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Abstract
During the nervous system development, synapses are initially overproduced. In the neuromuscular junction (NMJ) however, 
competition between several motor nerve terminals and the synapses they made ends with the maturation of only one axon. 
The competitive signaling between axons is mediated by the differential activity-dependent release of the neurotransmitter 
ACh, co-transmitters, and neurotrophic factors. A multiple metabotropic receptor-driven downstream balance between PKA 
and PKC isoforms modulates the phosphorylation of targets involved in transmitter release and nerve terminal stability. 
Previously, we observed in the weakest endings on the polyinnervated NMJ that  M1 mAChR receptors reduce ACh release 
through the PKC pathway coupled to an excess of  Ca2+ inflow through P/Q- N- and L-type voltage-gated calcium channels 
(VGCC). This signaling would contribute to the elimination of this nerve terminal. Here, we investigate the involvement of 
the P/Q-, N-, and L-subtype channels in transgenic B6.Cg-Tg (Thy1-YFP)16-Jrs/J mice during synapse elimination. Then, 
the axon number and postsynaptic receptor cluster morphologic maturation were evaluated. The results show that both L- and 
P/Q-type VGCC (but not the N-type) are equally involved in synapse elimination. Their normal function favors supernumer-
ary axonal loss by jointly enhancing intracellular calcium  [Ca2+]i. The block of these VGCCs or [Ca2+]i  i sequestration 
results in the same delay of axonal loss as the cPKCβI and nPKCε isoform block or PKA activation. The specific block of 
the muscle cell’s contraction with μ-conotoxin GIIIB also delays synapse maturation, and thus, a retrograde influence from 
the postsynaptic site regulating the presynaptic CaV1.3 may contribute to the synapse elimination.
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Abbreviations
ACh  Acetylcholine
AR  Adenosine receptors
A1  Adenosine receptor
A2A  Adenosine receptor

ω-Aga-IVA  ω-Agatoxin-IVA
BRY  Bryostatin-1
CANP  Calcium-activated neutral protease
CaC  Calphostin C
Che  Chelerythrine
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ω-CON-GVIA  ω-Conotoxin-GVIA
DMSO  Dimethylsulfoxide
LAL  Levator auris longus Muscle
nAChR  Nicotinic acetylcholine receptor
M1  M1-type muscarinic acetylcholine 

receptor
M2  M2-type muscarinic acetylcholine 

receptor
M4  M4-type muscarinic acetylcholine 

receptor
Munc18-1  Mammalian uncoordinated-18–1
NMJ  Neuromuscular junction
PBS  Phosphate buffer saline
PKA  Protein kinase A
PKA-I  PKA isozymes type I
PKA-II  PKA isozymes type II
PKC  Protein kinase C
cPKCβI  conventional protein kinase C beta I
βIV5-3  CPKCβI specific translocation inhibitor 

peptide
nPKCε  Novel protein kinase C epsilon εV1-2
nPKCε  Specific translocation inhibitor peptide
PMA  Phorbol 12-myristate 13-acetate
Rp  Adenosine- 3′,5′-cyclic monophosphoro-

thioate Rp-isomer sodium salt
Rp8  8-Bromoadenosine-3′,5′-cyclic 

monophosphorothioate, Rp-isomer 
sodium salt

S  Postsynaptic morphological stage
Thy1-YFP-16  Transgenic B6.Cg-Tg 16 Jrs/J mice
TRITC-α-BTX  tetramethylrhodamine α-bungarotoxin
TrkB  Tropomyosin-related kinase B receptor
VGCC   Voltage-gated calcium channels

Introduction

During the nervous system development, synapses are over-
produced though only consolidate appropriate connections 
[1–6]. At the neuromuscular junction (NMJ), various motor 
axons compete to make stable synaptic contacts with the 
maturation of only one presynaptic axon and the elimina-
tion of the others [7–11]. The activity-dependent release of 
acetylcholine (ACh), adenosine, neurotrophins, and other 
mediators allows the mutual influence between axons fit-
ted with the corresponding receptors [3, 11–14]. The axonal 
competitive signaling is mediated by at least presynaptic 
muscarinic ACh autoreceptors (mAChR;  M1,  M2, and  M4 
subtypes), adenosine receptors (AR;  A1 and  A2A), and the 
tropomyosin-related kinase B (TrkB) neurotrophin receptor 
[15–20].  A1,  M1, and TrkB operate mainly through the pro-
tein kinase C (PKC) pathway, whereas  A2A,  M2, and  M4 are 
coupled to the protein kinase A (PKA) pathway [4, 21–23]. 

