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Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is present in neuronal and non-neuronal cells and has anti-inflammatory 
actions. Molecular dynamics simulations suggested that α7 nAChR interacts with a region of the SARS-CoV-2 spike pro-
tein (S), and a potential contribution of nAChRs to COVID-19 pathophysiology has been proposed. We applied whole-cell 
and single-channel recordings to determine whether a peptide corresponding to the Y674-R685 region of the S protein can 
directly affect α7 nAChR function. The S fragment exerts a dual effect on α7. It activates α7 nAChRs in the presence of 
positive allosteric modulators, in line with our previous molecular dynamics simulations showing favourable binding of this 
accessible region of the S protein to the nAChR agonist binding site. The S fragment also exerts a negative modulation of 
α7, which is evidenced by a profound concentration-dependent decrease in the durations of openings and activation episodes 
of potentiated channels and in the amplitude of macroscopic responses elicited by ACh. Our study identifies a potential 
functional interaction between α7 nAChR and a region of the S protein, thus providing molecular foundations for further 
exploring the involvement of nAChRs in COVID-19 pathophysiology.

Keywords Nicotinic receptor · Neurotransmitter receptors · Single-channel recordings · Patch-clamp · SARS-CoV-2 spike 
protein

Introduction

The spike (S) protein is a homotrimeric type I fusion glyco-
protein found on the surface of the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) and is composed of 
two subunits, S1 and S2 (Fig. 1A; Supplementary Fig. 1) [1]. 

Binding of S1 to the human angiotensin-converting enzyme 
2 (ACE2) is essential for the delivery of the viral RNA into 
the host cell [2, 3], but infectivity is also affected by addi-
tional interactions between S1 and the neuropilin 1 receptor 
[4, 5]. The S protein has been suggested to contribute to 
COVID-19 pathophysiology also through direct or indirect 
interactions with other proteins, such as nicotinic acetyl-
choline receptors (nAChRs) [6–8] and epithelial sodium 
channels [9].

The interactions between the S protein and nAChRs are 
thought to occur through the C-terminus region of the S1 
subunit (Y674-R685 region) [6]. This region is an exposed 
loop that contains a motif that is homologous to a motif of 
snake neurotoxins, which are antagonists of nAChRs, and 
to a short region of the ectodomain of the rabies virus gly-
coprotein [6], which has been shown to inhibit ACh-elicited 
macroscopic currents of α4β2 nAChRs [11].

We recently examined the possible binding of the 
Y674-R685 region of the S protein to several nAChRs 
using molecular dynamics (MD) simulations [8]. These 
simulations predicted favourable binding of the Y674-R685 
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region to the agonist binding site of the human α4β2 and 
α7 nAChRs (Fig. 1B, C) and the muscle-like αβγδ recep-
tor from Tetronarce californica [8]. Moreover, analyses of 
the MD simulations of the complete and fully glycosylated 
S protein showed that the Y674-R685 region is accessible 
for binding [8]. Among nAChRs, binding of Y674-R685 to 
the α7 subtype is highly relevant to COVID-19 as nicotine, 

acting through this receptor, may regulate the expression of 
ACE2 [12]. Also, activation of α7 nAChR reduces inflam-
mation and tissue damage by downregulating pro-inflam-
matory cytokines [13–15]. Thus, potentiation of α7 has 
emerged as an important strategy for modulating inflam-
mation in different pathological contexts, including acute 
respiratory distress syndrome [13, 16]. Hence, ligands that 
bind α7 nAChR may affect the SARS-CoV-2 infectivity 
and the progression of COVID-19. Indeed, recently it has 
been shown that varenicline, a full agonist at α7 nAChR 
[17], reduces infectivity and disease progression in a rhesus 
macaque model [18].

Here, we use whole-cell and single-channel patch 
clamp recordings to determine whether the Y674-R685 
region of the SARS-CoV-2 S protein can directly affect 
the human α7 nAChR function. Our results reveal that a 
synthetic peptide corresponding to this region activates 
α7 in the presence of a potentiator, indicating a functional 
interaction. Additionally, the Y674-R685 fragment allos-
terically inhibits α7 nAChR responses at a wide concen-
tration range. This potential functional interaction that 
we identified may play a role in infectivity and/or disease 
progression and provides foundations for further exploring 
the effects of the S protein and other derived fragments on 
α7 nAChR function.

Materials and Methods

Chemicals

Acetylcholine (ACh) and 5-hydroxyindole (5-HI) were 
purchased from Merck (USA). PNU-120596 (N-(5-Chloro-
2,4-dimethoxyphenyl)-N’-(5-methyl-3-isoxazolyl)-urea) 
was obtained from Tocris Biosciences (Bristol, UK). Stock 
solutions were prepared in water (ACh, 5-HI) or DMSO 
(PNU-120596). The fragment of the S protein (S) of SARS-
COV-2, called Y674-R685, contains 12 amino acids with the 
sequence YQTQTNSPRRAR (MW 1477.60). The peptide 
was synthesized (90% purity) by Designer Bioscience Ltd. 
(Cambridge UK) and stored as 1 mM stock solutions (in 
water) at − 20 °C.

