Skip to main content

Advertisement

Log in

Role of Ubiquitin–Proteasome and Autophagy-Lysosome Pathways in α-Synuclein Aggregate Clearance

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract 

Synuclein aggregation in neuronal cells is the primary underlying cause of synucleinopathies. Changes in gene expression patterns, structural modifications, and altered interactions with other cellular proteins often trigger aggregation of α-synuclein, which accumulates as oligomers or fibrils in Lewy bodies. Although fibrillar forms of α-synuclein are primarily considered pathological, recent studies have revealed that even the intermediate states of aggregates are neurotoxic, complicating the development of therapeutic interventions. Autophagy and ubiquitin–proteasome pathways play a significant role in maintaining the soluble levels of α-synuclein inside cells; however, the heterogeneous nature of the aggregates presents a significant bottleneck to its degradation by these cellular pathways. With studies focused on identifying the proteins that modulate synuclein aggregation and clearance, detailed mechanistic insights are emerging about the individual and synergistic effects of these degradation pathways in regulating soluble α-synuclein levels. In this article, we discuss the impact of α-synuclein aggregation on autophagy-lysosome and ubiquitin–proteasome pathways and the therapeutic strategies that target various aspects of synuclein aggregation or degradation via these pathways. Additionally, we also highlight the natural and synthetic compounds that have shown promise in alleviating the cellular damage caused due to synuclein aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Dorsey ER, Sherer T, Okun MS, Bloem BR (2018) The emerging evidence of the Parkinson pandemic. Journal of Parkinson’s Disease 8(Suppl 1):S3. https://doi.org/10.3233/JPD-181474

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rocha EM, De Miranda B, Sanders LH (2018) Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis 109:249–257. https://doi.org/10.1016/J.NBD.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  3. Savica R, Grossardt BR, Bower JH, Boeve BF, Ahlskog JE, Rocca WA (2013) Incidence of dementia with Lewy bodies and Parkinson’s disease dementia. JAMA Neurol 70(11):1396. https://doi.org/10.1001/JAMANEUROL.2013.3579

    Article  PubMed  PubMed Central  Google Scholar 

  4. Compagnoni GM, Fonzo AD (2019) Understanding the pathogenesis of multiple system atrophy: state of the art and future perspectives. Acta Neuropathol Commun 7(1):113. https://doi.org/10.1186/S40478-019-0730-6

    Article  Google Scholar 

  5. Brás IC, Outeiro TF (2021) Alpha-synuclein: mechanisms of release and pathology progression in synucleinopathies. Cells 10(2):1–19. https://doi.org/10.3390/CELLS10020375

    Article  Google Scholar 

  6. Logan T, Bendor J, Toupin C, Thorn K, Edwards RH (2017) α-Synuclein promotes dilation of the exocytotic fusion pore. Nat Neurosci 20(5):681. https://doi.org/10.1038/NN.4529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. He S, Zhong S, Liu G, Yang J (2020) Alpha-synuclein: the interplay of pathology, neuroinflammation, and environmental factors in Parkinson’s disease. Neurodegener Dis 20(2–3):55–64. https://doi.org/10.1159/000511083

    Article  CAS  PubMed  Google Scholar 

  8. Kaji S, Maki T, Kinoshita H, Uemura N, Ayaki T, Kawamoto Y, Furuta T, Urushitani M, Hasegawa M, Kinoshita Y, Ono Y, Mao X, Quach TH, Iwai K, Dawson VL, Dawson TM, Takahashi R (2018) Pathological endogenous α-synuclein accumulation in oligodendrocyte precursor cells potentially induces inclusions in multiple system atrophy. Stem Cell Reports 10(2):356. https://doi.org/10.1016/J.STEMCR.2017.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mori A, Imai Y, Hattori N (2020) Lipids: key players that modulate α-synuclein toxicity and neurodegeneration in Parkinson’s disease. Int J Mol Sci 21(9):3301. https://doi.org/10.3390/IJMS21093301

  10. Sun J, Wang L, Bao H, Premi S, Das U, Chapman ER, Roy S (2019) Functional cooperation of α-synuclein and VAMP2 in synaptic vesicle recycling. Proc Natl Acad Sci USA 116(23):11113–11115. https://doi.org/10.1073/PNAS.1903049116

  11. Chicco AJ, Sparagna GC (2007). Role of cardiolipin alterations in mitochondrial dysfunction and disease. https://doi.org/10.1152/Ajpcell.00243.2006,292(1),33-44.10.1152/AJPCELL.00243.2006

    Article  Google Scholar 

  12. Guardia-Laguarta C, Area-Gomez E, Schon EA, Przedborski S (2015) Novel subcellular localization for α-synuclein: possible functional consequences. Front Neuroanat 9:17. https://doi.org/10.3389/FNANA.2015.00017

  13. Rostami J, Mothes T, Kolahdouzan M, Eriksson O, Moslem M, Bergström J, Ingelsson M, O’Callaghan P, Healy L M, Falk A, Erlandsson A (2021) Crosstalk between astrocytes and microglia results in increased degradation of α-synuclein and amyloid-β aggregates. J Neuroinflammation 18(1):124. https://doi.org/10.1186/S12974-021-02158-3

  14. Sorrentino ZA, Goodwin MS, Riffe CJ, Dhillon JKS, Xia Y, Gorion KM, Vijayaraghavan N, McFarland KN, Golbe LI, Yachnis AT, Giasson BI (2019) Unique α-synuclein pathology within the amygdala in Lewy body dementia: implications for disease initiation and progression. Acta Neuropathologica Commun 7(1):1–22. https://doi.org/10.1186/S40478-019-0787-2

  15. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Iorio GD, Golbe LI, Nussbaum RL (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047. https://doi.org/10.1126/SCIENCE.276.5321.2045

  16. Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M (1997) α-Synuclein in Lewy bodies. Nature 388(6645):839–840. https://doi.org/10.1038/42166

  17. Galvin JE, Uryu K, Lee VM-Y, Trojanowski JQ (1999) Axon pathology in Parkinson’s disease and Lewy body dementia hippocampus contains α-, β-, and γ-synuclein. Proc Natl Acad Sci 96(23):13450–13455. https://doi.org/10.1073/PNAS.96.23.13450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Afitska K, Fucikova A, Shvadchak VV, Yushchenko DA (2017) Modification of C terminus provides new insights into the mechanism of α-synuclein aggregation. Biophys J 113(10):2182–2191. https://doi.org/10.1016/j.bpj.2017.08.027

  19. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194. https://doi.org/10.1016/J.CELL.2013.05.039

  20. Ilyinsky NS, Nesterov SV, Shestoperova EI, Fonin AV, Uversky VN, Gordeliy VI (2021) On the Role of normal aging processes in the onset and pathogenesis of diseases associated with the abnormal accumulation of protein aggregates. Biochemistry (Moscow) 86(3):275–289. https://doi.org/10.1134/S0006297921030056

  21. Gorell JM, Rybicki BA, Johnson CC, Peterson EL (1999) Occupational metal exposures and the risk of Parkinson’s disease. Neuroepidemiology 18(6):303–308. https://doi.org/10.1159/000026225

    Article  CAS  PubMed  Google Scholar 

  22. Srivastava T, Raj R, Dubey A, Kumar D, Chaturvedi RK, Sharma SK, Priya S (2020) Fast kinetics of environmentally induced α-synuclein aggregation mediated by structural alteration in NAC region and result in structure dependent cytotoxicity. Sci Rep 10(1):18412. https://doi.org/10.1038/s41598-020-75361-6

  23. Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, Marras C, Bhudhikanok GS, Kasten M, Chade AR, Comyns K, Richards MB, Meng C, Priestley B, Fernandez HH, Cambi F, Umbach DM, Blair A, Sandler DP, Langston JW (2011) Rotenone, Paraquat, and Parkinson’s disease. Environ Health Perspect 119(6):866. https://doi.org/10.1289/EHP.1002839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Colom-Cadena M, Gelpi E, Charif S, Belbin O, Blesa R, Martí MJ, Clarimon J, Lleó A (2013) Confluence of α-Synuclein, Tau, and β-Amyloid Pathologies in Dementia With Lewy Bodies. J Neuropathol Exp Neurol 72(12):1203–1212. https://doi.org/10.1097/NEN.0000000000000018

    Article  CAS  PubMed  Google Scholar 

  25. Paxinou E, Chen Q, Weisse M, Giasson BI, Norris EH, Rueter SM, Trojanowski JQ, Lee VM-Y, Ischiropoulos H (2001) Induction of α-synuclein aggregation by intracellular nitrative insult. J Neurosci 21(20):8053. https://doi.org/10.1523/JNEUROSCI.21-20-08053.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wildburger NC, Hartke A-S, Schidlitzki A, Richter F (2020) Current evidence for a bidirectional loop between the lysosome and alpha-synuclein proteoforms. Frontiers in Cell and Developmental Biology 8. https://doi.org/10.3389/FCELL.2020.598446

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tang Q, Gao P, Arzberger, T, Höllerhage M, Herms J, Höglinger G,  Koeglsperger T (2021) Alpha-Synuclein defects autophagy by impairing SNAP29-mediated autophagosome-lysosome fusion. Cell Death Dis 12(10):1–16. https://doi.org/10.1038/s41419-021-04138-0

  28. Teixeira M, Sheta R, Idi W, Oueslati A (2021) Alpha-synuclein and the endolysosomal system in Parkinson’s disease: guilty by association. Biomolecules 11(9):1333. https://doi.org/10.3390/BIOM11091333

  29. Guiney SJ, Adlard PA, Lei P, Mawal CH, Bush AI, Finkelstein DI, Ayton S (2020) Fibrillar α-synuclein toxicity depends on functional lysosomes. J Biol Chem 295(51):17497–17513. https://doi.org/10.1074/JBC.RA120.013428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bennett MC, Bishop JF, Leng Y, Chock PB, Chase TN, Mouradian MM (1999) Degradation of α-synuclein by proteasome. J Biol Chem 274(48):33855–33858. https://doi.org/10.1074/JBC.274.48.33855