It has been described that PKA activity opposes to NMJ 
maturation while PKC promotes axonal loss [24].

The motor nerve terminals achieve differences in both 
transmitter release and expression of related molecules dur-
ing the process of the developmental retraction of supernu-
merary axons that could be the cause of the elimination or 
survival of the nerve terminals. A metabotropic receptor-
driven balance between PKA and PKC activities in the com-
peting axon terminals would be relevant in developmental 
synapse elimination by the phosphorylation of pre- and post-
synaptic targets involved in transmitter release and nerve 
terminal stability such as VGCC. Related with this, we know 
that in the weakest endings from polyinnervated NMJ (those 
nerve terminals that evoke the small synaptic potential),  M1 
mAChR receptor subtype reduces release through the PKC 
pathway coupled to an excess of  Ca2+ inflow through P/Q-, 
N-, and L-type VGCC (L and N channels are present in 
these weak endings) [25, 26]. Moreover, in these weak nerve 
terminal, P/Q and N channels enhance release through the 
PKA-associated  M2 subtype [22, 27]. Therefore, it is tempt-
ing to speculate on the relevance of the PKA and PKC phos-
phorylation of the  Ca2+ channels to differentially control 
the neurotransmitter release and its influence in the nerve 
terminal stability and loss.

Here, we evaluate the strength of the hypothesis of the 
close relation between serine/threonine kinases and VGCC 
for developmental synapse elimination. First, we investi-
gate the involvement of the P/Q-, N-, and L-subtypes of the 
VGCC, and second, we compared the effect of the channels 
activity modulation with the effect of PKA and PKC modu-
lation. The results show that both L- and P/Q-type but not 
the N-type VGCC intervene in the postnatal axonal discon-
nection and synapse maturation. Their block at the half-time 
period of axonal elimination strongly prolongs both multi-
innervation and postsynaptic AChR cluster immaturity. This 
effect is not different from the block of the classical cPKCβI 
isoform and from the PKA stimulation though nPKCε block 
results in a significantly greater delay suggesting some rel-
evance of this calcium-independent isoform, thus encourag-
ing new experiments to explore these links and mechanism. 
In addition, a retrograde influence from the muscle cell may 
contribute because the contraction block with μ-conotoxin 
GIIIB also delays axon loss and synapse maturation. Fur-
thermore, this retrograde influence may regulate the presyn-
aptic CaV1.3 action on the synapse elimination.

Materials and Methods

Animals

B6.Cg-Tg (Thy1-YFP) 16Jrs/J (Thy1-YFP-16) transgenic 
mice and C57BL/6 J (wild-type control) from the Jackson 
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Laboratory were used. Thy1-YFP-16 express high levels of 
yellow fluorescent protein in motor and sensory neurons, 
as well as in subsets of central neurons. Axons are strongly 
and specifically stained by this line. No expression is detect-
able in nonneural cells. Thy1-YFP-16 mice were used in 
all experiments, and in some cases, we checked our results 
with C57BL/6 J mice. No significant differences were found 
with YFP mice. Animal-involving procedures were approved 
by the Ethics Committee of Animal Experimentation of the 
Universitat Rovira i Virgili and Generalitat de Catalunya 
(reference number 10760). The animals were cared for in 
accordance with the European Community’s Council Direc-
tive of 24 November 1986 (86/609/EEC) for the humane 
treatment of laboratory animals. Pups of either sex were 
used in experiments in postnatal day 9 (P9). The date of birth 
was designated postnatal day 0 (P0). Conception timing and 
weights at P9 neonatal mices were carefully monitored to 
reduce the variability in our measurements. Whole Leva-
tor auris longus (LAL) muscles were used to perform the 
morphological analysis at postnatal day 9.

Western Immunoblotting

For immunoblotting, dissected LAL neonatal muscles (P5, 
P7, and P30; 1/10 w/v) were homogenized with an over-
head stirrer (VWR International, Clarksburg, MD) in ice-
cold lysis buffer (NaCl 150 mM, Tris–HCl 50 mM (pH 7.4), 
EDTA 1 mM, NaF 50 mM, PMSF 1 mM,  Na3VO4 1 mM; 
NP-40 1%, Triton X-100 0.1%, and protease inhibitor cock-
tail 1% (Sigma, Saint Louis, MO, USA)). After the extrac-
tion of the insoluble material by centrifugation at 4000 g for 
5 min, the samples were centrifuged at 15,000 g for 15 min, 
and the final supernatants were the lysate samples.