Expression of Human α7 in Mammalian Cells

BOSC-23 cells, derived from HEK-293 cells (kindly pro-
vided by Dr. Sine, Mayo Clinic, USA), were cultured with 
Dulbecco’s modified Eagle medium (DMEM) culture 
medium (GIBCO, USA) supplemented with 100 μg/mL 
streptomycin-100  IU/mL penicillin (Invitrogen, USA), 
and 10% Fetal Bovine Serum (FBS, Internegocios, Argen-
tina). Human α7 cDNA subunit (GenBank accession no 
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Fig. 1  Three-dimensional structures of the SARS-CoV-2 S protein 
and the human α7 nAChR. A The model represents the complete, 
fully glycosylated S protein in the closed state after furin cleav-
age [1]. The protein is rendered as a blue cartoon with the glycans 
depicted in green. The receptor binding motifs (residues S438-Q506) 
and the Y674-R685 region are highlighted in yellow and red, respec-
tively. The Y674-R685 region was shown to be accessible for binding 
in previous MD simulations of the fully glycosylated S protein [8]. 
B Cryo-EM structure of the human α7 nAChR (PDB code: 7KOX) 
[10]. This receptor is a homopentamer formed of five α7 subunits. 
Each subunit is composed of an extracellular (ECD), transmembrane 
(TMD), and intracellular (ICD) domain. The agonist binding site is 
located in the ECD at the interface between two neighbouring subu-
nits. In this structure, epibatidine (red spheres) is bound to the ago-
nist binding site. The green spheres represent bound calcium ions. C 
MD simulations of Y674-R685 bound to the human α7 nAChR show 
favourable binding to the binding pocket [8]. Example of conforma-
tions from simulations in which the most important interactions with 
conserved key aromatic residues are present. Left: Overall view of 
the Y674-R685: α7(ECD) complex. Right: Close-up view of inter-
actions formed by R682 and Q675 within agonist binding site. The 
α7 receptor and Y674-R685 are coloured in dark blue and orange, 
respectively. Interactions between side chains of R682 and Q675 
and the aromatic rings of TrpB ((α7W171), TyrC1 (α7Y210), TyrC2 
(α7Y217) and TyrA (α7Y115) are shown with dashed lines
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X70297.1) was subcloned into the pRBG4 expression vec-
tor [19, 20]. BOSC-23 cells were transfected by the calcium 
phosphate procedure with α7 subunit cDNA together with 
the α7 chaperones Ric-3 and NACHO cDNAs [21, 22]. The 
cDNA ratio was 1:2:1 for α7:Ric-3:NACHO, and the total 
amount was 4.2 μg/35-mm dish. Also, green fluorescence 
protein (GFP) cDNA plasmid was included to allow the 
identification of transfected cells [23, 24].

All transfections were carried out for about 8–12 h in 
DMEM with 10% FBS and terminated by exchanging the 
medium. Cells were used for experiments 2 to 3 days after 
transfection, at which time maximum functional expression 
levels were achieved [19, 25, 26].

Single‑Channel Recordings in BOSC‑23 Cells

Single channels were recorded in the cell-attached patch 
configuration at 70 mV pipette potential at room tempera-
ture (20–22 °C) [26]. Each patch corresponds to a different 
cell (n indicates the number of independent experiments). 
For each condition, at least three different cell transfections 
from distinct days were performed (N indicates the number 
of cell transfections).

The bath and pipette solutions contained 142 mM KCl, 
5.4 mM NaCl, 1.8 mM  CaCl2, 1.7 mM  MgCl2, and 10 mM 
HEPES (pH 7.4). The peptide and 5-HI dissolved in water 
were added directly to the pipette solution. PNU-120596 
in DMSO was added either to the pipette solution or to the 
dish. The final concentration of DMSO was lower than 0.1% 
(v/v), which does not affect α7 activation properties [20].

Single-channel currents were digitized at 5–10 μs inter-
vals and low-pass filtered at a cut-off frequency of 10 kHz 
using an Axopatch 200B patch-clamp amplifier (Molecular 
Devices, CA, USA). Analysis was performed with the pro-
gram TAC (Bruxton Corporation, Seattle, WA, USA) with 
the Gaussian digital filter at 9 kHz (Final cut-off frequency 
6.7 kHz) or at 3 kHz for recordings in the presence of PNU-
120596. Events were detected by the half-amplitude thresh-
old criterion [26].

Open-time and closed-time histograms were fitted by the 
sum of exponential functions by maximum likelihood using 
the program TACFit (Bruxton Corporation, Seattle, WA, 
USA). The duration of the slowest open component was used 
for comparisons. Bursts of channel openings were identi-
fied as a series of closely separated openings preceded and 
followed by closings longer than a critical duration, which 
was taken as the point of intersection between closed com-
ponents as previously described [25–27]. For α7 activated 
by ACh, the critical duration for defining a burst was defined 
by the intersection between the first and second briefest com-
ponents in the closed-time histogram (~ 200–400 μs). For 
defining bursts in the presence of 5-HI, critical times were 
selected between the second and third closed components 

(~ 1–3 ms) [25–27]. In the presence of PNU-120596 and 
ACh, α7 nAChR openings are grouped in bursts, and sev-
eral bursts form long clusters. Each cluster corresponds to 
the activation episode of the same receptor molecule. For 
bursts, the critical time was set at 200–400 μs, and for clus-
ters, the critical time was determined by the point of inter-
section between the third and fourth closed components 
(~ 30–60 ms) [25]. The burst and cluster durations were 
taken from the slowest components of the corresponding 
histograms [25, 26].

Expression of α7 nAChR in Xenopus laevis Oocytes

Adult female Xenopus laevis were purchased from Xeno-
pus One, MI, USA. Xenopus care and housing followed the 
UK Home Office code of practice guidelines for the species. 
Stage V and VI Xenopus oocytes were prepared as previ-
ously described [28] and then injected with 2–6 ng of human 
α7 subunit cDNA into the nucleus in a volume of 23.0 nL, 
using a Nanoject Automatic Oocyte Injector (Drummond, 
Broomall, USA). To favour the expression of α7, its cDNA 
was co-injected with chaperone NACHO cDNA (GenBank 
accession no BC050273.1) at a ratio of 1 α7: 0.01 NACHO 
[21, 29]. Injected oocytes were incubated until use at 18 °C 
in a solution (OR2) containing 82 mM NaCl, 2 mM KCl, 
2 mM  MgCl2, 5 mM HEPES, pH 7.5, supplemented with 
0.1 mg/mL streptomycin, 1000 U/mL penicillin and 100 μg/
mL amikacin. Oocytes were used for electrophysiological 
recordings 1 to 2 days after injection [28, 29].

Electrophysiological Recordings in Xenopus laevis 
Oocytes

Oocytes were impaled with two electrodes filled with 3 M 
KCl, and the voltage-clamp was maintained at − 60 mV 
throughout the experiment. All recordings were performed 
at 18 °C, and cells were perfused continuously with OR2 
solution at pH 7.4. Currents were recorded using an auto-
mated platform equipped with standard two electrode 
voltage-clamp configuration (HiClamp; Multi Channel 
Systems, Reutlignen, Germany). This system differs from 
standard electrophysiology and other automated platforms 
because, instead of applying the compound in the perfusion, 
the oocyte is moved into a well from a 96-well microtiter 
plate containing 230 μl of the desired solution, as previ-
ously described [28]. Experiments were carried out only 
if the resting potential of the impaled oocytes was greater 
than − 10 mV and the total holding current less than 0.2 μA.