  31. McKinnon C, Snoo ML De, Gondard E, Neudorfer C, Chau H, Ngana SG, O’Hara DM, Brotchie JM, Koprich JB, Lozano AM, Kalia LV, Kalia SK (2020) Early-onset impairment of the ubiquitin-proteasome system in dopaminergic neurons caused by α-synuclein. Acta Neuropathol Commun 8(1):17. https://doi.org/10.1186/S40478-020-0894-0

  32. Nonaka T, Hasegawa M (2009) A cellular model to monitor proteasome dysfunction by α-synuclein. Biochem 48(33):8014. https://doi.org/10.1021/BI900619J

    Article  CAS  PubMed  Google Scholar 

  33. Suzuki G, Imura S, Hosokawa M, Katsumata R, Nonaka T, Hisanaga S-I, Saeki Y, Hasegawa M (2020) α-synuclein strains that cause distinct pathologies differentially inhibit proteasome. Elife 9:e56825. https://doi.org/10.7554/ELIFE.56825

  34. Sang JC, Hidari E, Meisl G, Ranasinghe RT, Spillantini MG, Klenerman D (2021) Super-resolution imaging reveals α-synuclein seeded aggregation in SH-SY5Y cells. Commun Bio 4(1):613. https://doi.org/10.1038/S42003-021-02126-W

  35. Cliffe R, Sang JC, Kundel F, Finley D, Klenerman D, Ye Y (2019) Filamentous aggregates are fragmented by the proteasome holoenzyme. Cell Rep 26(8):2140–2149. https://doi.org/10.1016/J.CELREP.2019.01.096

  36. Cole TA, Zhao H, Collier TJ, Sandoval I, Sortwell CE, Steece-Collier K, Daley BF, Booms A, Lipton J, Welch M, Berman M, Jandreski L, Graham D, Weihofen A, Celano S, Schulz E, Cole-Strauss A, Luna E, Quach D, Paumier KL (2021) α-Synuclein antisense oligonucleotides as a disease-modifying therapy for Parkinson’s disease. JCI Insight 6(5):e135633. https://doi.org/10.1172/JCI.INSIGHT.135633

  37. Fayyad M, Majbour NK, Vaikath NN, Erskine D, El-Tarawneh H, Sudhakaran IP, Abdesselem H, El-Agnaf OMA (2020) Generation of monoclonal antibodies against phosphorylated α-Synuclein at serine 129: Research tools for synucleinopathies. Neurosci Lett 725. https://doi.org/10.1016/j.neulet.2020.134899

    Article  CAS  PubMed  Google Scholar 

  38. Jucker M, Walker LC (2018) Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat Neurosci 21(10):1341. https://doi.org/10.1038/S41593-018-0238-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burré J, Sharma M, Südhof TC (2014) α-Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. Proc Natl Acad Sci USA 111(40):E4274. https://doi.org/10.1073/PNAS.1416598111

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bartels T, Choi JG, Selkoe DJ (2011) α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477(7362):107–110. https://doi.org/10.1038/NATURE10324

  41. Gallea JI, Celej MS (2014) Structural insights into amyloid oligomers of the Parkinson disease-related protein α-synuclein. J Biol Chem 289(39):26733. https://doi.org/10.1074/JBC.M114.566695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li X, Dong C, Hoffmann M, Garen CR, Cortez LM, Petersen NO, Woodside MT (2019) Early stages of aggregation of engineered α-synuclein monomers and oligomers in solution. Sci Rep 9(1). https://doi.org/10.1038/S41598-018-37584-6

  43. Bhak G, Lee S, Kim TH, Lee JH, Yang JE, Joo K, Lee J, Char K, Paik SR (2018) Morphological evaluation of meta-stable oligomers of α-synuclein with small-angle neutron scattering. Sci Rep 8(1). https://doi.org/10.1038/S41598-018-32655-0

  44. Du X, Xie X, Liu R (2020) The role of α-synuclein oligomers in Parkinson’s disease. Int J Mol Sci 21(22):1–17. https://doi.org/10.3390/IJMS21228645

    Article  Google Scholar 

  45. Ghosh D, Singh P K, Sahay S, Jha NN, Jacob R S, Sen S, Kumar A, Riek R, Maji SK (2015) Structure based aggregation studies reveal the presence of helix-rich intermediate during α-Synuclein aggregation. Sci Rep 5:9228. https://doi.org/10.1038/srep09228

  46. Froula JM, Castellana-Cruz M, Anabtawi NM, Camino JD, Chen SW, Thrasher DR, Freire J, Yazdi AA, Fleming S, Dobson CM, Kumita JR, Cremades N, Volpicelli-Daley LA (2019) Defining α-synuclein species responsible for Parkinson’s disease phenotypes in mice. J Biol Chem 294(27):10392. https://doi.org/10.1074/JBC.RA119.007743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dikiy I, Eliezer D (2014) N-terminal acetylation stabilizes n-terminal helicity in lipid- and micelle-bound α-synuclein and increases its affinity for physiological membranes. J Biol Chem 289(6):3652–3665. https://doi.org/10.1074/JBC.M113.512459

  48. Burré J, Sharma M, Südhof TC (2012) Systematic mutagenesis of α-synuclein reveals distinct sequence requirements for physiological and pathological activities. J Neurosci 32(43):15227–15242. https://doi.org/10.1523/JNEUROSCI.3545-12.2012

  49. Carboni E, Lingor P (2015) Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease. Metallomics 7(3):395–404. https://doi.org/10.1039/C4MT00339J

    Article  CAS  PubMed  Google Scholar 

  50. Dasari AKR, Kayed R, Wi S, Lim KH (2019) Tau interacts with the C-terminal region of α-synuclein, promoting formation of toxic aggregates with distinct molecular conformations. Biochemistry 58(25):2814–2821. https://doi.org/10.1021/ACS.BIOCHEM.9B00215

  51. Eliezer D, Kutluay E, Bussell R, Browne G (2001) Conformational properties of α-synuclein in its free and lipid-associated states. J Mol Biol 307(4):1061–1073. https://doi.org/10.1006/JMBI.2001.4538

    Article  CAS  PubMed  Google Scholar 

  52. Zhu M, Li J, Fink AL (2003) The association of α-synuclein with membranes affects bilayer structure, stability, and fibril formation *. J Biol Chem 278(41):40186–40197. https://doi.org/10.1074/JBC.M305326200

    Article  CAS  PubMed  Google Scholar 

  53. Kiely AP, Asi YT, Kara E, Limousin P, Ling H, Lewis P, Proukakis C, Quinn N, Lees AJ, Hardy J, Revesz T, Houlden H, Holton JL (2013) α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson’s disease and multiple system atrophy? Acta Neuropathol 125(5):753–769. https://doi.org/10.1007/S00401-013-1096-7

  54. Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) AlaSOPro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Gen 18(2):106–108. https://doi.org/10.1038/ng0298-106

  55. Pasanen P, Myllykangas L, Siitonen M, Raunio A, Kaakkola S, Lyytinen J, Tienari PJ, Pöyhönen M, Paetau A (2014) A novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology. Neurobiol Aging 35(9):2180.e1-2180.e5. https://doi.org/10.1016/J.NEUROBIOLAGING.2014.03.024

    Article  CAS  Google Scholar 

  56. Proukakis C, Dudzik CG, Brier T, MacKay DS, Cooper JM, Millhauser GL, Houlden H, Schapira AH (2013) A novel α-synuclein missense mutation in Parkinson disease. Neurology 80(11):1062–1064. https://doi.org/10.1212/WNL.0B013E31828727BA

  57. Yoshino H, Hirano M, Stoessl AJ, Imamichi Y, Ikeda A, Li Y, Funayama M, Yamada I, Nakamura Y, Sossi V, Farrer MJ, Nishioka K, Hattori N (2017) Homozygous alpha-synuclein p. A53V in familial Parkinson’s disease. Neurobiol Aging 57:248.e7-248.e12. https://doi.org/10.1016/J.NEUROBIOLAGING.2017.05.022

    Article  CAS  Google Scholar 

  58. Comellas G, Lemkau LR, Nieuwkoop AJ, Kloepper KD, Ladror DT, Ebisu R, Woods WS, Lipton AS, George JM, Rienstra CM (2011) Structured regions of α-synuclein fibrils include the early-onset Parkinson’s disease mutation sites. J Mol Biol 411(4):881–895. https://doi.org/10.1016/J.JMB.2011.06.026

  59. Guan Y, Zhao X, Liu F, Yan S, Wang Y, Du C, Cui X, Li R, Zhang CX (2020) Pathogenic mutations differentially regulate cell-to-cell transmission of α-synuclein. Front Cell Neurosci 14:159. https://doi.org/10.3389/FNCEL.2020.00159

  60. Lv Z, Hashemi M, Banerjee S, Zagorski K, Rochet JC, Lyubchenko YL (2019) Assembly of α-Synuclein Aggregates on Phospholipid Bilayers. Biochim Biophys Acta Proteins Proteom 1867(9):802–812. https://doi.org/10.1016/J.BBAPAP.2019.06.006

  61. Ysselstein D, Joshi M, Mishra V, Griggs AM, Asiago JM, McCabe GP, Stanciu LA, Post CB, Rochet JC (2015) Effects of impaired membrane interactions on α-synuclein aggregation and neurotoxicity. Neurobiol Dis 79:150–163. https://doi.org/10.1016/J.NBD.2015.04.007

  62. Hijaz BA, Volpicelli-Daley LA (2020) Initiation and propagation of α-synuclein aggregation in the nervous system. Mol Neurodegener 15(1):19. https://doi.org/10.1186/s13024-020-00368-6

    Article  CAS  PubMed  Google Scholar 

  63. Sorrentino ZA, Giasson BI (2019) Exploring the peripheral initiation of Parkinson’s disease in animal models. Neuron 103(4):547–549. https://doi.org/10.1016/J.NEURON.2019.07.031

    Article  CAS  PubMed  Google Scholar 

  64. Jo J, Yang L, Tran HD, Yu W, Sun AX, Chang YY, Jung BC, Lee SJ, Saw TY, Xiao B, Khoo ATT, Yaw LP, Xie JJ, Lokman H, Ong WY, Lim GGY, Lim KL, Tan EK, Ng HH, Je HS (2021) Lewy body–like inclusions in human midbrain organoids carrying glucocerebrosidase and α-synuclein mutations. Ann Neurol 90(3):490–505. https://doi.org/10.1002/ANA.26166