Protein concentrations were determined using the DC 
protein assay (Bio-Rad, CA, USA). Samples (30 μg of pro-
tein) were electrophoresed on 8% SDS–polyacrylamide gels 
[28] and transferred to polyvinylidene difluoride (PVDF) 
membranes (Amersham-Pharmacia, Upsala, Sweden). The 
PVDF membranes were blocked in 5% nonfat dry milk in 
tris-buffered saline (50 mM Tris at pH 7.4, 200 mM NaCl, 
0.1% Triton X-100, 0.2% Tween-20). Primary antibod-
ies were incubated at 4 °C overnight (rabbit anti-P/Q-type 
calcium channel (1:1000; ACC-001, Alomone; Jerusalem, 
Israel); rabbit anti-α1D L-type calcium channel (CaV1.3, 
1:500; ACC-005, Alomone, Jerusalem, Israel); rabbit anti-
N-type calcium channel (1:500; ACC-002, Alomone); 
rabbit anti-Munc18-1 (1:1000; ≠ 13414, Cell Signalling 
Technology; Massachusetts, USA), and rabbit anti-PKCε 
(1:1000; ≠ 2683, Cell Signalling Technology; Massachusetts, 
USA)). Horseradish peroxidase-conjugated secondary anti-
body from Jackson ImmunoResearch (Philadelphia, PA) was 
used at a dilution of 1:10.000 for 1 h. Chemiluminescence 
was revealed with an ECL kit (GE Healthcare Life Sciences, 

UK) and imagined with the ChemiDoc XRS + Imaging Sys-
tem (Bio-Rad, CA, USA). ImageJ software was used to cal-
culate the optical density of the bands, always from the same 
immunoblot image. The values were normalized to (a) the 
background values and (b) the total protein transferred on 
the PVDF membranes, analyzed with Sypro Ruby protein 
blot stain (Bio-Rad, CA, USA) [29]. Means between dif-
ferent postnatal days were calculated from the same mem-
brane image. We compare P7 and P30 from P5. Data was 
taken from densitometry measurements made in at least 
three separate Western blots for each of the five animals 
on each postnatal day. For Western blot design, no blinding 
was performed.

The specificity of anti-α1D L, P/Q, and N VGCC anti-
bodies used in this study has been tested using KO mice 
by Alomone Labs and validated also by some researchers. 
The specificity of the anti-CACNA1A (CaV2.1 or P/Q 
VGCC) antibody was validated by Jung et al. [30] through 
the immunohistochemical staining of Cav2.1 in the mouse 
hippocampus, comparing the expression between a control 
group and a conditional knockout group (Cav2.1 cKO). 
The Cav2.1 expression was significantly reduced in Cav2.1 
cKO. The antibody specificity was also validated by Alo-
mone Labs through Western blot analysis of the rat brain 
membranes, using CACNA1A/Cav2.1 Blocking Peptide 
as a negative control. Anti-α1D L VGCC (Cav1.3, CAC-
NA1D) antibody specificity was determined by Shi et al. 
[31] using a Cav1.3 knockout mouse (Cav1.3−/−). The 
immunohistochemical reactivity of Cav1.3 in a mouse eye 
section of a Cav1.3−/− was not detected in comparison 
to the Cav1.3+/+ wild type (WT). The antibody specific-
ity was also validated by Alomone Labs through Western 
blot analysis of the rat brain membranes, using Cav1.3/
CACNA1D Blocking Peptide as a negative control. Fossat 
et al. [32] also determined the specificity of the antibod-
ies against Cav1.3 by probing the spinal cord for Cav1.3 
expression following channel knockdown using a peptide 
nucleic acid–based antisense strategy. The specificity of 
the anti-CACNA1B (Cav2.2) antibody was determined 
by Alomone Labs through Western blot analysis of the 
rat brain membranes. In addition, to ensure primary anti-
body specificity in Western blotting, we used two dif-
ferent negative controls (see supplementary information 
from Fig. 2). One of them was without primary antibody 
where the membranes never revealed staining due to the 
secondary antibody. Second, preincubation with the spe-
cific blocking peptide (ratio between the antibody and the 
blocking peptide 1:1; examples from Cav1.3/CACNA1D 
blocking peptide (#BLP-CC005) and CACNA1A/Cav2.1 
blocking peptide (#BLP-CC001)) in skeletal muscle tissue 
(P5 and P30) prevented immunolabeling. The specificity 
of the Munc18-1 antibody (#13414,) and PKCε (22B10) 
antibody (#2683) for Western blots had been tested and 
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published in previous works [33, 34]. For example, the 
incubation with the specific εV1-2 peptide for 30  min 
decreases PKCε and pPKCε levels [33]. As a positive con-
trol, brain lysate was used to detect a specific band from 
α1D-L-type VGCC, P/Q-type VGCC, nPKCε, and Munc 
18–1 (see supplementary information from Fig. 2).  In 
addition, the specificity of α1D L-type VGCC antibody 
was confirmed when we compared the region of the mus-
cle tissue enriched in NMJ with the peripheral regions 
without synapses. In the LAL muscle, a clearly defined 
separation between these regions is not easily performed 
(differing from other muscles such as the sternocleido-
mastoid or diaphragm muscles with narrow neural central 
bands). However, we analyzed in some muscles the two 
portions for the presence of TRITC-α-BTX labeled AChRs 
clusters to guarantee a correct separation.