The ability of fragment Y674-R685 to evoke current 
responses in Xenopus oocytes expressing α7 nAChR was 
examined at a range of concentrations (1 pM to 10 μM) 
along with control  EC50 (100 μM) ACh-evoked responses 
from the same cells. Compounds were applied for 20 s 
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and the washout period was 5 min. For experiments that 
assessed the effects PNU-120596 on the ability of fragment 
Y674-R685 to activate α7 nAChRs, oocytes displaying 
maximal ACh current amplitudes of 15–20 μA were used. 
Our limit of detection for α7 receptor-mediated activity is 
0.05–0.08% (10–20 nA of current) of the maximal responses 
elicited by 1 mM ACh.

To obtain concentration response data for the inhibitory 
effects of Y674-R685 on α7 nAChRs, a range of concentra-
tions of the fragment (0.1 nM to 30 μM) were co-applied 
with ACh  EC50 (100 μM). This concentration range was 
similar to that used to determine the effects of neurotoxin-
like peptides of the rabies virus glycoprotein on nAChRs 
[11]. The peaks of the current responses obtained in this 
manner were then normalized to the peak of the responses 
elicited by ACh alone. The effects of the fragment on the 
ACh concentration response curve (CRC) were assessed by 
determining the ACh CRC in the absence and presence of 
1 μM Y674-R685. The peak of the ACh responses were 
normalized to the responses elicited by 1 mM ACh. For both 
set of studies, the normalized data were fit with the Hill 
equation using GraphPad software version 5, as previously 
described [28]. Data are expressed as means ± SEM from 5 
to 6 oocytes obtained from at least three different batches 
of oocytes (N).

Data were filtered at 10 Hz, captured at 100 Hz using 
proprietary data acquisition software running under Matlab 
(Mathworks Inc., Natick, MA).

Statistical Analysis

Single-channel data are presented as mean ± SD. Data 
sets that passed the Shapiro–Wilk test for normality and 
the Levene Median test for equal variance were analysed 
using two-tailed Student’s t-test for pairwise comparisons 
or Mann–Whitney rank sum test with SigmaPlot 12.0 (Sysat 
Software, Inc.). Statistically significant differences between 
two groups of data were established at p values < 0.05. 
For each condition, n indicates the number of independent 
experiments, each from different cell patches, and N, the 
number of cell transfections, each from different days and 
cell batches.

Results

α7 nAChR Activation by the Y674‑R685 Fragment 
from the SARS‑CoV‑2 S Protein in the Presence 
of Potentiators

Our previous MD simulations of the complex formed 
between the α7 nAChR and the Y674-R685 fragment from 
the SARS-CoV-2 S protein suggested the potential of the 

Y674-R685 region to interact with conserved aromatic res-
idues within the binding pocket of the receptor (Fig. 1C) 
[8]. To establish unequivocally the existence of molecu-
lar functional interactions between this region of SARS-
CoV-2 S protein and the human α7 nAChR, we evaluated 
whether the synthetic fragment could elicit macroscopic 
and high-resolution single-channel currents.

The macroscopic responses of the human α7 nAChR 
expressed in Xenopus oocytes to the applications of the 
Y674-R685 fragment at a broad range of concentrations 
(1 pM to 10 μM) were examined along with control ACh-
evoked responses from the same cells (Fig. 2A).

As shown in the figure, Y674-R685 did not elicit detect-
able currents in contrast to the robust responses elicited 
by 100 μM ACh. After 5-min wash, receptors remained 
responsive to subsequent control applications of ACh 
(Fig. 2A).

Single-channel currents from cell-attached patches from 
BOSC-23 cells expressing human α7 nAChR were also 
recorded, thus allowing for more detailed mechanistic infor-
mation. Recordings were carried out in parallel with control 
experiments with ACh as the agonist to confirm the presence 
of functional α7 nAChRs in the same batch of cells. ACh 
(10–100 μM) evoked isolated brief openings (0.1–0.3 ms) 
or less often short bursts composed of a few openings in 
quick succession, which correspond to activation of the same 
receptor molecule [20, 24, 26, 27] (Fig. 2B). In contrast, 
channel activity was not detected at a range of Y674-R685 
concentrations in a total of 21 patches from different cell 
transfections (1 pM, n = 3; 1 nM, n = 3; 1 μM, n = 8; 10 μM, 
n = 3; 100 μM, n = 4) (Fig. 2B).

Given that α7 nAChR activation in the presence of ACh 
occurs with very low open probability as very brief open-
ing events (Fig. 2B), we sought to explore if the peptide 
can induce activation in the presence of positive allosteric 
modulators. Ligands that do not elicit α7 ionotropic activ-
ity or do it with extremely low efficacy, but they appear as 
agonists in the presence of a PAM have been called silent 
agonists [30–32].

PNU-120596, a type II positive allosteric modulator 
(PAM), has been extensively used as a tool in α7 nAChR 
functional studies due to its ability to increase the probabil-
ity of agonist-elicited channel opening and the open-channel 
durations and to reduce desensitization [33]. We, therefore, 
examined whether Y674-R685 elicits α7 channel activity 
in the presence of PNU-120596. Note that by itself, PNU-
120596 cannot induce channel activation [34].

Macroscopic currents elicited by 1 μM Y674-R685 in 
the presence of 10 μM PNU-120596 were recorded. Under 
these conditions, currents with amplitudes of 15–20 nA 
were detected in 30% of the oocytes tested whereas neither 
Y674-R685 nor PNU-120596 on their own elicited currents 
(n = 15, N = 3) (Fig. 3A).
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To gain more insights into how Y674-R685 activates α7 
nAChRs in the presence of PNU-120596, we explored its 
effects at the single-channel level. ACh-elicited activity in 
the presence of 1 μM PNU-120596 is profoundly different 
to that in its absence (Fig. 3B). Instead of the brief isolated 
openings, channel activity shows long periods of high-fre-
quency openings, named clusters, with a mean duration of 
about 1–3 s and an amplitude of 10 pA (− 70 mV). A cluster 
corresponds to the activation episode of the same receptor 
that recovers from desensitization and oscillates between 
open and closed states before reaching again the more stable 
non-conducting desensitized state [33]. Clusters are com-
posed of bursts with mean durations of ~ 200–500 ms, which 
comprise successive openings separated by very brief clos-
ings (Figs. 3B and 4) [25, 33].