  65. Guhathakurta S, Bok E, Evangelista BA, Kim YS (2017) Deregulation of α-synuclein in Parkinson’s disease: insight from epigenetic structure and transcriptional regulation of SNCA. Prog Neurobiol 154:21–36. https://doi.org/10.1016/J.PNEUROBIO.2017.04.004

  66. Schapansky J, Khasnavis S, DeAndrade MP, Nardozzi JD, Falkson SR, Boyd JD, Sanderson JB, Bartels T, Melrose HL, LaVoie MJ (2018) Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble α-synuclein in neurons. Neurobiol Dis 111:26–35. https://doi.org/10.1016/j.nbd.2017.12.005

    Article  CAS  PubMed  Google Scholar 

  67. Meade RM, Fairlie DP, Mason JM (2019) Alpha-synuclein structure and Parkinson’s disease - lessons and emerging principles. Mol Neurodegener 14(1):29. https://doi.org/10.1186/s13024-019-0329-1

  68. Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J, Kling K, Lee M, Diep L, Keim PS, Shen X, Chataway T, Schlossmacher MG, Seubert P, Schenk D, Sinha S, Gai WP, Chilcote TJ (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281(40):29739–29752. https://doi.org/10.1074/jbc.M600933200

    Article  CAS  PubMed  Google Scholar 

  69. Foulds P, Mann D M, Allsop D (2012) Phosphorylated α-synuclein as a potential biomarker for Parkinson’s disease and related disorders. 12(2):115–7. https://doi.org/10.1586/Erm.12.5. https://doi.org/10.1586/ERM.12.5

  70. Weston LJ, Cook ZT, Stackhouse TL, Sal MK, Schultz BI, Tobias ZJC, Osterberg VR, Brockway NL, Pizano S, Glover G, Weissman TA, Unni VK (2021) In vivo aggregation of presynaptic alpha-synuclein is not influenced by its phosphorylation at serine-129. Neurobiol Dis 152:105291. https://doi.org/10.1016/J.NBD.2021.105291

  71. Zhang J, Li X, Li JD (2019) The roles of post-translational modifications on α-synuclein in the pathogenesis of Parkinson’s diseases. Front Neurosci 13:381. https://doi.org/10.3389/FNINS.2019.00381

  72. Rott R, Szargel R, Shani V, Hamza H, Savyon M, Elghani FA, Bandopadhyay R, Engelender S (2017) SUMOylation and ubiquitination reciprocally regulate α-synuclein degradation and pathological aggregation. Proc Natl Acad Sci USA 114(50):13176–13181. https://doi.org/10.1073/PNAS.1704351114

  73. Rousseaux MW, Haro M de Lasagna-Reeves CA, Maio A De Park J, Jafar-Nejad P, Al-Ramahi I, Sharma A, See L, Lu N, Vilanova-Velez L, Klisch TJ, Westbrook TF, Troncoso JC, Botas J, Zoghbi HY (2016) TRIM28 regulates the nuclear accumulation and toxicity of both alpha-synuclein and tau. ELife 5:e19809. https://doi.org/10.7554/ELIFE.19809

  74. Burai R, Ait-Bouziad N, Chiki A, Lashuel HA (2015) Elucidating the role of site-specific nitration of α-synuclein in the pathogenesis of Parkinson’s disease via protein semisynthesis and mutagenesis. J Am Chem Soc 137(15):5041–5052. https://doi.org/10.1021/JA5131726

    Article  CAS  PubMed  Google Scholar 

  75. Hodara R, Norris EH, Giasson BI, Mishizen-Eberz AJ, Lynch DR, Lee VM-Y, Ischiropoulos H (2004) Functional consequences of α-synuclein tyrosine nitration: diminished binding to lipid vesicles and increased fibril formation. J Biol Chem 279(46):47746–47753. https://doi.org/10.1074/JBC.M408906200

  76. Lautenschläger J, Stephens AD, Fusco G, Ströhl F, Curry N, Zacharopoulou M, Michel CH, Laine R, Nespovitaya N, Fantham M, Pinotsi D, Zago W, Fraser P, Tandon A, St George-Hyslop P, Rees E, Phillips JJ, De Simone A, Kaminski CF, Schierle GSK (2018) C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction. Nat Commun 9(1):712. https://doi.org/10.1038/s41467-018-03111-4

  77. Han D, Zheng W, Wang X, Chen Z (2020) Proteostasis of α-synuclein and its role in the pathogenesis of Parkinson’s disease. Front Cell Neurosci 14:45 https://doi.org/10.3389/FNCEL.2020.00045

  78. Masilamoni GJ, Smith Y (2018) Chronic MPTP administration regimen in monkeys: a model of dopaminergic and non-dopaminergic cell loss in Parkinson’s disease. J Neural Transm (Vienna) 125(3):337–363. https://doi.org/10.1007/S00702-017-1774-Z

  79. Koziorowski D, Figura M, Milanowski ŁM, Szlufik S, Alster P, Madetko N, Friedman A (2021) Mechanisms of neurodegeneration in various forms of parkinsonism-similarities and differences. Cells 10(3):656. https://doi.org/10.3390/cells10030656

  80. Badadani M (2012) Autophagy mechanism, regulation, functions, and disorders. ISRN Cell Biol 2012:1–11. https://doi.org/10.5402/2012/927064

    Article  CAS  Google Scholar 

  81. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741. https://doi.org/10.1016/J.CELL.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  82. Kaushik S, Cuervo AM (2012) Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 22(8):407. https://doi.org/10.1016/J.TCB.2012.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kesidou E, Lagoudaki R, Touloumi O, Poulatsidou K-N, Simeonidou C (2013) Autophagy and neurodegenerative disorders. Neural Regen Res 8(24):2275. https://doi.org/10.3969/J.ISSN.1673-5374.2013.24.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nah J, Yuan J, Jung YK (2015) Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol Cells 38(5):381. https://doi.org/10.14348/MOLCELLS.2015.0034

  85. Petroi D, Popova B, Taheri-Talesh N, Irniger S, Shahpasandzadeh H, Zweckstetter M, Outeiro TF, Braus GH (2012) Aggregate clearance of α-synuclein in Saccharomyces cerevisiae depends more on autophagosome and vacuole function than on the proteasome. J Biol Chem 287(33):27567–27579. https://doi.org/10.1074/jbc.M112.361865

  86. Lee H-J, Khoshaghideh F, Patel S, Lee S-J (2004) Clearance of α-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci 24(8):1888–1896. https://doi.org/10.1523/JNEUROSCI.3809-03.2004

  87. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) α-Synuclein Is Degraded by Both Autophagy and the Proteasome. J Biol Chem 278(27):25009–25013. https://doi.org/10.1074/JBC.M300227200

  88. Klucken J, Poehler A-M, Ebrahimi-Fakhari D, Schneider J, Nuber S, Rockenstein E, Schlötzer-Schrehardt U, Hyman BT, McLean PJ, Masliah E, Winkler J (2012) Alpha-synuclein aggregation involves a bafilomycin A1-sensitive autophagy pathway. Autophagy 8(5):754–766. https://doi.org/10.4161/AUTO.19371

  89. Fellner L, Buchinger E, Brueck D, Irschick R, Wenning GK, Stefanova N (2018) Limited effects of dysfunctional macroautophagy on the accumulation of extracellularly derived α-synuclein in oligodendroglia: implications for MSA pathogenesis. BMC Neurosci 19(1):32. https://doi.org/10.1186/S12868-018-0431-2

    Article  PubMed  PubMed Central  Google Scholar 

  90. Poehler A-M, Xiang W, Spitzer P, May VEL, Meixner H, Rockenstein E, Chutna O, Outeiro TF, Winkler J, Masliah E, Klucken J (2014) Autophagy modulates SNCA/α-synuclein release, thereby generating a hostile microenvironment. Autophagy 10(12):2171. https://doi.org/10.4161/AUTO.36436

    Article  CAS  PubMed  Google Scholar 

  91. Minakaki G, Menges S, Kittel A, Emmanouilidou E, Schaeffner I, Barkovits K, Bergmann A, Rockenstein E, Adame A, Marxreiter F, Mollenhauer B, Galasko D, Buzás EI, Schlötzer-Schrehardt U, Marcus K, Xiang W, Lie DC, Vekrellis K, Masliah E, Klucken J (2018) Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype. Autophagy 14(1):98–119. https://doi.org/10.1080/15548627.2017.1395992

  92. Morgan NE, Cutrona MB, Simpson JC (2019) Multitasking Rab proteins in autophagy and membrane trafficking: a focus on Rab33b. Int J Mol Sci 20(16):3916. https://doi.org/10.3390/IJMS20163916

  93. Monastyrska I, Rieter E, Klionsky DJ, Reggiori F (2009) Multiple roles of the cytoskeleton in autophagy. Biol Rev Camb Philos Soc 84(3):431. https://doi.org/10.1111/J.1469-185X.2009.00082.X

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sarkar S, Olsen AL, Sygnecka K, Lohr KM, Feany MB (2021) α-synuclein impairs autophagosome maturation through abnormal actin stabilization. PLoS Gen 17(2):e1009359. https://doi.org/10.1371/JOURNAL.PGEN.1009359

  95. Ordonez DG, Lee MK, Feany MB (2018) α-synuclein induces mitochondrial dysfunction through spectrin and the actin cytoskeleton. Neuron 97(1):108. https://doi.org/10.1016/J.NEURON.2017.11.036

    Article  CAS  PubMed  Google Scholar 

  96. Winslow AR, Chen C-W, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM, Ravikumar B, Imarisio S, Brown S, O’Kane CJ, Rubinsztein DC (2010) α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol 190(6):1023–1037. https://doi.org/10.1083/JCB.201003122

  97. Underwood R, Wang B, Carico C, Whitaker RH, Placzek WJ, Yacoubian TA (2020) The GTPase Rab27b regulates the release, autophagic clearance, and toxicity of α-synuclein. J Biol Chem 295(23):8005–8016. https://doi.org/10.1074/JBC.RA120.013337

  98. Dinter E, Saridaki T, Nippold M, Plum S, Diederichs L, Komnig D, Fensky L, May C, Marcus K, Voigt A, Schulz JB, Falkenburger BH (2016) Rab7 induces clearance of α-synuclein aggregates. J Neurochem 138(5):758–774. https://doi.org/10.1111/JNC.13712