Injection Procedure

To determine the involvement of calcium channels on the 
synapse elimination process by morphological analysis, 
subcutaneous injections of appropriate solutions (activators 
and inhibitors) were administered. The animals received an 
injection (50 μL) from P5 to P8 over the LAL muscle, in 
the back of the neck as previously described [4, 35]. The 
muscles were dissected and processed on day P9.

Activators and inhibitors of VGCC, PKC, and PKA were 
diluted to the appropriate concentration in phosphate-buff-
ered saline (PBS). We made experiments to discriminate 
the postsynaptic involvement in the axon loss regulation. 
Muscle contraction was blocked with µ-conotoxin GIIIB 
(µ-CgTx-GIIIB, Alomone Labs Ltd, Jerusalem, Israel). This 
toxin selectively inhibits sarcolemmal voltage-dependent 
sodium channels (VDSCs) without affecting synaptic ACh 
release and synaptic events [36]. The working concentration 
was 1.5 mM, and the same protocol as for the other sub-
stances was used. Different control experiments were done 
to know if the injection procedure and the PBS or DMSO 
(Sigma-Aldrich, Saint Louis, MO, USA) diluent change 
the NMJ morphology. PBS injected in the muscles did not 
reveal differences with the non-injected LALs in either the 
number of axons per endplate or nAChR cluster morphol-
ogy. No changes were induced by the injection procedure 
in the overall morphology of the motor endplate and nerve 
terminals (p > 0.05, Fisher’s test; data not shown. As the 
final concentration, 0.1% (v/v) of DMSO has been used in 
control and drug-treated preparations. In control experi-
ments, the injection of 0.1% of DMSO over the LAL mus-
cle did not affect any of the parameters studied (data not 
shown). The solutions were administered at a concentration 
in accordance with the reported biological action of the 
substances [37, 38].

Tissue Preparation and Histochemistry

At P9, after a lethal dose of 2% tribromoethanol (Sigma-
Aldrich; Saint Louis, MO, USA), the heads from neonatal 
pubs were removed and fixed for 1.5 h in 4% paraformalde-
hyde (Sigma-Aldrich; Saint Louis, MO, USA) and rinsed 
3 × in PBS. Then, LAL muscles were dissected and post-
fixed for 45 min. Next, Thy1-YFP-16 LAL muscles were 
incubated (1 h at room temperature) with tetramethylrho-
damine conjugated α-bungarotoxin (TRITC-α-BTX, PBS 
containing a 1/1000 dilution of 1 µg/mL; Molecular Probes; 
Oregon, USA).

C57BL/6  J LAL muscles were processed for immu-
nostaining to detect the presynaptic motor neuron termi-
nals and the postsynaptic nicotinic acetylcholine receptors 
(nAChRs). Muscles were incubated in 0.1% glycine (Sigma-
Aldrich; Saint Louis, MO, USA) for 12 h at 4 °C and then 
blocked in a solution containing 4% BSA (Sigma-Aldrich; 
Saint Louis, MO, USA) and 0.5% Triton X-100 (Sigma-
Aldrich; Saint Louis, MO, USA) in PBS for 12 h at 4 °C. 
Primary antibodies against 200-kD neurofilament protein 
(rabbit antibody, 1:1000; Sigma-Aldrich) were diluted in a 
solution of 4% BSA diluted in PBS with 0.5% Triton X-100 
and incubated at 4 °C overnight. Tissues were rinsed 3 × in 
PBS and treated with TRITC-α-BTX (Molecular Probes; 
Oregon, USA) to label postsynaptic nicotinic acetylcho-
line receptors (nAChRs) for 45 min. The presynaptic motor 
neuron terminals labeled by anti-neurofilament protein were 
visualized by the secondary antibody Alexa-fluor 488 don-
key anti-rabbit (1/300; Molecular Probes; Oregon, USA). As 
a control, the antibody specificity was tested by incubation 
in the absence of primary antibody. No unspecific staining 
was observed in the three muscles used as negative controls 
(not shown). Whole muscles were mounted in Mowiol (Cal-
biochem-Merck; Kenilworth, NJ, USA) with p-phenylenedi-
amine (Sigma-Aldrich; Saint Louis, MO, USA).