In the presence of 1 μM PNU-120596, Y674-R685 was 
capable of eliciting channel activity at a wide range of con-
centrations (1 pM to 10 μM), indicating that this fragment of 
the S protein can activate α7 nAChRs in the presence of the 
PAM (Fig. 3B). Since the frequency of channels is variable 
among patches due to variations in receptor expression lev-
els, parallel control recordings in the presence of ACh were 
made. When ACh and PNU-120596 were co-applied, > 98% 
of patches showed channel activity (active patches), and the 
long-duration clusters described above appeared at high 
frequency as reported before [23] (Fig. 3B). In the pres-
ence of PNU-120596 and Y674-R685, the percentage of 
active patches was lower than in the presence of ACh: 65% 
(n = 23, N = 4; 1 pM Y674-R685), 40% (n = 15, N = 4; 1 nM 
Y674-R685), 67% (n = 15, N = 4; 1 μM Y674-R685), and 

62% (n = 13, N = 3; 10 μM Y674-R685). Also, channel activ-
ity evoked by Y674-R685 (in the presence of the PAM) 
was much more infrequent and interspaced by longer silent 
periods when compared to that evoked by ACh (Fig. 3B). 
It is important to note that this type of experiments does 
not allow for a precise comparison of channel frequency 
since this parameter may be affected by the variability in 
the number of receptors in each patch. Nevertheless, at 1 pM 
Y674-R685, the frequency of channel activation episodes 
was very low, albeit the active patches showed long clus-
ters resembling those elicited by ACh and PNU-120596 
(Figs. 3B and 4). The fact that the Y674-R685 fragment 
activates α7 only in the presence of a PAM suggests that it 
may act as a silent agonist [31, 32].

The channel activity pattern is similar between ACh and 
1 pM Y674-R685 fragment (both in the presence of PNU-
120596). The increase in Y674-R685 concentration resulted 
in profound changes in this pattern, as clearly illustrated in 
the recordings shown in Fig. 3B. The frequency of opening 
events appeared to increase, but the duration of the open-
ings and the activation episodes were reduced with increas-
ing concentrations. The typical long-duration clusters were 
completely absent at Y674-R685 concentrations higher than 
1 μM, at which activation occurred mainly as isolated open-
ings or in short bursts (Figs. 3B and 4).

To define the properties of the activation episodes elic-
ited by the Y674-R685 fragment at different concentra-
tions, the mean durations of openings, bursts, and clusters 
in the presence of PNU-120596 were determined (Fig. 4). 
At 1 pM Y674-R685, the mean durations of the slowest 

100��M ACh Y674-R685 100��M ACh

1 pM 1 �M 10 �M

40 s
1 �A

100 �M ACh

5 pA

500 ms

10 �M Y674-R685

5 pA

500 ms

B

A

Fig. 2  The Y674-R685 fragment cannot elicit detectable α7 
responses. A Macroscopic responses of the human α7 nAChR. 
Representative traces from single oocytes expressing human α7 
nAChR to applications of ACh (100 μM) or 1 pM, 1 μM, or 10 μM 
of Y674-R685. Drug applications were for 20  s followed by a 

300  s washout. B Single-channel currents of the human α7 nAChR 
recorded from cell-attached patches in the presence of 100 μM ACh 
or 10  μM Y674-R685. No channel activity was detected at a 1  pM 
to 100  μM Y674-R685 concentration range. Channel openings are 
shown as upward deflections. Pipette potential: 70 mV. Filter: 9 kHz
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open component, bursts and clusters were 140 ± 60 ms, 
418 ± 110 ms, and 2330 ± 670 ms, respectively (n = 3). These 
values were similar to those determined when 10 μM ACh 
was the agonist: 148 ± 12 ms for the slowest open component 
(p = 0.85, n = 3), 550 ± 38 ms for bursts (p = 0.12, n = 3), 
and 3048 ± 510 ms for clusters (p = 0.21, n = 3), and also 
comparable to those reported before for 100 μM ACh and 
1 μM PNU-120596 [25, 33]. Although the mean durations of 
clusters were similar at 10 μM ACh and 1 pM Y674-R685, 
the relative area of the components corresponding to clus-
ters in the histogram was smaller when Y674-R685 was the 
agonist (relative areas were for ACh = 0.44 ± 0.09 and for 

Y674-R685 = 0.21 ± 0.08; p = 0.03) (Fig. 4), indicating a 
reduction in the frequency of the long activation episodes.

With the increase of Y674-R685 concentration, the dura-
tions of open, bursts, and clusters were reduced (Fig. 3). 
The slowest component of each histogram became progres-
sively briefer with increasing Y674-R685 concentrations 
(Fig. 4). The mean durations were 48 ± 13 ms (1 μM, n = 3) 
and 14 ± 4 ms (10 μM, n = 4) for openings; 70 ± 19 ms 
(1 μM, n = 3) and 20 ± 8 ms (10 μM, n = 4) for bursts; and 
104 ± 41 ms (1 μM, n = 3) and 30 ± 15 ms (10 μM, n = 4) for 
clusters. These mean values were statistically significantly 
different to those determined in the presence of 10 μM ACh 

Fig. 3  Activation of the human 
α7 nAChR by Y674-R685 
in the presence of the PAM 
PNU-120596. A Macroscopic 
currents were recorded from 
oocytes expressing the human 
α7 nAChR after a pulse of 
30 μM ACh (control) or 1 μM 
Y674-R685 in the absence 
or presence of 10 μM PNU-
120596. Current traces shown 
are representative of n = 15 
recordings from oocytes 
isolated from N = 3 donors. 
B Single-channel currents of 
the human α7 nAChR in the 
presence of the type II PAM 
PNU-120596 (1 μM) activated 
by 100 μM ACh (left), or 
Y674-R685 at different concen-
trations (1 pM, 1 nM, 1 μM, or 
10 μM) (right). For each condi-
tion typical channel traces are 
shown. Channel openings are 
shown as upward deflections. 
Pipette potential: 70 mV. Filter: 
3 kHz