    Article  CAS  PubMed  Google Scholar 

  99. Chiu CC, Yeh TH, Lai SC, Weng YH, Huang YC, Cheng YC, Chen RS, Huang YZ, Hung J, Chen CC, Lin WY, Chang HC, Chen YJ, Chen CL, Chen HY, Lin YW, Wu Chou YH, Wang HL, Lu CS (2016) Increased Rab35 expression is a potential biomarker and implicated in the pathogenesis of Parkinson’s disease. Oncotarget 7(34):54215–54227. https://doi.org/10.18632/oncotarget.11090

  100. Bae EJ, Lee SJ (2020) The LRRK2-RAB axis in regulation of vesicle trafficking and α-synuclein propagation. Biochim Biophys Acta Mol Basis Dis 1866(3):165632. https://doi.org/10.1016/J.BBADIS.2019.165632

  101. Zhu Z, Yang C, Iyaswamy A, Krishnamoorthi S, Sreenivasmurthy SG, Liu J, Wang Z, Tong B C-K, Song J, Lu J, Cheung KH,  Li M (2019) Balancing mTOR Signaling and Autophagy in the Treatment of Parkinson’s Disease. Int J Mol Sci 20(3). https://doi.org/10.3390/IJMS20030728

  102. Crews L, Spencer B, Desplats P, Patrick C, Paulino A, Rockenstein E, Hansen L, Adame A, Galasko D, Masliah E (2010) Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of α-synucleinopathy. PLoS ONE 5(2). https://doi.org/10.1371/JOURNAL.PONE.0009313

  103. Friedman LG, Lachenmayer ML, Wang J, He L, Poulose SM, Komatsu M, Holstein GR, Yue Z (2012) Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of α-synuclein and LRRK2 in the brain. J Neurosci 32(22):7585–93. https://doi.org/10.1523/JNEUROSCI.5809-11.2012

  104. Jiang TF, Zhang YJ, Zhou HY, Wang HM, Tian LP, Liu J, Ding JQ, Chen SD (2013) Curcumin Ameliorates the Neurodegenerative Pathology in A53T α-synuclein Cell Model of Parkinson’s Disease Through the Downregulation of mTOR/p70S6K Signaling and the Recovery of Macroautophagy. J Neuroimmune Pharmacol 8(1):356–369. https://doi.org/10.1007/S11481-012-9431-7

  105. Karim MR, Liao EE, Kim J, Meints J, Martinez HM, Pletnikova O, Troncoso JC, Lee MK (2020) α-Synucleinopathy associated c-Abl activation causes p53-dependent autophagy impairment. Mol Neurodegener 15(1):27. https://doi.org/10.1186/S13024-020-00364-W

  106. Lei Z, Cao G, Wei G (2019) A30P mutant α-synuclein impairs autophagic flux by inactivating JNK signaling to enhance ZKSCAN3 activity in midbrain dopaminergic neurons. Cell Death Dis 10(2):133. https://doi.org/10.1038/S41419-019-1364-0

  107. Arotcarena ML, Bourdenx M, Dutheil N, Thiolat ML, Doudnikoff E, Dovero S, Ballabio A, Fernagut PO, Meissner WG, Bezard E, Dehay B (2019) Transcription factor EB overexpression prevents neurodegeneration in experimental synucleinopathies. JCI Insight 4(16):e129719. https://doi.org/10.1172/jci.insight.129719

  108. Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Björklund A (2013) TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc Natl Acad Sci USA 110(19):E1817–E1826. https://doi.org/10.1073/pnas.1305623110

    Article  PubMed  PubMed Central  Google Scholar 

  109. Cao L, Xiong S, Wu Z, Ding L, Zhou Y, Sun H, Zhu M, Lee WT, Nie X, Bian JS (2021) Anti–Na+/K+-ATPase immunotherapy ameliorates α-synuclein pathology through activation of Na+/K+-ATPase α1–dependent autophagy. Sci Adv 7(5):eabc5062. https://doi.org/10.1126/SCIADV.ABC5062

  110. Zhan M, Deng YN, Zhang JY, Liu J, Li YB, Su H, Qu QM (2018) SIRT3 protects rotenone-induced injury in SH-SY5Y cells by promoting autophagy through the LKB1-AMPK-mTOR pathway. Aging Dis 9(2):273–286. https://doi.org/10.14336/AD.2017.0517

  111. Wilkaniec A, Cieślik M, Murawska E, Babiec L, Gąssowska-Dobrowolska M, Pałasz E, Jęśko H, Adamczyk A (2020) P2X7 receptor is involved in mitochondrial dysfunction induced by extracellular alpha synuclein in neuroblastoma SH-SY5Y cells. Int J Mol Sci 21(11):3959. https://doi.org/10.3390/ijms21113959

  112. Alessandri C, Barbati C, Vacirca D, Piscopo P, Confaloni A, Sanchez M, Maselli A, Colasanti T, Conti F, Truglia S, Perl A, Valesini G, Malorni W, Ortona E, Pierdominici M (2012) T lymphocytes from patients with systemic lupus erythematosus are resistant to induction of autophagy. FASEB J 26(11):4722. https://doi.org/10.1096/FJ.12-206060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Colasanti T, Vomero M, Alessandri C, Barbati C, Maselli A, Camperio C, Conti F, Tinari A, Carlo-Stella C, Tuosto L, Benincasa D, Valesini G, Malorni W, Pierdominici M, Ortona E (2014) Role of alpha-synuclein in autophagy modulation of primary human T lymphocytes. Cell Death Dis 5(5):e1265. https://doi.org/10.1038/CDDIS.2014.211

  114. Earls RH, Menees KB, Chung J, Gutekunst C-A, Lee HJ, Hazim MG, Rada B, Wood LB, Lee JK (2020) NK cells clear α-synuclein and the depletion of NK cells exacerbates synuclein pathology in a mouse model of α-synucleinopathy. Proc Natl Acad Sci USA 117(3):1762–1771. https://doi.org/10.1073/PNAS.1909110117

  115. Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L (2008) Wild type α-synuclein is degraded by chaperone-mediated autophagyand macroautophagy in neuronal cells. J Biol Chem 283(35):23542. https://doi.org/10.1074/JBC.M801992200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Aprile FA, Källstig E, Limorenko G, Vendruscolo M, Ron D, Hansen C (2017) The molecular chaperones DNAJB6 and Hsp70 cooperate to suppress α-synuclein aggregation. Sci Rep 7(1):9039. https://doi.org/10.1038/s41598-017-08324-z

  117. Auluck PK, Chan HYE, Trojanowski JQ, Lee VMY, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295(5556):865–868. https://doi.org/10.1126/science.1067389

  118. Dedmon MM, Christodoulou J, Wilson MR, Dobson CM (2005) Heat shock protein 70 inhibits alpha-synuclein fibril formation via preferential binding to prefibrillar species. J Biol Chem 280(15):14733–14740. https://doi.org/10.1074/jbc.M413024200

    Article  CAS  PubMed  Google Scholar 

  119. Gao X, Carroni M, Nussbaum-Krammer C, Mogk A, Nillegoda NB, Szlachcic A, Guilbride DL, Saibil HR, Mayer MP, Bukau B (2015) Human Hsp70 disaggregase reverses Parkinson’s-linked α-synuclein amyloid fibrils. Mol Cell 59(5):781–793. https://doi.org/10.1016/j.molcel.2015.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Huang C, Cheng H, Hao S, Zhou H, Zhang X, Gao J, Sun QH, Hu H, Wang CC (2006) Heat shock protein 70 inhibits alpha-synuclein fibril formation via interactions with diverse intermediates. J Mol Biol 364(3):323–336. https://doi.org/10.1016/j.jmb.2006.08.062

  121. Roodveldt C, Bertoncini CW, Andersson A, van der Goot AT, Hsu ST, Fernández-Montesinos R, de Jong J, van Ham TJ, Nollen EA, Pozo D, Christodoulou J, Dobson CM (2009) Chaperone proteostasis in Parkinson’s disease: stabilization of the Hsp70/alpha-synuclein complex by Hip. EMBO J 28(23):3758–3770. https://doi.org/10.1038/emboj.2009.298

  122. Schneider MM, Gautam S, Herling TW, Andrzejewska E, Krainer G, Miller AM, Trinkaus VA, Peter QAE, Ruggeri FS, Vendruscolo M, Bracher A, Dobson CM, Hartl FU, Knowles TPJ (2021) The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends. Nature Commun 12(1):5999. https://doi.org/10.1038/s41467-021-25966-w

  123. Pemberton S, Melki R (2012) The interaction of Hsc70 protein with fibrillar α-synuclein and its therapeutic potential in Parkinson’s disease. Commun Integr Biol 5(1):94–95. https://doi.org/10.4161/CIB.18483

  124. Li G, Yang H, Zhu D, Huang H, Liu G, Lun P (2014) Targeted suppression of chaperone-mediated autophagy by miR-320a promotes α-synuclein aggregation. Int J Mol Sci 15(9):15845-15857. https://doi.org/10.3390/IJMS150915845

  125. Banks SML, Medeiros AT, McQuillan M, Busch DJ, Ibarraran-Viniegra AS, Sousa R, Lafer EM, Morgan JR (2020) Hsc70 ameliorates the vesicle recycling defects caused by excess α-synuclein at synapses. eNeuro7(1):ENEURO.0448–19. https://doi.org/10.1523/ENEURO.0448-19.2020

  126. Xu CY, Kang WY, Chen YM, Jiang TF, Zhang J, Zhang LN, Ding JQ, Liu J, Chen SD (2017) DJ-1 Inhibits α-synuclein aggregation by regulating chaperone-mediated autophagy. Front Aging Neurosci 9:308. https://doi.org/10.3389/FNAGI.2017.00308

  127. Xu YD, Cui C, Sun MF, Zhu YL, Chu M, Shi YW, Lin SL, Yang XS, Shen YQ (2017) Neuroprotective effects of loganin on MPTP-induced Parkinson’s disease mice: neurochemistry, glial reaction and autophagy studies. J Cell Biochem 118(10):3495–3510. https://doi.org/10.1002/jcb.26010