VDCCs were detected at P9 neonatal LALs by plastic-
embedded semithin sections for high-resolution immuno-
fluorescence analysis [39] and confocal microscopy. We pro-
ceeded with the muscles to simultaneously observe α1D L-, 
N-, and P/Q-type voltage-gated  Ca2+ channels with nAChR 
and syntaxin. Muscles were incubated overnight at 4 °C 
with anti-CaV1.3 (CACNA1D) antibody voltage-dependent 
L-type calcium channel subunit α1D (1/100; ACC-005, Alo-
mone Labs, Jerusalem, Israel); anti-CaV2.1 (CACNA1A) 
antibody voltage-dependent P/Q-type calcium channel subu-
nit α1A (1/100; ACC-001, Alomone Labs, Jerusalem, Israel); 
anti-CaV2.2 (CACNA1B) antibody voltage-dependent 
N-type calcium channel subunit α1B (1/100; ACC1-002, 
Alomone Labs, Jerusalem, Israel), and anti-mouse syntaxin 
(1/1000, S066, Sigma, St Louis, MO, USA). After incuba-
tion with primary antibodies, the muscles were incubated for 
6 h in a mixture of second antibodies conjugated with Alexa 
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Fluor 488 and Alexa Fluor 647 (Molecular Probes, Oregon, 
USA). Postsynaptic acetylcholine receptors (nAChRs) 
were labeled by tetramethylrhodamine alpha-bungarotoxin 
(1/1000, TRICT-α-BTX, Molecular Probes, Oregon, USA). 
Then, the muscles were dehydrated with increasing concen-
trations of ethanol and acetone, and the tissue fragments 
were embedded in Spurr’s resin in a transverse orientation. 
Sections 0.5–0.7 μm thick were cut with a Reichert Ultra-
cut E microtome (Leica Microsystems, Bannockburn, IL, 
USA) and flattened on glass slides by heating on a hotplate. 
Various different types of negative controls were used to test 
the specificity of the VDCC antibodies, and at least three 
muscles were used in each control. In the first control was 
to omit the primary antibodies. In the second control, the 
primary antibody was preincubated with the peptides for 
2 h prior to use. In the last control, muscles were incubated 
omitting either one of the two primary antibodies to show 
a possible cross-linking between the primary antibodies 
that joined the secondary antibodies. No cross-reaction was 
detected between antibodies (Fig. 1b). NMJs were viewed 
with an inverted Nikon TE-2000 microscope (Nikon Japan).

Morphological Analysis and Confocal Microscopy

The NMJs on LAL muscles were viewed using an inverted 
Nikon TE-2000 fluorescent microscope (Nikon, Tokyo, 
Japan) connected to a personal computer running image 
analysis software (ACT-1, Nikon). The number of axons per 
endplate was counted and classified into three groups: junc-
tions that were monoinnervated, doubly innervated, or inner-
vated by three or more terminal axons. At the same time, 
the percentage of immature nAChR clusters was defined 
as the uniform, density-homogeneous nAChR oval plaques 
observed at birth, without inhomogeneities in the receptor 
density or the presence of initial gutters.

High-resolution confocal images were obtained with 
a 63 × oil objective (1.4 numerical aperture) on a Nikon 
TE-2000 confocal microscope. Z stacks were obtained at 
step sizes of 0.5 µm for depths of 20–40 µm, and additional 
optical sections above and below each junction were col-
lected to ensure that the entire synapse was included.

Statistical Analysis

Data from Western blot analysis are expressed as 
means ± standard deviation (SD). Statistical significance 
was evaluated under a nonparametric Kruskal–Wallis test 
followed by Dunn’s post hoc test. The criterion for statisti-
cal significance was *p < 0.05, **p < 0.01, and ***p < 0.005. 
Fisher’s test and Bonferroni correction were applied to 
compare percentages in the morphological analysis. NMJs 
visible in their entirety were scored, with a minimum of 
100 per muscle. In total, 12 muscles were studied for each 

condition examined. The criterion for statistical significance 
was p < 0.05. The categories were scored, and the counting 
was performed by a person with no knowledge of the age or 
treatment of the animals. The data are presented as percent-
ages of NMJ ± SD.* p < 0.05, ** p < 0.01, and *** p < 0.005.