B
10 �M ACh + 1 �M PNU-120596

1 pM Y674-R685 + 1 �M PNU-120596

10 �M Y674-R685 + 1 �M PNU-120596
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Burst Burst Burst
Cluster

A

ACh

      ACh
        +
PNU-120596 Y674-R685

PNU-120596
        +
Y674-R685
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1 nM Y674-R685 + 1 �M PNU-120596
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and 1 μM PNU-120596 (p = 0.000665 and p = 0.00000431 
for open; p = 0.0000403 and p = 0.00000106 for bursts; 
p = 0.000597 and p = 0.0000681 for clusters, for 1 and 
10 μM Y674-R685, respectively). At the highest Y674-R685 
concentration (10 μM), the mean open duration was similar 
to the mean burst and cluster durations (Fig. 4), indicating 
that openings occurred mostly in isolation and confirming 
the lack of the typical long-duration clusters corresponding 
to potentiated α7 nAChR responses.

To further confirm that channel activation can be elicited 
by Y674-R685 in the presence of PNU-120596 but not in 
its absence a different strategy was followed. Single-channel 
recordings in the presence of different concentrations of the 
Y674-R685 fragment (1 μM and 10 μM) were performed. 
Again, no channel activity was detected in all patches 
(n = 9, N = 2). However, the addition of 1 μM PNU-120596 
to the dish during the course of the recording resulted in 
the appearance of single-channel activity in most of the 
silent patches (83.3% and 100% for 1 μM (n = 6) and 10 μM 
Y674-R685 (n = 3), respectively) (Fig. 5). Since this strat-
egy allows comparison of both conditions (with and without 

PNU-120596) in the same patch, it confirms that activation 
by Y674-R685 requires the PAM. The same strategy applied 
using ACh as the agonist showed that the typical brief iso-
lated openings were replaced by long-duration clusters after 
addition of PNU-120596 (Fig. 5, [33]. The frequency of 
opening events was markedly lower, and the durations were 
briefer at 10 μM Y674-R685 with respect to the recordings 
with ACh (Fig. 5).

Together, these results confirm that Y674-R685 func-
tionally interacts with the α7 nAChR. They show that the 
Y674-R685 peptide activates the receptor only in the pres-
ence of PNU-120596, and that the increase in its concentra-
tion is accompanied by a decrease of the duration of open 
channel lifetime and clusters.

Because PNU-120596 is a highly efficacious type II PAM 
with the capability of recovering receptors from desensitiza-
tion, we also tested if Y674-R685 elicited channel activity 
in the presence of 5-hydroxyindole (5-HI), a type I PAM. 
This compound induces potentiation with lower efficacy 
than PNU-120596 and does not produce significant recov-
ery of receptors from desensitization [24, 25, 35]. In the 
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Fig. 4  Single-channel recordings of the human α7 nAChR in the 
presence of Y674-R685. Single-channel currents of human α7 
nAChR in the presence of the type II PAM PNU-120596 (1 μM) acti-
vated by 100 μM ACh, or Y674-R685 at 1 pM or 10 μM. For each 
condition, channel traces at two different temporal scales are shown. 
Channel openings are shown as upward deflections. Representative 

open, burst, and cluster duration histograms are shown for each con-
dition. The open, burst, and cluster durations correspond to the dura-
tions of the slowest components of each histogram. The dashed lines 
show how these mean durations change among different conditions. 
Pipette potential: 70 mV. Filter: 3 kHz
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presence of 2 mM 5-HI, 100 μM ACh elicited prolonged 
openings and bursts composed of successive openings 
which lasted about 4 ms (Fig. 6). The histograms showed 
that the duration of the slowest open component was four-
fold longer (1.28 ± 0.35 ms, n = 37, versus 0.30 ± 0.06 ms, 
n = 38) and the mean burst duration was eightfold longer 
(3.60 ± 1.29 ms, n = 37, versus 0.46 ± 0.12 ms, n = 38) than 
in the absence of the PAM. Replacing ACh by Y674-R685 
(1 pM or 10 μM) revealed α7 channel activity. However, 
the frequency of opening events was markedly lower when 
compared to that elicited by ACh; only few events were 
detected during a 15-min recording period (Fig.  6). At 
1 pM Y674-R685, 83.3% of the patches showed α7 chan-
nel activity, but the frequency of openings was very low 
(n = 18, N = 3). We therefore combined all recordings for 
constructing open and burst duration histograms. The result-
ing mean open and burst durations were 1.1 ms and 4.2 ms, 
respectively (Supplementary Fig. 2). At 10 μM Y674-R685, 
the frequency of channel openings was higher than at 1 pM 
but still lower than that elicited by ACh. The mean open 
and burst durations were 0.73 ± 0.07 ms and 0.85 ± 0.13 ms 
(n = 3), respectively. Both mean durations were statistically 
significantly briefer than the corresponding ones in the 
presence of ACh and 2 mM 5-HI (p = 0.0114 and 0.005 for 
mean open and mean burst durations, respectively). Also, the 
observation that in the presence of 2 mM 5-HI and 10 μM 
Y674-R685 the mean duration of openings was similar to 

that of bursts indicates that at high fragment concentra-
tions channel openings occurred mainly as isolated events 
instead of in quick succession forming activation episodes, 
as described before for recordings with the type II PAM 
PNU-120596.

Inhibition of α7 Activity by the Y674‑R685 Peptide

To further explore the molecular mechanisms driving the 
inhibitory effects of the Y674-R685 fragment, we studied its 
action on α7 activated by ACh, which allows recordings of 
higher channel activity than with the peptide as the agonist 
(Fig. 7A). Given the very brief open duration of α7 chan-
nels, which is close to the time resolution of our system, we 
needed to include PNU-120596 to quantify the decrease in 
open durations.

