neural basal medium, 2% B-27 supplement, 

0.5 mM L-glutamine). Thereafter, the maintenance solution 
was changed every 3.0 days in the same way. Cultured neu-
rons were used for experiments 12 days after inoculation. 
The grouping of neuron was done using a blinded experi-
ment where the researchers did not know the grouping 
information.

Oxygen–Glucose Deprivation Insult

The hypoxia-glucose deprivation insult (OGD) method 
was described according to our previous study [40]. Prior 
to initiating OGD, cells were transferred to glucose-free 
deoxygenated extracellular solution (ECS) (in mM: 116 
NaCl, 5.4 KCl, 0.8  MgSO4, 1.0NaH2PO4, 1.8  CaCl2, and 
26  NaHCO3), placed in a dedicated incubator, and main-
tained at 37 °C, 95%  N2, and 5%  CO2 for 2 h. Neurons were 
removed from the incubator, transferred to the maintenance 
culture, and returned to the incubator. For the Sham group, 
cultures were transferred to standard ECS (in mM: 116NaCl, 
5.4KCl, 0.8MgSO4, 1.0NaH2PO4, 1.8CaCl2,  26NaHCO3, 
and 33 glucose) and introduced into a chamber maintained 
at 37 °C, 95% air, and 5%  CO2. After 2 h of incubation, the 
neurons were transferred to the maintenance culture solu-
tion and returned to the original incubator. Propionic acid 
(1 mM), AZD3965 (10 μM, 1 μL, S80362, Yuanye, Shang-
hai), and bortezomib (4 nM, Sigma-Aldrich) were given 1 h 
after reoxygenation of glucose deprivation. Bisperoxovana-
dium (pyridine-2-carboxyl) [BpV(pic)] (Santa Cruz, CA) 
was applied to primary neurons 30 min before OGD injury.

Western Blotting Analysis

Western blotting was performed according to our previously 
described method [41]. Total proteins were extracted with 
lysate, and equal amounts of proteins were separated by 
10% SDS polyacrylamide gel electrophoresis (SDS-PAGE). 
The proteins were transferred to polyvinylidene difluoride 
membranes, and the membranes were closed with 5% (w/v) 
bovine serum albumin or 5% (w/v) skimmed dry milk in 
TBST (containing 0.1% TBS Tween 20). They were incu-
bated for 1 h at room temperature, followed by overnight 
incubation at 4 °C with primary antibody and 1 h at room 
temperature with HRP-coupled. The antigen–antibody com-
plexes were detected by chemiluminescence reagents (micr-
otiter wells). Primary antibodies LONP1 (rabbit, 1:1000, 
A4293, ABclonal, China), MCT1 (rabbit, 1:1000, A3013, 
ABclonal, China), PTEN (rabbit, 1:100, 9188, Cell Sign-
aling Technology, USA), and β-actin (rabbit, 1:2000, bs-
0061R, Bioinformatics, China).
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Immunofluorescent Staining and Confocal 
Microscopy

Immunofluorescence staining was performed using our 
previous method [42]. Frozen brain sections, 30 μm thick, 
were fixed in 4% paraformaldehyde (PFA), rinsed three 
times with PBS, subsequently closed for 2 h in 10% goat 
serum, and incubated in specific primary antibodies over-
night at 4 °C. The primary antibodies used were LONP1 
(rabbit, 1:500, A4293, ABclonal, China) and MAP2 
(mouse, 1:500, Sigma, M4403). After rinsing with PBS 
for 3 h, the sections were incubated with Goat anti-mouse 
IgG-AlexaFluor-488 conjugate and Goat-anti-rabbit IgG-
AlexaFluor-555 secondary antibodies for 2 h. The sections 
were washed 3 times with PBS, sealed and dried in an 
oven at 30–32 °C for 10–15 min, and used for brain sec-
tion observation using a fluorescent confocal microscope 
(C2Si, Nikon, Tokyo, Japan).

Primary cultured neuronal cells were inoculated in 
24-well culture plates, equipped with cell crawls, and 
then, immunofluorescence staining was performed. Cells 
were fixed in 4% paraformaldehyde (PFA) for 20 min. 
Fixed cells were incubated for 2 h in a blocking buffer 
(5% donkey serum, 0.3% Triton X-100 in PBS). We 
incubated the samples in specific primary antibodies 
(anti-LONP1, MAP2) overnight at 4 °C. The cells were 
incubated with Goat anti-mouse IgG-AlexaFluor-488 con-
jugate and Goat-anti-rabbit IgG-AlexaFluor-555 secondary 
antibodies for 2 h. The cells were washed 3 times with 
PBS. Antibodies were incubated with Goat anti-mouse 
IgG-AlexaFluor-488 conjugate and Goat-anti-rabbit IgG-
AlexaFluor-555 secondary antibodies for 2 h. The samples 
were then washed 3 times with PBS. Finally, glass cover-
slips or glass slides were dried in an oven at 30–32 °C for 
10–15 min and used for cell observation using a fluores-
cence confocal microscope (C2Si, Nikon, Tokyo, Japan). 
All images were processed using the same settings.