Drugs

Calcium Channel Modulators

Antagonists, Blockers, or Inhibitors

The stock solutions were Nitrendipine (NT, a L-type channel 
blocker N144, Sigma-Aldrich) 50-mM; ω-conotoxin-GVIA 
(ω-CON, N-type channel blocker C9915, Calbiochem) 
1 mM; and ω-Agatoxin IVA (ω-AGA, a P/Q-type channel 
blocker, STA-500, Alomone) 100 nM. The working solu-
tions used were NT, 1 µM; ω-CON, 1 µM; and ω-Aga-IVA, 
100 nM.

Agonist

The stock solutions were 50 mM 1,4-Dihydro-2,6-dimethyl-
5-nitro-4-(2-trifluoromethylphenyl)pyridine-3-carboxylic 
acid methyl ester (Bay-K8644, agonist L-type calcium chan-
nel, B-350, Alomone) and 20 mM (2R)-2-[(6-{[(5-meth-
ylthiophen-2-yl)methyl]amino}-9-propyl-9H-purin-2-yl)
amino]butan-1-ol (GV-58, activator of  CaV2.2 and  CaV2.1 
 Ca2+ channels; G-140-Alomone). The working solutions 
used were Bay-K8644, 5 µM, and GV-58, 20 µM.

Calcium Ion Modulators

The stock solution from BAPTA-AM (1,2-Bis(2-aminophe-
noxy)ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxym-
ethyl ester) was 10 mM, and the working solution used was 
5 µM. BAPTA is a  Ca2+ chelator with 105-fold greater affin-
ity for  Ca2+ than for  Mg2+. BAPTA-AM is a cell-permeable 
analog of BAPTA that binds calcium only after the acetoxy-
methyl group is removed by cytoplasmic esterases. It is com-
monly used at 5–100 μM to evaluate the role of intracellular 
calcium in cell signaling [40–42].

Selective PKC Substances

Antagonists

The stock solutions were chelerythrine (Che, C-400, Alo-
mone), 10 mM; calphostin C (CaC, C6303, Sigma-Aldrich), 
2.5 mM; peptide βIV5–3 (βIV5–3 Mochly Rosen, Stanford 
University), 10 mM; and peptide εV1–2, (εV1–2, 539522, 
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Fig. 1  a Representative confo-
cal image of a nerve terminal 
arborization. Singly, dually, and 
innervated by three or more 
axons NMJs from YFP muscles 
and also images of the morpho-
logic maturation (S1, the most 
inmature, and S4, almost fully 
differentiated, stages) of the 
postsynaptic clusters from P9 
mice. The bar indicates 10 μm. 
b Confocal immunofluorescence 
location of α1D L-, N-, and P/Q-
type voltage-dependent calcium 
channels (VDCCs) at the NMJ. 
Triple labeling of VDCCs 
(green fluorescence) with 
syntaxin (blue fluorescence) and 
nAChR-α-bungarotoxin (red 
fluorescence) in merge images. 
Figure shows the presence of 
α1D L-, N-, and P/Q-type-VDCC 
(in green) in the nerve terminal 
of P9 Levator auris longus 
(LAL) muscle endplates. The 
bar indicates 10 μm
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Calbiochem), 1 mM. The working solutions used were Che 
(1 µM); CaC (200 nM); βIV5–3 (10 µM); and εV1–2 (10 µM).

Agonists

Bryostatin-1 (BRY, 2283-Tocris; Minneapolis, MN, USA), 
10  µM; phorbol 12-myristate 13-acetate (PMA, P1585 
Sigma), 10 mM; 12-deoxyphorbol-13-phenylacetate-20-ac-
etate (dPPA, PKCβI selective activator, BML-PE-182–0001 
Enzo; Farmingdale, NY, USA), 1 mg/mL; 2-((2-pentylcy-
clopropyl)methyl) cyclopropaneoctanoic acid (FR236924, 
PKCε selective activator), 100 mM. The working solutions 
used were BRY (1 nM); PMA (10 nM); dPPA (0.2 µg/mL); 
and FR236924 (100 nM).

Selective PKA Substances

Antagonists

The stock solutions were dihydrochloride (H89, 19–141, 
Millipore-Merck), 5 mM; 8-bromoadenosine-3′,5′-cyclic 
monophosphorothioate, Rp-isomer sodium salt (Rp8, 
RI-PKA selective, 129735–00-8, Biolog; California, 
USA), 5 mM; and adenosine-3′,5′-cyclic monophospho-
rothioate, Rp-isomer sodium salt (Rp, RII-PKA selective 
A002S, Biolog), 5 mM. The working solutions used were 
H89 (5 µM); Rp-8-Br-cAMPS (100 µM); and Rp-cAMPs 
(100 µM).