Whereas in the presence of 1 μM PNU-120596, 10 μM 
ACh led to an activation pattern composed of long clus-
ters as described above, the inclusion of Y674-R685 pro-
duced marked changes in this pattern in a concentration-
dependent manner (Fig. 7A and Supplementary Table 1). 
The results showed that the cluster duration was the most 
sensitive parameter. With respect to the control record-
ings with ACh and PNU-120596, the presence of 1 pM 
and 1 nM Y674-R685 reduced the cluster duration 72% 
and 78%, respectively, and the open duration 54% and 
57%, respectively (Fig. 7A, Supplementary Table 1). As 

PNU-120596

30 s 100 s0 s

PNU-120596

10 s 100 s0 s 500 ms

10 �M Y674-R685

100 �M ACh

5 pA

Fig. 5  Channel activity elicited by Y674-R685 in the absence or pres-
ence of the PAM. Representative experiments in which channel activ-
ity from the same patch was recorded before and after addition of 
PNU-120596. ACh or 10 μM Y674-R685 were present in the pipette 
solution. The indicated time corresponds to the time of recording 
after addition of PNU-120596. Top: single-channel currents of human 
α7 activated by 100 μM ACh appeared mainly as brief isolated open-
ings. Addition of 1 μM PNU-120596 to the extracellular solution sur-
rounding a cell-attached patch resulted in a marked increase in cur-

rent in the continued presence of 100 μM ACh in the patch pipette. 
This experiment is representative of 4 different patches. Bottom: 
channel activity was undetectable in the presence of Y674-R685. 
Addition of 1 μM PNU-120596 to the extracellular solution surround-
ing the silent patch revealed channel activity, indicating that only in 
the presence of the PAM 10  μM Y674-R685 can activate α7. This 
experiment is representative of 3 different patches. Channel open-
ings are shown as upward deflections. Pipette potential: 70 mV. Filter 
3 kHz
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the concentration increased, the inhibition was more evi-
dent and at 10 μM Y674-R685, the long durations clusters 
were absent, and only markedly briefer bursts were detected 
(Fig. 7A and Supplementary Table 1). At this high concen-
tration, the mean duration of the slowest open component 
was 9.9 ± 2.6 ms (n = 4), which corresponds to about 7% 
of the control open duration. Also, the open duration was 
not different from the mean burst duration (11.2 ± 3.0 ms, 
n = 4), indicating that most long openings occurred in isola-
tion (Supplementary Table 1). Although clusters were not 
visually detected, we constructed cluster duration histo-
grams using a critical time for cluster resolution between 
10 and 20 ms, which is about 20 to 40-fold times longer 
than that used for burst-duration histograms. The mean dura-
tion of the slowest component of the cluster histogram was 

14.1 ± 4.4 ms (n = 4), which was similar to that of bursts, 
thus confirming the lack of the long-duration activation epi-
sodes occurring in potentiated α7 channels in the presence 
of 10 μM Y674-R685 (Fig. 7A, Supplementary Table 1).

We also analysed dwell times in the closed state as a func-
tion of different peptide concentrations of channels elicited 
by ACh in the presence of PNU-120596. For the control 
condition (no peptide), histograms were fitted by five or six 
exponential components. The three briefest components cor-
respond to intracluster closings and their mean durations 
were constant among different recordings (Supplementary 
Fig. 3). The two or three slowest closed components cor-
respond to closings separating clusters, isolated bursts, or 
isolated openings and showed variable durations among 
patches due to differences in receptor expression levels. The 

Fig. 6  Activation of the human 
α7 nAChR by Y674-R685 
in the presence of the type I 
PAM, 5-HI. Single-channel 
currents were recorded from 
cells expressing the human α7 
nAChR in the presence of 2 mM 
5-HI as the PAM and 100 μM 
ACh or 10 μM Y674-R685 as 
agonists. Traces at two different 
scales are shown for each condi-
tion. Pipette potential: 70 mV, 
Filter: 9 kHz. Representa-
tive open and burst duration 
histograms are shown for each 
agonist. The bar chart shows 
the mean durations ± SD of the 
slowest components of the open 
and burst duration histograms 
for each agonist (n = 37 for 
ACh and n = 3 for Y674-R685). 
*p < 0.05, **p < 0.01 (Student’s 
t-test)
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briefest component is the major component and corresponds 
to closings between openings that occur at a high frequency 
within clusters. With the increase of peptide concentration, 

the area of the briefest closed component decreased (from 
about 64 to 24% at 10 μM) and the slowest component 
became the predominant one (Supplementary Fig. 3). This 
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Fig. 7  Y674-R685 Inhibition of α7 nAChR channels activated by 
ACh. A Single-channel currents elicited by 10  μM ACh and poten-
tiated by 1 μM PNU-120596 were recorded in the absence (control) 
or presence of 1 or 10  μM Y674-R685. Typical channel traces are 
shown at two different temporal scales. Channel openings are shown 
as upward deflections. Pipette potential: 70  mV. Filter: 3  kHz. B 
Bar chart showing the mean durations of openings (τopen), bursts 
(τburst), and clusters (τcluster) in the absence (blue) and in the pres-
ence of 1  pM (orange), 1  nM (yellow), 1  μM (pink), and 10  μM 
(green) Y674-R685. The data correspond to the mean duration 
(± SD) of the slowest components of open, burst, and cluster histo-
grams. **p < 0.01, ***p < 0.001 (Student’s t-test) (see Supplemen-

tary Table 1). C Concentration response curve (CRC) for the inhibi-
tion of the α7 nAChR by Y674-R685. Increasing concentrations of 
Y674-R685 (0.1  nM to 30  μM) were co-applied with control ACh 
(100 μM). Responses were measured from the peak of ACh-elicited 
currents. Each data point represents the average normalized response 
of six cells (± SEM). Right panel: competition CRC data (red) for 
1 μM Y674-R685 co-applied with different ACh concentrations (0.1–
2000 μM). For comparison, ACh CRC data alone (black) are shown 
at the same concentrations. Data were fitted with the Hill equation, as 
described in the “Materials and methods” section. Data points repre-
sent the average normalized response of six oocytes (± SEM)
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slowest closed component at the highest peptide concentra-
tions showed variable mean durations among recordings. 
Comparisons of closed time histograms among recordings 
with different peptide concentrations did not reveal any new 
component of constant duration whose area increased with 
the peptide concentration.