  128. Zondler L, Miller-Fleming L, Repici M, Gonçalves S, Tenreiro S, Rosado-Ramos R, Betzer C, Straatman KR, Jensen PH, Giorgini F, Outeiro TF (2014) DJ-1 interactions with α-synuclein attenuate aggregation and cellular toxicity in models of Parkinson’s disease. Cell Death Dis 5(7):e1350. https://doi.org/10.1038/cddis.2014.307

  129. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305(5688):1292–1295. https://doi.org/10.1126/SCIENCE.1101738

    Article  CAS  PubMed  Google Scholar 

  130. Xilouri M, Brekk OR, Landeck N, Pitychoutis PM, Papasilekas T, Papadopoulou-Daifoti Z, Kirik D, Stefanis L (2013) Boosting chaperone-mediated autophagy in vivo mitigates α-synuclein-induced neurodegeneration. Brain 136(7):2130–2146. https://doi.org/10.1093/BRAIN/AWT131

    Article  PubMed  Google Scholar 

  131. Nascimento AC, Erustes AG, Reckziegel P, Bincoletto C, Ureshino RP, Pereira GJS, Smaili SS (2020) α-Synuclein overexpression induces lysosomal dysfunction and autophagy impairment in human neuroblastoma SH-SY5Y. Neurochem Res 45(11):2749–2761. https://doi.org/10.1007/S11064-020-03126-8

  132. Daturpalli S, Waudby CA, Meehan S, Jackson SE (2013) Hsp90 inhibits α-synuclein aggregation by interacting with soluble oligomers. J Mol Biol 425(22):4614–4628. https://doi.org/10.1016/J.JMB.2013.08.006

    Article  CAS  PubMed  Google Scholar 

  133. Bohush A, Filipek A (2020) HSP90 Co-chaperone, CacyBP/SIP, protects α-synuclein from aggregation. Cells 9(10):2254. https://doi.org/10.3390/CELLS9102254

  134. Bianco CL, Shorter J, Régulier E, Lashuel H, Iwatsubo T, Lindquist S, Aebischer P (2008) Hsp104 antagonizes α-synuclein aggregation and reduces dopaminergic degeneration in a rat model of Parkinson disease. J Clin Invest 118(9):3087–3097. https://doi.org/10.1172/JCI35781

  135. Jia C, Ma X, Liu Z, Gu J, Zhang X, Li D, Zhang S (2019) Different heat shock proteins bind α-synuclein with distinct mechanisms and synergistically prevent its amyloid aggregation. Front Neurosci 13:1124. https://doi.org/10.3389/FNINS.2019.01124

  136. Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman, SW (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268(5212):880–4. https://doi.org/10.1126/science.7754373

  137. Kushnirov VV, Dergalev AA, Alexandrov AI (2021) Amyloid fragmentation and disaggregation in yeast and animals. Biomolecules 11(12):1884 https://doi.org/10.3390/biom11121884

  138. Romanova NV, Chernoff YO (2009) Hsp104 and prion propagation. Protein Pept Lett 16(6):598–605. https://doi.org/10.2174/092986609788490078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cox D, Selig E, Griffin MDW, Carver JA, Ecroyd H (2016) Small heat-shock proteins prevent α-synuclein aggregation via transient interactions and their efficacy is affected by the rate of aggregation. J Biol Chem 291(43):22618–22629. https://doi.org/10.1074/JBC.M116.739250

  140. Suryadinata R, Roesley SNA, Yang G, Šarčević B (2014) Mechanisms of generating polyubiquitin chains of different topology. Cells 3(3):674–689. https://doi.org/10.3390/CELLS3030674

  141. Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695(1–3):55–72. https://doi.org/10.1016/J.BBAMCR.2004.09.019

  142. Swatek KN, Komander D (2016) Ubiquitin modifications. Cell Res 26(4):399–422. https://doi.org/10.1038/CR.2016.39

  143. Ciechanover A (1998) The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 17(24):7151–7160. https://doi.org/10.1093/EMBOJ/17.24.7151

  144. Elsasser S, Chandler-Militello D, Müller B, Hanna J, Finley D (2004) Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J Biol Chem 279(26):26817–22. https://doi.org/10.1074/jbc.M404020200

  145. Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y, Hofmann K, Walters KJ, Finley D, Dikic I (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453(7194):481–488. https://doi.org/10.1038/nature06926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mayor T, Graumann J, Bryan J, MacCoss MJ, Deshaies RJ (2007) Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway. Mol Cell Proteomics  6(11):1885–95. https://doi.org/10.1074/mcp.M700264-MCP200

  147. Dantuma NP, Bott LC (2014) The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front Mol Neurosci 7:70. https://doi.org/10.3389/FNMOL.2014.00070

  148. Dennissen FJA, Kholod N, van Leeuwen FW (2012) The ubiquitin proteasome system in neurodegenerative diseases: Culprit, accomplice or victim? Prog Neurobiol 96(2):190–207. https://doi.org/10.1016/J.PNEUROBIO.2012.01.003

  149. Hasegawa M, Fujiwara H, Nonaka T, Wakabayashi K, Takahashi H, Lee VM, Trojanowski JQ, Mann D, Iwatsubo T (2002) Phosphorylated α-synuclein is ubiquitinated in α-synucleinopathy lesions. J Biol Chem 277(50):49071–49076. https://doi.org/10.1074/JBC.M208046200

  150. Tofaris GK, Razzaq A, Ghetti B, Lilley KS, Spillantini MG (2003) Ubiquitination of α-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function. J Biol Chem 278(45):44405–44411. https://doi.org/10.1074/JBC.M308041200

  151. Haj-Yahya M, Fauvet B, Herman-Bachinsky Y, Hejjaoui M, Bavikar SN, Karthikeyan SV, Ciechanover A, Lashuel HA, Brik A (2013) Synthetic polyubiquitinated α-Synuclein reveals important insights into the roles of the ubiquitin chain in regulating its pathophysiology. Proc Natl Acad Sci USA 110(44):17726–31. https://doi.org/10.1073/pnas.1315654110

  152. Meier F, Abeywardana T, Dhall A, Marotta NP, Varkey J, Langen R, Chatterjee C, Pratt MR (2012) Semi-synthetic, site-specific ubiquitin modification of α-synuclein reveals differential effects on aggregation. J Am Chem Soc 134(12):5468–5471. https://doi.org/10.1021/JA300094R

  153. Moon SP, Balana AT, Galesic A, Rakshit A, Pratt MR (2020) Ubiquitination can change the structure of the α-synuclein amyloid fiber in a site selective fashion. J Org Chem 85(3):1548–1555. https://doi.org/10.1021/ACS.JOC.9B02641

  154. Newberry RW, Leong JT, Chow ED, Kampmann M, DeGrado WF (2020) Deep mutational scanning reveals the structural basis for α-synuclein activity. Nat Chem Biol 16(6):653–659. https://doi.org/10.1038/s41589-020-0480-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. McNaught KSP, Mytilineou C, JnoBaptiste R, Yabut J, Shashidharan P, Jenner P, Olanow CW (2002) Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J Neurochem 81(2):301–306. https://doi.org/10.1046/J.1471-4159.2002.00821.X

    Article  CAS  PubMed  Google Scholar 

  156. Rideout HJ, Larsen KE, Sulzer D, Stefanis L (2001) Proteasomal inhibition leads to formation of ubiquitin/alpha-synuclein-immunoreactive inclusions in PC12 cells. J Neurochem 78(4):899–908. https://doi.org/10.1046/J.1471-4159.2001.00474.X

  157. Lindersson E, Beedholm R, Højrup P, Moos T, Gai W, Hendil KB, Jensen PH (2004) Proteasomal inhibition by α-synuclein filaments and oligomers. J Biol Chem 279(13):12924–12934. https://doi.org/10.1074/JBC.M306390200

  158. Wang XF, Li S, Chou AP, Bronstein JM (2006) Inhibitory effects of pesticides on proteasome activity: implication in Parkinson’s disease. Neurobiol Dis 23(1):198–205. https://doi.org/10.1016/j.nbd.2006.02.012

  159. Cardozo C, Michaud C (2002) Proteasome-mediated degradation of tau proteins occurs independently of the chymotrypsin-like activity by a nonprocessive pathway. Arch Biochem Biophys 408(1):103–110. https://doi.org/10.1016/s0003-9861(02)00493-9

    Article  CAS  PubMed  Google Scholar 

  160. Deriziotis P, André R, Smith DM, Goold R, Kinghorn KJ, Kristiansen M, Nathan JA, Rosenzweig R, Krutauz D, Glickman MH, Collinge J, Goldberg AL, Tabrizi SJ (2011) Misfolded PrP impairs the UPS by interaction with the 20S proteasome and inhibition of substrate entry. EMBO J 30(15):3065–3077. https://doi.org/10.1038/emboj.2011.224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bedford L, Hay D, Devoy A, Paine S, Powe DG, Seth R, Gray T, Topham I, Fone K, Rezvani N, Mee M, Soane T, Layfield R, Sheppard PW, Ebendal T, Usoskin D, Lowe J, Mayer RJ (2008) Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J  Neurosci 28(33):8189–8198. https://doi.org/10.1523/JNEUROSCI.2218-08.2008

  162. Chung KKK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM (2001) Parkin ubiquitinates the α-synuclein–interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 7(10):1144–1150. https://doi.org/10.1038/nm1001-1144

  163. Petrucelli L, O’Farrell C, Lockhart PJ, Baptista M, Kehoe K, Vink L, Choi P, Wolozin B, Farrer M, Hardy J, Cookson MR (2002) Parkin protects against the toxicity associated with mutant α-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36(6):1007–1019. https://doi.org/10.1016/S0896-6273(02)01125-X

    Article  CAS  PubMed  Google Scholar 

  164. Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ (2001) Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293(5528):263–269. https://doi.org/10.1126/SCIENCE.1060627

    Article  CAS  PubMed  Google Scholar 

  165. Srivastava AK, Choudhury SR, Karmakar S (2021) Neuronal Bmi-1 is critical for melatonin induced ubiquitination and proteasomal degradation of α-synuclein in experimental Parkinson’s disease models. Neuropharmacology 194:108372. https://doi.org/10.1016/J.NEUROPHARM.2020.108372