Agonist

The stock solution was adenosine 3 ′ ,5 ′-cyclic 
monophosphorothioate,8-bromo-, Sp-isomer, sodium salt 
(Sp8Br, 116,818, Calbiochem-Merck), 5 mM. The working 
solution was 10 µM.

Stock solutions were prepared using PBS or DMSO in 
accordance with the commercial product information. All 
these solutions are referenced as specific, but possible 
nonspecific effects of inhibitors and stimulators cannot be 
discarded.

Antibodies

Anti-CaV1.3 (CACNA1D) antibody voltage-dependent 
L-type calcium channel subunit α1D (WB: 1/500; ACC-
005, Alomone); anti-CaV2.1 (CACNA1A) antibody volt-
age-dependent P/Q-type calcium channel subunit α1A (WB: 
1/1000; ACC-001, Alomone); anti-CaV2.2 (CACNA1B) 
antibody voltage-dependent N-type calcium channel subunit 
α1B (WB: 1/1000; ACC1-002, Alomone); Munc18-1 anti-
body (WB: 1/1000; #13414, Cell Signalling Technology); 
PKCε (22B10) antibody (WB: 1/1000; #2683, Cell Signal-
ling Technology).

Results

Polyneuronal Innervation in Developing NMJ

Maturation of the NMJ, involving axonal competition and 
loss of nerve terminals but one, takes place during the 
first two postnatal weeks. We have selected the period 
P5–P9 as it corresponds to the middle of the axonal loss 
process. The nerve terminal elimination coincides with 
the morphological maturation of the postsynaptic compo-
nent on the NMJ. From the beginning, a uniform nAChR 
distributed oval plaque (S1) modifies into an increasingly 
structured pattern of independent primary gutters (S4) 
[4, 43–45]. Figure 1a shows some representative confo-
cal fluorescence images of singly- and polyinnervated 
NMJs from Thy1-YFP-16 P9 mice and the morphologic 
maturation (S1–S4 stages) of the postsynaptic clusters. 
In addition, Fig. 1b shows the location of α1D-L-, N-, and 
P/Q-type-VDCC at the NMJ. By triple labeling of those 
proteins (green fluorescence, in merge) with syntaxin (blue 
fluorescence, in merge) and nAChR-α-BTX (red fluores-
cence, in merge), we saw that the molecules were present 
at the neuromuscular contacts, in particular in the nerve 
terminal.

VGCC Proteins in Muscle During Development

We analyzed by Western blotting the changes in α1D L-, 
N-, and P/Q VGCC protein levels in the LAL muscle of 
Thy1-YFP-16 mice during development (P5-P7-P30). To 
control the changes in protein translation during muscle 
development, our data has been normalized against the 
average concentration of proteins stained with the highly 
sensitive Sypro Ruby total protein stain [29]. Figure 2 
shows a conspicuous increase of all three channel proteins 
at P7 that roughly triplicate the value of P5. At P30 stage, 
the α1D-L-type protein stabilizes at the levels reached at 
P7. WB from the central region of muscle fibers (contain-
ing the NMJ) compared to peripheral regions (almost lack-
ing NMJs) strongly indicates that the α1D-L-VGCC band 
in the WB represents α1D-L-VGCC in the nerve terminals. 
The P/Q-type channel protein experiences an important 
rise at P30 in concordance with their specific involve-
ment in transmitter release in the adult NMJ whereas the 
N-type protein level falls back to the low value observed 
at P5The developmental change in the P/Q VGCC protein 
level occurs in parallel with the changes observed in other 
presynaptic molecules, for instance, the nPKCε isoform 
and the exocytotic modulatory protein Munc18-1. Thus, a 
relevant differential transition affects the channel proteins 
around the crucial period (P5–P9) for synapse elimination.
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VGCC in Developmental Synapse Elimination

We performed subcutaneous injections over the Levator 
auris longus (LAL) mouse muscle of selective blockers and 
activators of the VGCC. Figure 3a shows the percentage of 
singly, dually, and innervated by three or more axons NMJs 
in the untreated control Thy1-YFP-16 expressing mice (only 

PBS) and after 4 applications (one application every day 
between P5-P8; observation at P9) of one of the follow-
ing VGCC inhibitor substances: nitrendipine (NT 1 μM, an 
L-type channel blocker), ω-agatoxin-IVA (ω-AGA 100 nM, 
a P/Q-type blocker) and ω-conotoxin-GVIA (ω-CON 1 μM, 
N-type channel blocker). The data show that the L chan-
nel block with NT and the P/Q channel block with ω-AGA 