To explore possible inhibitory mechanisms, we analysed 
our findings on the basis of a simple open-channel block 
mechanism [36]. Hallmarks of a simple open-channel block 
mechanism are as follows: (i) decrease in mean open time 
as a function of blocker concentration, (ii) concentration-
dependent increase in the fractional area of the blocked com-
ponent, (iii) constant mean duration of the blocked period 
across blocker concentrations, and (iv) increase of the burst 
duration as a function of the blocker concentration [36]. Our 
recordings in the presence of PNU-120596 and ACh showed 
a decrease in open duration as a function of peptide concen-
tration, which may suggest open-channel block. However, 
they showed a decrease in the cluster duration and did not 
show any flickering, typical of fast open-channel blockers 
[36]. Also, the closed time histograms did not reveal any 
new component that may be unequivocally assigned to a 
blocked period.

To gain further insight into the mechanism driving the 
inhibitory effect of Y674-R685 in the presence of ACh and 
PNU-120596, we compared the pattern of channel activity 
when methyllycaconitine (MLA), a reversible competitive 
α7 antagonist [17], was present instead of the S fragment. To 
better assess the impact of MLA, we used the strategy of fill-
ing the tip of the pipette with the buffer solution containing 
10 μM ACh and 1 μM PNU-120596 and the shaft with the 
same solution but including MLA (100 nM). This strategy 
allowed following in real-time the effects of the antagonist 
during the recording of ACh-activated channels. While at 
the beginning of the recording the typical pattern comprising 
high-frequency channel activity and long duration clusters 
was observed, channel activity decreased over time and was 
completely suppressed after about 10–15 min due to the 
presence of MLA (Supplementary Fig. 4, n = 3). No reduc-
tion in the duration of clusters or bursts, as described in the 
presence of Y674-R685, was detected in the presence of 
MLA (Supplementary Fig. 4). Thus, the type of inhibition 
mediated by Y674-R685 differs from that produced by the 
competitive antagonist.

The results together suggest that the Y674-R685 region 
of the S protein acts as a non-competitive antagonist of α7. 
To further confirm this result, we determined the effects of 
Y674-R685 on the peak current responses evoked by an 
approximate  EC50 concentration of ACh (100 μM). Appli-
cation of Y674-R685 with ACh inhibited peak currents, with 
an  IC50 of 1.8 ± 0.8 μM (n = 10), but inhibition was not com-
plete (Fig. 7B). We then investigated whether the observed 
antagonism was competitive or not. For these studies, 1 μM 

Y674-R685 was co-applied with increasing concentrations 
of ACh (0.1–2000 μM) (Fig. 7B). Compared to ACh alone, 
Y674-R685 co-application affected ACh efficacy, reducing 
the maximal currents elicited by ACh (Imax) by 30 ± 4% 
(n = 6) and slightly affecting its potency  (EC50 = 80 ± 6 μM 
and 131 ± 92 μM) (n = 6). These results confirm the non-
competitive antagonism of ACh responses by Y674-R685.

Discussion

Here, we provide molecular evidence of a direct functional 
interaction between the human α7 nAChR and a synthetic 
peptide corresponding to the Y674-R685 region of the 
SARS-CoV-2 S protein. This interaction, which takes place 
within the picomolar to micromolar concentration range, 
results in a dual effect involving activation in the presence 
of a PAM and non-competitive antagonism. These results 
agree with our previous MD simulations showing a possi-
ble interaction between the Y674-R685 region in the intact 
(furin cleaved and fully glycosylated) S protein [8] and open 
doors for further exploring α7 nAChR-S protein interactions.

α7 is a homomeric nAChR highly expressed in both 
neuronal and non-neuronal cells, which is emerging as a 
potential drug target for neurological, neurodegenerative, 
and inflammatory disorders [37–39]. It responds to ACh by 
opening an intrinsic ion channel permeable to cations, trig-
gering rapid membrane depolarization and calcium influx 
[40]. α7 activation is unique as it shows low probability of 
opening, extremely rapid desensitization and very high cal-
cium permeability [41, 42]. We found that the Y674-R685 
peptide activates the α7 receptor at picomolar concentrations 
but only in the presence of PAMs.

PAMs reduce the energy barrier for activation and 
are emerging as novel therapeutic tools for neurological, 
neurodegenerative, and inflammatory disorders as they 
potentiate α7 responses in the presence of an agonist [37, 
38, 43, 44]. They have been classified as type I PAMs, 
which enhance agonist-induced macroscopic currents, and 
type II PAMs, that also delay desensitization and recover 
receptors from desensitized states [25, 45, 46]. At the sin-
gle channel level, PAMs enhance open channel durations 
and induce activation in episodes in which the channel 
oscillates between open and closed conformations, thus 
generating an activity pattern markedly different from the 
isolated sub millisecond-openings in the absence of PAMs 
[25]. The Y674-R685 fragment activates the α7 nAChR 
in the presence of both PAMs, although activation is sig-
nificantly more efficacious in the presence of PNU-120596 
than 5-HI.

Ligands that do not elicit α7 nAChR channel opening 
but appear as agonists in the presence of a PAM have been 
recently named as silent agonists [30, 32, 47]. It has been 
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reported that this type of ligands may be effective desen-
sitizers and may elicit α7 nAChR metabotropic responses, 
which include release of calcium from intracellular stores 
and triggering signal transduction pathways [13, 40, 48, 49]. 
It has been suggested that α7 nAChR silent agonists may 
be used for the treatment of inflammatory disorders since 
α7-metabotropic activity is particularly important in immune 
cells [50]. This raises important questions regarding how α7 
metabotropic responses are modified by the S fragment and 
S protein and the impact on COVID-19 pathophysiology, 
which call for further studies.