  166. Kawahara K, Hashimoto M, Bar-On P, Ho GJ, Crews L, Mizuno H, Rockenstein E, Imam SZ, Masliah E (2008) alpha-Synuclein aggregates interfere with Parkin solubility and distribution: role in the pathogenesis of Parkinson disease. J Biol Chem 283(11):6979–6987. https://doi.org/10.1074/jbc.M710418200

    Article  CAS  PubMed  Google Scholar 

  167. Mulherkar SA, Sharma J, Jana NR (2009) The ubiquitin ligase E6-AP promotes degradation of α-synuclein. J Neurochem 110(6):1955–1964. https://doi.org/10.1111/J.1471-4159.2009.06293.X

    Article  CAS  PubMed  Google Scholar 

  168. Liani E, Eyal A, Avraham E, Shemer R, Szargel R, Berg D, Bornemann A, Riess O, Ross CA, Rott R, Engelender S (2004) Ubiquitylation of synphilin-1 and α-synuclein by SIAH and its presence in cellular inclusions and Lewy bodies imply a role in Parkinson’s disease. Proc Natl Acad Sci USA 101(15):5500–5505. https://doi.org/10.1073/PNAS.0401081101

  169. Rott R, Szargel R, Haskin J, Shani V, Shainskaya A, Manov I, Liani E, Avraham E, Engelender S (2008) Monoubiquitylation of α-synuclein by seven in absentia homolog (SIAH) promotes its aggregation in dopaminergic cells. J Biol Chem 283(6):3316–3328. https://doi.org/10.1074/JBC.M704809200

  170. He M, Zhou Z, Shah AA, Zou H, Tao J, Chen Q, Wan Y (2016) The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics. Cell Biosci 6:62. https://doi.org/10.1186/S13578-016-0127-1

  171. Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 2006 443(7113):780–786. https://doi.org/10.1038/nature05291

  172. Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78:363–397. https://doi.org/10.1146/ANNUREV.BIOCHEM.78.082307.091526

  173. Das S, Ramakrishna S, Kim KS (2020) Critical roles of deubiquitinating enzymes in the nervous system and neurodegenerative disorders. Mol Cells 43(3):203–214. https://doi.org/10.14348/MOLCELLS.2020.2289

  174. Hallengren J, Chen PC, Wilson SM (2013) Neuronal ubiquitin homeostasis. Cell Biochem Biophys 67(1):67–73. https://doi.org/10.1007/S12013-013-9634-4

  175. Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect α-synuclein degradation and Parkinson’s disease susceptibility. Cell 111(2):209–218. https://doi.org/10.1016/S0092-8674(02)01012-7

    Article  CAS  PubMed  Google Scholar 

  176. Barrachina M, Castaño E, Dalfó E, Maes T, Buesa C, Ferrer I (2006) Reduced ubiquitin C-terminal hydrolase-1 expression levels in dementia with Lewy bodies. Neurobiol Dis 22(2):265–273. https://doi.org/10.1016/J.NBD.2005.11.005

    Article  CAS  PubMed  Google Scholar 

  177. Rott R, Szargel R, Haskin J, Bandopadhyay R, Lees AJ, Shani V, Engelender S (2011) α-Synuclein fate is determined by USP9X-regulated monoubiquitination. Proc Natl Acad Sci USA 108(46):18666. https://doi.org/10.1073/PNAS.1105725108

  178. Liu X, Hebron M, Shi W, Lonskaya I, Moussa CE (2019) Ubiquitin specific protease-13 independently regulates parkin ubiquitination and alpha-synuclein clearance in alpha-synucleinopathies. Hum Mol Genet 28(4):548–560. https://doi.org/10.1093/HMG/DDY365

  179. Kumari R, Kumar R, Kumar S, Singh AK, Hanpude P, Jangir D, Maiti TK (2020) Amyloid aggregates of the deubiquitinase OTUB1 are neurotoxic, suggesting that they contribute to the development of Parkinson’s disease. J Biol Chem 295(11):3466–3484. https://doi.org/10.1074/jbc.RA119.009546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Shin Y, Klucken J, Patterson C, Hyman BT, McLean PJ (2005) The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates α-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem 280(25):23727–23734. https://doi.org/10.1074/JBC.M503326200

  181. Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L, Kleinert R, Prinz M, Aguzzi A, Denk H (2002) p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol 160(1):255–263. https://doi.org/10.1016/S0002-9440(10)64369-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24(18):8055–8068. https://doi.org/10.1128/MCB.24.18.8055-8068.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Myeku N, Figueiredo-Pereira ME (2011) Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: association with sequestosome 1/p62. J Biol Chem 286(25):22426–22440. https://doi.org/10.1074/jbc.M110.149252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Gerez JA, Prymaczok NC, Rockenstein E, Herrmann US, Schwarz P, Adame A, Enchev RI, Courtheoux T, Boersema PJ, Riek R, Peter M, Aguzzi A, Masliah E, Picotti P (2019) A cullin-RING ubiquitin ligase targets exogenous α-synuclein and inhibits Lewy body–like pathology. Sci Transl Med 11(495):eaau6722. https://doi.org/10.1126/SCITRANSLMED.AAU6722

  185. Stacchiotti A, Corsetti G (2020) Natural compounds and autophagy: allies against neurodegeneration. Front Cell Dev Bio 8:555409. https://doi.org/10.3389/fcell.2020.555409

  186. Chen LL, Song JX, Lu JH, Yuan ZW, Liu LF, Durairajan SSK, Li M (2014) Corynoxine, a natural autophagy enhancer, promotes the clearance of alpha-synuclein via Akt/mTOR pathway. J Neuroimmune Pharmacol 9(3):380–387. https://doi.org/10.1007/s11481-014-9528-2

  187. Lu J-H, Tan J-Q, Durairajan SSK, Liu L-F, Zhang Z-H, Ma L, Shen H-M, Chan HYE, Li M (2012) Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy. Autophagy 8(1):98–108. https://doi.org/10.4161/auto.8.1.18313

    Article  CAS  PubMed  Google Scholar 

  188. Sasazawa Y, Sato N, Umezawa K, Simizu S (2015) Conophylline protects cells in cellular models of neurodegenerative diseases by inducing Mammalian target of rapamycin (mTOR)-independent autophagy. J Biol Chem 290(10):6168–6178. https://doi.org/10.1074/jbc.M114.606293

  189. Luan Y, Ren X, Zheng W, Zeng Z, Guo Y, Hou Z, Guo W, Chen X, Li F, Chen JF (2018) Chronic caffeine treatment protects against α-synucleinopathy by reestablishing autophagy activity in the mouse striatum. Front Neurosci 12:301. https://doi.org/10.3389/fnins.2018.00301

  190. Guo YJ, Dong SY, Cui XX, Feng Y, Liu T, Yin M, Kuo SH, Tan EK, Zhao WJ, Wu YC (2016) Resveratrol alleviates MPTP-induced motor impairments and pathological changes by autophagic degradation of α-synuclein via SIRT1-deacetylated LC3. Mol Nutr Food Res 60(10):2161–2175. https://doi.org/10.1002/mnfr.201600111

  191. Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, Jankovic J, Pan T (2011) Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals 19(3):163–174. https://doi.org/10.1159/000328516

  192. Ryu HW, Oh WK, Jang IS, Park J (2013) Amurensin G induces autophagy and attenuates cellular toxicities in a rotenone model of Parkinson’s disease. Biochem Biophys Res Commun 433(1):121–126. https://doi.org/10.1016/j.bbrc.2013.02.053

    Article  CAS  PubMed  Google Scholar 

  193. Forouzanfar F, Read MI, Barreto GE, Sahebkar A (2020) Neuroprotective effects of curcumin through autophagy modulation. IUBMB Life 72(4):652–664. https://doi.org/10.1002/iub.2209

    Article  CAS  PubMed  Google Scholar 

  194. Song JX, Sun YR, Peluso I, Zeng Y, Yu X, Lu JH, Xu Z, Wang MZ, Liu LF, Huang YY, Chen LL, Durairajan SSK, Zhang HJ, Zhou B, Zhang HQ, Lu A, Ballabio A, Medina DL, Guo Z, Li M (2016) A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy 12(8):1372–1389. https://doi.org/10.1080/15548627.2016.1179404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wang Z, Yang C, Liu J, Tong BCK, Zhu Z, Malampati S, Sreenivasmurthy SG, Cheung K H, Iyaswamy A, Su C, Lu J, Song J, Li M (2020) A curcumin derivative activates TFEB and protects against parkinsonian neurotoxicity in vitro. Int J Mol Sci 21(4). https://doi.org/10.3390/ijms21041515

  196. Li X, Zhang G, Nie Q, Wu T, Jiao L, Zheng M, Wan X, Li Y, Wu S, Jiang B, Xiang X, Duan J, Lin X (2017) Baicalein blocks α-synuclein secretion from SN4741 cells and facilitates α-synuclein polymerization to big complex. Neurosci Lett 655:109–114. https://doi.org/10.1016/j.neulet.2017.06.031

  197. Lynch-Day MA, Mao K, Wang K, Zhao M, Klionsky DJ (2012) The role of autophagy in Parkinson’s disease. Cold Spring Harb Perspect Med 2(4):a009357. https://doi.org/10.1101/cshperspect.a009357

  198. Absi E, Ayala A, Machado A, Parrado J (2000) Protective effect of melatonin against the 1-methyl-4-phenylpyridinium-induced inhibition of Complex I of the mitochondrial respiratory chain. J Pineal Res 29(1):40–47. https://doi.org/10.1034/j.1600-079X.2000.290106.x

    Article  CAS  PubMed  Google Scholar 

  199. Su C, Yang X, Lou J (2016) Geniposide reduces α-synuclein by blocking microRNA-21/lysosome-associated membrane protein 2A interaction in Parkinson disease models. Brain Res 1644:98–106. https://doi.org/10.1016/j.brainres.2016.05.011

    Article  CAS  PubMed  Google Scholar 

  200. Sun X, Cao YB, Hu LF, Yang YP, Li J, Wang F, Liu CF (2011) ASICs mediate the modulatory effect by paeoniflorin on alpha-synuclein autophagic degradation. Brain Res 1396:77–87. https://doi.org/10.1016/j.brainres.2011.04.011