Subcellular Fractionation Assays

A Membrane, Nuclear, and Cytoplasmic Protein Extrac-
tion Kit (Solarbio Inc., Beijing, China) was used for sub-
cellular fractionation [42]. Briefly, neurons were collected, 
rinsed with 500 uL of cold PBS, and combined with 1 mL 
of ice-cold solution A (containing 1-μL protease inhibitor, 
5-μL phosphatase inhibitor, 1-μL DTT, and 10-μL PMSF, 
freshly added). A glass homogenizer (30–50 cycles) or 
a sonicator (30 s, 1 min interval) was used to homog-
enize samples, with this process being repeated three 
times. The absence of cell clumps was used to confirm 

homogenization efficiency, after which the mixture was 
vortexed for 10 s and incubated for 20 min on ice, shaking 
3–5 times during this period. Samples were then centri-
fuged for 10 min at 12,000 rpm, and supernatants con-
taining the cytoplasmic fraction were transferred for fresh 
tubes at stored at − 80 °C. The remaining precipitates were 
then suspended in 500 uL of ice-cold solution B, mixed 
vigorously for 10 s, and incubated on ice for 20 min, as 
well as being shaken 3–5 times during the period. Sam-
ples were then centrifuged for 10 min at 12,000 rpm, after 
which 500 uL of ice-cold solution C was added to the 
precipitates; then the above incubation and centrifugation 
steps were again repeated. Supernatants containing the 
membrane fraction were then transferred to fresh tubes 
and stored at − 80 °C. Western blotting was used to detect 
MCT1 within the membrane fraction, while GAPDH 
served as an internal control for the cytoplasmic fraction.

High‑Performance Liquid Chromatography 
(HPLC)

The cerebrospinal fluid from the foramina magnum was 
homogenized with 200-μL cold normal saline (0.9%) and 
centrifuged at 140,000 RPM at 4 °C for 20 min. The super-
natant was derived by adding 1-mL 0.15 mM  H2SO4 solu-
tion. Separation was conducted at 35 °C. The HPLC system 
was operated in gradient mode by binary gradient elution 
of (A) 10 mM  H2SO4 and (B) phosphoric acid buffer at a 
flow rate of 0.4 mL/min. Gradient scheme: 0 min A: 5%, 
6 min A: 20%, 12 min A: 30%, 16 min A: 30%, 25 min A: 
40%, 28 min A: 80%, 32 min A: 80%, 35 min A: 5%. The 
chamber temperature was 30 °C, and the detection wave-
length was 263 nm. The injection volume was 10 μL. Under 
specified experimental conditions, a single PPA was detected 
according to the established PPA retention time. We calcu-
lated the subpeak area of a given bile acid from the known 
concentration.

Lentivirus Transfection

The PTEN siRNA (siRNApten) and non-targeting control 
siRNA (NsiRNA) was purchased from Santa Cruz Bio-
technology, Santa Cruz, CA, USA. The sequence of human 
PTEN siRNA was 5′-CTG CTA GCC TCT GGA TTT 
GA-3′, and non-targeting control siRNA was 5′-CTT CTG 
GCA TCC GGT TTA GA-3′.

DCS and tDCS Application

In the OGD model, DCSs were applied to neurons cultured 
in culture chambers using the method we described earlier 
[43]. For DCS stimulation, agar-salt bridges were used to 
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connect silver/silver chloride electrodes in beakers to pools 
of culture medium on either side of the chambers. Control 
culture conditions were identical except that DCSs were not 
added. HEPES acid (20 mM) was added to the medium, and 
the pH was adjusted to 7.4. Cells were stimulated with DCS 
at a current strength of 250 mV/mm for 20 min at 3 h after 
OGD reoxygenation [19].

In the middle cerebral artery obstruction (MCAO) model, 
rats were applied tDCS while awake with a constant cur-
rent stimulator (Schneider Electronics, Gleichen, Germany), 
which was made specifically for animals to apply low-inten-
sity currents [44]. tDCS was applied to the rat MCAO model 
using the method we described previously [19]. The MCAO 
procedure was performed 7 days after performing skull base 
electrode implantation. One electrode was fixed symmetri-
cally on both sides of the skull with a nontoxic glass iono-
mer. The electrode at the ischemic cortex was connected to 
the cathodic end, and the other electrode was connected to 
the anodic end. The electrodes were filled with saline prior 
to stimulation. Rats were treated with tDCS at a current den-
sity of 2.86 mA/cm2, while the current intensity was 100 μA. 
At 3 h after I/R, rats were stimulated for 10 min, rested for 
3 min, and then stimulated again for 10 min, for a total of 8 
times [45]. The rats in the sham-operated group underwent 
the same procedure as the stimulated group, except that no 
current was applied.

Analysis of Lactate Dehydrogenase Release 
and Cell Viability

Neuronal survival, or injury, was assessed using a Cell 
Counting Kit 8 (CCK8; Dojindo, CK04) or the Lactate 
Dehydrogenase Release Assay Kit (Biovision, K311-400). 
Both methods are mentioned the manufacturer’s instructions. 
CCK-8 assay: Add 10 μL of CCK8 reagent, incubate for 2 h, 
and measure the absorbance value at 450 nm using a 96-well 
plate reader (Molecular Devices, USA). LDH assay: Meas-
ures LDH levels by analyzing the amount of LDH released 
from cells into the culture medium. Using a 96-well plate 
reader, absorbance values at 490 nm were measured, and 
cell viability was calculated according to the manufacturer’s 
instructions [42].

Statistics

GraphPad Prism was used for all statistical testing. The 
group sizes per experiment was based on a power analysis 
[46]. Data were compared via Student’s t-tests or ANOVAs 
and are given as means ± SEM. p < 0.05 was the significance 
threshold.
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