The ability to activate α7 (in the presence of a PAM) is 
consistent with data from our MD simulations predicting 
that Y674-R685 can bind directly to the agonist binding site 
located in the extracellular domain of the α7 nAChR, leading 
in some conformations to a semi-capped loop C [8]. Loop C 
is one of the three loops that form the principal face of the 
orthosteric binding site [10]. Upon agonist binding, loop C 
closes to cap the agonist, an event associated with priming 
and channel opening [51]. Loop C capping aids the anchor-
ing of the bound agonist to the orthosteric binding site. It has 
also been suggested that agonists induce more compact loop 
conformations, while partial agonists and antagonists pro-
duce incomplete closure or prevent loop C capping [52–54].

Our previous MD simulations of Y674-R685 bound to the 
α7 nAChR identified the guanidinium group of R682 in the 
SARS-COV-2 S protein as the key anchoring point to the α7 
nAChR (Fig. 1C), forming strong interactions with several 
residues lining the receptor’s ligand binding pocket [8]. These 
simulations also show that, when bound to α7, the Y674-R685 
region of the S protein adopts many different conformations 
within the binding pocket, ranging from highly compact to 
fully extended configurations (Supplementary Fig. 5). Some 
of these binding modes allow for the formation of the key 
interactions necessary to activate the receptor (Fig. 1C), while 
others do not (Supplementary Fig. 6) [8]. Although the α7 
nAChR has five identical orthosteric binding sites, agonist 
occupancy of only one is required to elicit channel activation 
[27]. Thus, it could be possible that the Y674-R685 fragment 
occupancy of the binding sites in multiple orientations, some 
of which cannot trigger activation, may contribute to its low 
efficacy, as described before for partial agonists [54]. Alter-
natively, the partial closure of loop C in the presence of the 
Y674-R685 [8] observed in some of our previous simulations 
may also reduce the efficacy for channel opening (Supple-
mentary Fig. 7).

In addition to the activation of α7, the S fragment also 
shows a concentration-dependent inhibitory action. At 
1 pM Y674-R685, channel activity in the presence of PNU-
120596 is markedly infrequent but kinetically indistinguish-
able from the ACh-elicited one. The open channel lifetime 
and the architecture and duration of the activation epi-
sodes (clusters) are similar in the presence of ACh or 1 pM 

Y674-R685. As the Y674-R685 concentration increases, the 
frequency of opening events increases, but their durations 
become progressively briefer and long-duration clusters are 
not detected. This inhibitory effect was confirmed by exper-
iments in which ACh was the agonist, clearly showing a 
concentration-dependent reduction of open, burst and cluster 
durations by the Y674-R685 fragment. The changes in the 
channel activity pattern were completely different to those 
mediated by MLA, suggesting different mechanisms. The 
classical pharmacological experiments using dose–response 
curves from macroscopic current recordings support an 
additional mechanism of non-competitive inhibition exerted 
by the S protein fragment.

As shown here for Y674-R685, several compounds of 
different structures have dual opposite effects on nAChRs, 
including α7, by acting as agonists and non-competitive 
antagonists [23, 55, 56]. Allosteric sites may be located 
in different receptor domains, including the extracellular 
and transmembrane domains and channel pore [33, 44, 57, 
58]. The site(s) from which the Y674-R685 peptide exerts 
inhibition as well as the precise mechanism(s) remain to be 
determined. The main change at the single-channel level is 
the decrease in the cluster duration to such an extent that 
at a peptide concentration of 10 μM clusters are no longer 
detected, and only isolated short bursts or openings are 
observed. In addition, a new closed component correspond-
ing to block is not detected. Thus, the changes in channel 
activity as a function of the peptide concentration are incon-
sistent with its action as a simple fast open-channel blocker 
[36]. Alternative explanations for the changes observed 
may be that (i) the peptide acts as a very slow open-channel 
blocker and therefore closings corresponding to blockages 
cannot be distinguished, (ii) the blocked channel can close, 
and (iii) the peptide blocks closed channels as described for 
many nAChR blockers [59–61]. Also, we cannot discard 
that the peptide acts by more than one mechanism and may 
enhance or stabilize desensitized states.

Interestingly, peptides corresponding to the neurotoxin-
like region of the rabies virus glycoprotein inhibit macro-
scopic responses of α4β2 nAChRs with  IC50 values in the 
high-micromolar range whereas the S peptide inhibits α7 
with  IC50 value in the low-micromolar range. Moreover, 
it was shown that the full length ectodomain of the rabies 
virus glycoprotein also inhibits nAChRs and that the pep-
tides mediate in vivo effects in mice and Caenorhabditis 
elegans [11].

The identified interaction between the Y674-R685 pep-
tide and α7 becomes important due to the increasing evi-
dence showing the presence of free S and S1 proteins in 
body fluids. It has been proposed that after cleavage by 
furin there may be shedding of S1 during viral morpho-
genesis [62, 63] and that tissue damage may lead to free S 
protein and particles in plasma [64]. Moreover, it has been 
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hypothesized that inside the Open Reading Frame region of 
the S protein, the RNA polymerase can translate small neu-
rotoxic peptides [65]. Our findings further add to the grow-
ing body of evidence that the free S protein may contribute 
to COVID-19 pathogenesis. Processes that are thought to be 
induced by S protein include thrombosis and blood coagula-
tion [66], renal function abnormalities [67], impairment of 
vascular endothelial cells by down-regulation of ACE2 [68], 
and exacerbated pro-inflammatory responses through toll-
like 2 signalling cascades in macrophages [69].

Thus, our work provides the impetus for further explor-
ing interactions between α7 and S proteins, including those 
found in SARS-CoV-2 variants, such as the delta variant 
that carries a mutation (P681R) in the region herein studied.

Conclusions

Our results identify a functional interaction between a pep-
tide corresponding to the Y674-R685 region of the SARS-
CoV-2 S protein and the α7 nAChR. The S fragment exerts 
a dual effect on α7 nAChR, acting as an agonist in the 
presence of a PAM (silent agonist) and a non-competitive 
antagonist. It has been shown that activation of α7 nAChR 
in the immune system protects from excessive production of 
pro-inflammatory cytokines [14] and, therefore, impairment 
of this receptor results in an overproduction of cytokines 
and enhanced tissue damage [70]. Our finding raises the 
possibility that α7 nAChRs may be involved in the hyper-
inflammatory response associated to COVID-19 and opens 
door for its further exploration.
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