    Article  CAS  PubMed  Google Scholar 

  201. Deng YN, Shi J, Liu J, Qu QM (2013) Celastrol protects human neuroblastoma SH-SY5Y cells from rotenone-induced injury through induction of autophagy. Neurochem Int 63(1):1–9. https://doi.org/10.1016/j.neuint.2013.04.005

  202. Wu AG, Wong VK, Xu SW, Chan WK, Ng CI, Liu L, Law BY (2013) Onjisaponin B derived from Radix Polygalae enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells. Int J Mol Sci 14(11):22618–22641. https://doi.org/10.3390/ijms141122618

  203. Yang G, Li J, Cai Y, Yang Z, Li R, Fu W (2018) Glycyrrhizic acid alleviates 6-hydroxydopamine and corticosterone-induced neurotoxicity in SH-SY5Y cells through modulating autophagy. Neurochem Res 43(10):1914–1926. https://doi.org/10.1007/s11064-018-2609-5

    Article  CAS  PubMed  Google Scholar 

  204. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC (2007) Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 282(8):5641–5652. https://doi.org/10.1074/jbc.M609532200

    Article  CAS  PubMed  Google Scholar 

  205. Hoffmann AC, Minakaki G, Menges S, Salvi R, Savitskiy S, Kazman A, Vicente Miranda H, Mielenz D, Klucken J, Winkler J, Xiang W (2019) Extracellular aggregated alpha synuclein primarily triggers lysosomal dysfunction in neural cells prevented by trehalose. Sci Rep 9(1):544. https://doi.org/10.1038/s41598-018-35811-8

  206. Tanji K, Miki Y, Maruyama A, Mimura J, Matsumiya T, Mori F, Imaizumi T, Itoh K, Wakabayashi K (2015) Trehalose intake induces chaperone molecules along with autophagy in a mouse model of Lewy body disease. Biochem Biophys Res Commun 465(4):746–752. https://doi.org/10.1016/j.bbrc.2015.08.076

    Article  CAS  PubMed  Google Scholar 

  207. Hua J, Yin N, Xu S, Chen Q, Tao T, Zhang J, Ding J, Fan Y, Hu G (2019) Enhancing the astrocytic clearance of extracellular α-synuclein aggregates by ginkgolides attenuates neural cell injury. Cell Mol Neurobiol 39(7):1017–1028. https://doi.org/10.1007/s10571-019-00696-2

    Article  PubMed  Google Scholar 

  208. Bu LL, Liu YQ, Shen Y, Fan Y, Yu WB, Jiang DL, Tang YL, Yang YJ, Wu P, Zuo CT, Koprich JB, Liu FT, Wu JJ, Wang J (2021) Neuroprotection of exendin-4 by enhanced autophagy in a parkinsonian rat model of α-synucleinopathy. Neurotherapeutics 18(2):962–978. https://doi.org/10.1007/S13311-021-01018-5

  209. Yeh HS, Yong J (2020) mTOR-coordinated post-transcriptional gene regulations: from fundamental to pathogenic insights. J Lipid Atheroscler 9(1):8–22. https://doi.org/10.12997/jla.2020.9.1.8

  210. Malagelada C, Jin ZH, Jackson-Lewis V, Przedborski S, Greene LA (2010) Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson’s disease. J Neurosci 30(3):1166–1175. https://doi.org/10.1523/JNEUROSCI.3944-09.2010

  211. Dehay B, Bové J, Rodríguez-Muela N, Perier C, Recasens A, Boya P, Vila M (2010) Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci 30(37):12535–12544. https://doi.org/10.1523/JNEUROSCI.1920-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Pupyshev AB, Tikhonova MA, Akopyan AA, Tenditnik MV, Dubrovina NI, Korolenko TA (2019) Therapeutic activation of autophagy by combined treatment with rapamycin and trehalose in a mouse MPTP-induced model of Parkinson’s disease. Pharmacol Biochem Behav 177:1–11. https://doi.org/10.1016/j.pbb.2018.12.005

    Article  CAS  PubMed  Google Scholar 

  213. Abdel-Maksoud MS, El-Gamal MI, Benhalilou DR, Ashraf S, Mohammed SA, Oh CH (2019) Mechanistic/mammalian target of rapamycin: recent pathological aspects and inhibitors. Med Res Rev 39(2):631–664. https://doi.org/10.1002/med.21535

    Article  PubMed  Google Scholar 

  214. Ambrosi G, Ghezzi C, Zangaglia R, Levandis G, Pacchetti C, Blandini F (2015) Ambroxol-induced rescue of defective glucocerebrosidase is associated with increased LIMP-2 and saposin C levels in GBA1 mutant Parkinson’s disease cells. Neurobiol Dis 82:235–242. https://doi.org/10.1016/j.nbd.2015.06.008

    Article  CAS  PubMed  Google Scholar 

  215. Aflaki E, Borger DK, Moaven N, Stubblefield BK, Rogers SA, Patnaik S, Schoenen FJ, Westbroek W, Zheng W, Sullivan P, Fujiwara H, Sidhu R, Khaliq ZM, Lopez GJ, Goldstein DS, Ory DS, Marugan J, Sidransky E (2016) A new glucocerebrosidase chaperone reduces α-synuclein and glycolipid levels in iPSC-derived dopaminergic neurons from patients with Gaucher disease and parkinsonism. J Neurosci 36(28):7441–7452. https://doi.org/10.1523/JNEUROSCI.0636-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Vest RT, Chou C-C, Zhang H, Haney MS, Li L, Laqtom NN, Chang B, Shuken S, Nguyen A, Yerra L, Yang AC, Green C, Tanga M, Abu-Remaileh M, Bassik MC, Frydman J, Luo J, Wyss-Coray T (2022) Small molecule C381 targets the lysosome to reduce inflammation and ameliorate disease in models of neurodegeneration. Proc Natl Acad Sci USA 119(11). https://doi.org/10.1073/pnas.2121609119

    Article  CAS  PubMed  Google Scholar 

  217. Siddiqi FH, Menzies FM, Lopez A, Stamatakou E, Karabiyik C, Ureshino R, Ricketts T, Jimenez-Sanchez M, Esteban MA, Lai L, Tortorella MD, Luo Z, Liu H, Metzakopian E, Fernandes HJR, Bassett A, Karran E, Miller BL, Fleming A, Rubinsztein DC (2019) Felodipine induces autophagy in mouse brains with pharmacokinetics amenable to repurposing. Nature Commun 10(1). https://doi.org/10.1038/s41467-019-09494-2

  218. Li Y, Chen Y (2019) AMPK and autophagy. Adv Exp Med Biol 1206:85–108. https://doi.org/10.1007/978-981-15-0602-4_4

    Article  CAS  PubMed  Google Scholar 

  219. Paudel YN, Angelopoulou E, Piperi C, Shaikh MF, Othman I (2020) Emerging neuroprotective effect of metformin in Parkinson’s disease: a molecular crosstalk. Pharmacol Res 152:104593. https://doi.org/10.1016/j.phrs.2019.104593

  220. Katila N, Bhurtel S, Shadfar S, Srivastav S, Neupane S, Ojha U, Jeong G-S, Choi D-Y (2017) Metformin lowers α-synuclein phosphorylation and upregulates neurotrophic factor in the MPTP mouse model of Parkinson’s disease. Neuropharmacol 125:396–407. https://doi.org/10.1016/j.neuropharm.2017.08.015

    Article  CAS  PubMed  Google Scholar 

  221. Kilpatrick K, Zeng Y, Hancock T, Segatori L (2015) Genetic and chemical activation of TFEB mediates clearance of aggregated α-synuclein. PLoS One 10(3):e012819. https://doi.org/10.1371/journal.pone.0120819

  222. Ouyang L, Zhang L, Zhang S, Yao D, Zhao Y, Wang G, Fu L, Lei P, Liu B (2018) Small-molecule activator of UNC-51-like kinase 1 (ULK1) that induces cytoprotective autophagy for Parkinson’s disease treatment. J Med Chem 61(7):2776–2792. https://doi.org/10.1021/acs.jmedchem.7b01575

    Article  CAS  PubMed  Google Scholar 

  223. Hou L, Xiong N, Liu L, Huang J, Han C, Zhang G, Li J, Xu X, Lin Z, Wang T (2015) Lithium protects dopaminergic cells from rotenone toxicity via autophagy enhancement. BMC Neurosci 16:82. https://doi.org/10.1186/s12868-015-0222-y

  224. Li XZ, Chen XP, Zhao K, Bai LM, Zhang H, Zhou XP (2013) Therapeutic effects of valproate combined with lithium carbonate on MPTP-induced parkinsonism in mice: possible mediation through enhanced autophagy. Int J Neurosci 123(2):73–79. https://doi.org/10.3109/00207454.2012.729234

  225. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170(7):1101–11. https://doi.org/10.1083/jcb.200504035

  226. Savolainen MH, Richie CT, Harvey BK, Männistö PT, Maguire-Zeiss KA, Myöhänen TT (2014) The beneficial effect of a prolyl oligopeptidase inhibitor, KYP-2047, on alpha-synuclein clearance and autophagy in A30P transgenic mouse. Neurobiol Dis 68:1–15. https://doi.org/10.1016/j.nbd.2014.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Sn S, Pandurangi J, Murumalla R, Dj V, Garimella L, Acharya A, Rai S, Paul A, Yarreiphang H, Pillai MS, Giridharan M, Clement JP, Alladi PA, Saiyed T, Manjithaya R (2019) Small molecule modulator of aggrephagy regulates neuroinflammation to curb pathogenesis of neurodegeneration. EBioMedicine 50:260–273. https://doi.org/10.1016/j.ebiom.2019.10.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Mahul-Mellier AL, Fauvet B, Gysbers A, Dikiy I, Oueslati A, Georgeon S, Lamontanara AJ, Bisquertt A, Eliezer D, Masliah E, Halliday G, Hantschel O, Lashuel HA (2014) C-Abl phosphorylates α-synuclein and regulates its degradation: implication for α-synuclein clearance and contribution to the pathogenesis of parkinson’s disease. Hum Mol Genet 23(11):2858–2879. https://doi.org/10.1093/hmg/ddt674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Pagan FL, Hebron ML, Wilmarth B, Torres-Yaghi Y, Lawler A, Mundel EE, Yusuf N, Starr NJ, Anjum M, Arellano J, Howard HH, Shi W, Mulki S, Kurd-Misto T, Matar S, Liu X, Ahn J, Moussa C (2020) Nilotinib effects on safety, tolerability, and potential biomarkers in parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol 77(3):309. https://doi.org/10.1001/JAMANEUROL.2019.4200

    Article  PubMed  Google Scholar 

  230. Li Z, Zhu C, Ding Y, Fei Y, Lu B (2020) ATTEC: a potential new approach to target proteinopathies. Autophagy 16(1):185–187. https://doi.org/10.1080/15548627.2019.1688556

    Article  CAS  PubMed  Google Scholar 

  231. Takahashi D, Arimoto H (2020) Targeting selective autophagy by AUTAC degraders. Autophagy 16(4):765–766. https://doi.org/10.1080/15548627.2020.1718362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Wang S, He H, Chen L, Zhang W, Zhang X, Chen J (2015) Protective effects of salidroside in the MPTP/MPP(+)-induced model of Parkinson’s disease through ROS-NO-related mitochondrion pathway. Mol Neurobiol 51(2):718–728. https://doi.org/10.1007/s12035-014-8755-0

    Article  CAS  PubMed  Google Scholar 

  233. Zhang Y, Dawson VL, Dawson TM (2000) Oxidative stress and genetics in the pathogenesis of parkinson’s disease. Neurobiol Dis 7(4):240–250. https://doi.org/10.1006/nbdi.2000.0319

    Article  CAS  PubMed  Google Scholar 

  234. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3(4):461–91. https://doi.org/10.3233/JPD-130230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Li T, Feng Y, Yang R, Wu L, Li R, Huang L, Yang Q, Chen J (2018) Salidroside promotes the pathological a-synuclein clearance through ubiquitin-proteasome system in SH-SY5Y cells. Front Pharmacol 9(4). https://doi.org/10.3389/fphar.2018.00377

  236. Kors S, Geijtenbeek K, Reits E, Schipper-Krom S (2019) Regulation of proteasome activity by (post-)transcriptional mechanisms. Front Mol Biosci 6:48. https://doi.org/10.3389/fmolb.2019.00048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. VerPlank JJS, Goldberg AL (2017) Regulating protein breakdown through proteasome phosphorylation. Biochem J 474(19):3355–3371. https://doi.org/10.1042/BCJ20160809

    Article  CAS  PubMed  Google Scholar 

  238. Zhu Q, Zhuang XX, Chen JY, Yuan NN, Chen Y, Cai CZ, Tan JQ, Su HX, Lu JH (2021) Lycorine, a natural alkaloid, promotes the degradation of alpha-synuclein via PKA-mediated UPS activation in transgenic Parkinson’s disease models. Phytomedicine 87:153578. https://doi.org/10.1016/j.phymed.2021.153578

  239. Cai CZ, Zhou HF, Yuan NN, Wu MY, Lee SMY, Ren JY, Su HX, Lu JJ, Chen XP, Li M, Tan JQ, Lu JH (2019) Natural alkaloid harmine promotes degradation of alpha-synuclein via PKA-mediated ubiquitin-proteasome system activation. Phytomedicine 61:152842. https://doi.org/10.1016/j.phymed.2019.152842

  240. Zhou H, Li S, Li C, Yang X, Li H, Zhong H, Lu JH, Lee SM (2020) Oxyphylla A Promotes Degradation of α-Synuclein for Neuroprotection via Activation of Immunoproteasome. Aging and disease 11(3):559–574. https://doi.org/10.14336/AD.2019.0612

  241. Jiang M, Porat-Shliom Y, Pei Z, Cheng Y, Xiang L, Sommers K, Li Q, Gillardon F, Hengerer B, Berlinicke C, Smith WW, Zack DJ, Poirier MA, Ross CA, Duan W (2010) Baicalein reduces E46K α-synuclein aggregation in vitro and protects cells against E46K α-synuclein toxicity in cell models of familiar Parkinsonism. J Neurochem 114(2):419–429. https://doi.org/10.1111/j.1471-4159.2010.06752.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Zhu M, Rajamani S, Kaylor J, Han S, Zhou F, Fink AL (2004) The flavonoid baicalein inhibits fibrillation of α-synuclein and disaggregates existing fibrils. J Biol Chem 279(26):26846–26857. https://doi.org/10.1074/jbc.M403129200

    Article  CAS  PubMed  Google Scholar 

  243. Leestemaker Y, de Jong A, Witting KF, Penning R, Schuurman K, Rodenko B, Zaal EA, van de Kooij B, Laufer S, Heck AJR, Borst J, Scheper W, Berkers CR, Ovaa H (2017) Proteasome activation by small molecules. Cell Chem Biol 24(6):725-736.e7. https://doi.org/10.1016/j.chembiol.2017.05.010

    Article  CAS  PubMed  Google Scholar 

  244. Zhou H, Shao M, Guo B, Li C, Lu Y, Yang X, ShengnanLi, Li H, Zhu Q, Zhong H, Wang Y, Zhang Z, Lu J, Lee SM (2019) Tetramethylpyrazine analogue T-006 promotes the clearance of alpha-synuclein by enhancing proteasome activity in Parkinson’s disease models. Neurotherapeutics 16(4):1225–1236. https://doi.org/10.1007/s13311-019-00759-8

  245. Khalifeh M, Barreto GE, Sahebkar A (2019) Trehalose as a promising therapeutic candidate for the treatment of Parkinson’s disease. Br J Pharmacol 176(9):1173–1189. https://doi.org/10.1111/bph.14623

  246. Ming, Lu Cunjin, Su Chen, Qiao Yaqi, Bian Jianhua, Ding Gang, Hu (2016) (2016) (2016) Metformin Prevents Dopaminergic Neuron Death in MPTP/P-Induced Mouse Model of Parkinson’s Disease via Autophagy and Mitochondrial ROS Clearance. International Journal of Neuropsychopharmacology 19(9). https://doi.org/10.1093/ijnp/pyw047

  247. Sanchez-Martinez A, Beavan M, Gegg ME, Chau KY, Whitworth AJ, Schapira AH (2016) Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models. Sci Rep 6:31380. https://doi.org/10.1038/srep31380

  248. Suresh SN, Chavalmane AK, Dj V, Yarreiphang H, Rai S, Paul A, Clement JP, Alladi PA, Manjithaya R (2017) A novel autophagy modulator 6-Bio ameliorates SNCA/α-synuclein toxicity. Autophagy 13(7):1221–1234. https://doi.org/10.1080/15548627.2017.1302045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Suresh SN, Chavalmane AK, Pillai M, Ammanathan V, Vidyadhara DJ, Yarreiphang H, Rai S, Paul A, Clement JP, Alladi PA, Manjithaya R (2018) Modulation of autophagy by a small molecule inverse agonist of ERRα is neuroprotective. Front Mol Neurosci 11:109. https://doi.org/10.3389/fnmol.2018.00109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Spencer B, Emadi S, Desplats P, Eleuteri S, Michael S, Kosberg K, Shen J, Rockenstein E, Patrick C, Adame A, Gonzalez T, Sierks M, Masliah E (2014) ESCRT-mediated uptake and degradation of brain-targeted α-synuclein single chain antibody attenuates neuronal degeneration in vivo. Mol Ther 22(10):1753–1767. https://doi.org/10.1038/MT.2014.129

  251. Butler DC, Joshi SN, Genst ED, Baghel AS, Dobson CM, Messer A (2016) Bifunctional Anti-Non-Amyloid Component α-Synuclein Nanobodies Are Protective In Situ. PLoS One 11(11):e0165964. https://doi.org/10.1371/journal.pone.0165964

  252. Chatterjee D, Bhatt M, Butler D, De Genst E, Dobson CM, Messer A, Kordower JH (2018) Proteasome-targeted nanobodies alleviate pathology and functional decline in an α-synuclein-based Parkinson’s disease model. NPJ Parkinsons Dis 4:25. https://doi.org/10.1038/s41531-018-0062-4

  253. Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, Adame A, Wyss-Coray T, Masliah E (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci 29(43):13578–13588. https://doi.org/10.1523/JNEUROSCI.4390-09.2009

  254. Shin WH, Park JH, Chung KC (2020) The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson’s disease. BMB Rep 53(1):56. https://doi.org/10.5483/BMBREP.2020.53.1.283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Ottis P, Toure M, Cromm PM, Ko E, Gustafson JL, Crews CM (2017) Assessing different E3 ligases for small molecule induced protein ubiquitination and degradation. ACS Chem Biol 12(10):2570–2578. https://doi.org/10.1021/acschembio.7b00485

    Article  CAS  PubMed  Google Scholar 

  256. Fan X, Jin WY, Lu J, Wang J, Wang YT (2014) Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nat Neurosci 17(3):471–480. https://doi.org/10.1038/nn.3637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Qu J, Ren X, Xue F, He Y, Zhang R, Zheng Y, Huang H, Wang W, Zhang J (2020) Specific knockdown of α-synuclein by peptide-directed proteasome degradation rescued its associated neurotoxicity. Cell Chem Biol 27(6):751–762.e4. https://doi.org/10.1016/j.chembiol.2020.03.010

Download references

Acknowledgements

Authors acknowledge the members of P.M. laboratory for their inputs and comments.

Funding

This work is supported by SERB (ECR/2017/003431), MoE-STARS/STARS-1/PID (STARS1/634), and HGK-IYBA (BT/11/IYBA/2018/08) grants to PM. PM duly acknowledges the support of Ramalingaswami Fellowship, Department of Biotechnology, GOI. AAP is a recipient of PMRF, GOI.

Author information

Authors and Affiliations

Authors

Contributions

S.S., V.K., A.A.P., and P.M. conceptualized, drafted, edited, and reviewed the manuscript.

Corresponding author

Correspondence to Parul Mishra.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S., Padhy, A.A., Kumari, V. et al. Role of Ubiquitin–Proteasome and Autophagy-Lysosome Pathways in α-Synuclein Aggregate Clearance. Mol Neurobiol 59, 5379–5407 (2022). https://doi.org/10.1007/s12035-022-02897-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02897-1

Keywords

Navigation