Fig. 2  Western blots and histograms of α1D-L-, N-, and P/Q 
VGCC proteins in the LAL muscle of mice during development 
(P5-P7-P30). The developmental change in the P/Q VGCC protein 

level is parallel with the changes observed in other presynaptic mol-
ecules (nPKCε isoform and Munc18-1). Data are mean value ± SD, 
*p < 0.05, **p < 0.01, ***p < 0.005 (n = 5; 3 repeats)
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results in an important delay of the axon loss because of 
the persistence of many polyinnervated synapses and thus a 
percentage of monoinnervated junctions around half of the 
value expected at P9. However, the block of the N channel 
with ω-CON does not affect the normal rate of axonal loss.

We used also VGCC activators. Bay-K8644 is an L-type 
 Ca2+-channel activator that increases the entry of  Ca2+ into 
cells by opening the channel for longer periods [46, 47]. 
Activation of the L channel with 5 μM Bay-K8644 produces 
the contrary effect of the L block because of the small but 
significant increase of monoinnervated NMJ and the reduc-
tion of the dual junctions.

GV-58 was shown to be more potent on N- and P/Q 
 Ca2+ channels with an EC50 = 6.8 and 9.9 μM, respectively, 
over L-type calcium channels (EC50 > 100 μM) (Tarr et al., 
2012). GV-58 slows the closing of the VGCCs, resulting 
in a large increase in total  Ca2+ entry during motor nerve 
action potential activity [48]. The activation of the P/Q- and 
N-type VGCCs with GV-58 (20 μM) results also in a mod-
erate though a significant increase of the monoinnervated 
synapses. This effect was accompanied by a tendency to 
decrease doubly-innervated synapses (− 25%). Thus, the 
exogenous stimulation with channel activators reveals that 
VGCCs (especially the L channel) have the potential to pro-
mote postnatal axonal disconnection, and this function is 
clearly observed because of the tonic delay in axon loss on 
L and also P/Q block.

In relation with the postsynaptic site, the histogram in 
Fig. 3b shows the percentage of S1–S4 clusters of the control 
mice (PBS) and after 4 applications (between P5-P8) of the 
VGCC blockers and activators. Similarly, as the effect of the 
channel blockers on axonal elimination, we observed here 
that both the L and the P/Q blockades result in a significant 
persistence of the most immature S1 nAChRs clusters along 
with a decrease of the S2 and/or S3 clusters, thus a moderate 
delay in maturation as compared with the values expected 
at P9. On the other hand, the block of the N channel with 
ω-CON does not affect the normal postsynaptic differen-
tiation, as expected due to the lack of effect on axon loss. 
Activation of the L channel with Bay-K8644 does not induce 
any change in the normal percentages of S1–S4 postsynaptic 
clusters suggesting that the optimal coupling of this channel 
cannot be further stimulated. Interestingly, the activation of 
P/Q- and N-type VGCCs with GV-58 results in a significant 
delay in the postsynaptic maturation, causing the persistence 
of S1 clusters and diminution of S2 ones. Because the block 
and activation of the P/Q VGCC do not presumably result 
in the same effect on the nAChRs maturation, we think that 
the GV-58 effect on the postsynaptic site may be attributed 
to the activation of the N channel in this site.

Confocal microscopy examples (Fig. 3c) of the effect of 
NT and Bay-K8644 show differences in the intramuscular 
innervation. The L-type channel blocker delays axon loss, 

and many multiinnervated NMJs persist while the L acti-
vator Bay-K8644, accelerates maturation and increases the 
number of monoinnervated junctions.

To evaluate the involvement of calcium ions inflow in 
synapse elimination, we studied the intracellular calcium 
sequestration in BAPTA-AM exposed LAL muscles. The 
histograms in Fig. 3 show a great delay in both axon loss 
(comparable to the block of L and P/Q channels) and post-
synaptic maturation (persistence of many S1 clusters), 
respectively, showing the relevance of the calcium channels 
and calcium ions entry in NMJ maturation. Table 1a shows 
that there is no significant difference between the effects 
of L and P/Q channel block themselves and between the 
block of any of these channels and the intracellular calcium 
sequestration effect over axonal elimination. However, at the 
postsynaptic site (Table 1b), though no significant difference 
exists between the effects of L and P/Q block themselves, 
the effect of BAPTA-AM is higher than the separate effect 
of Nitrendipine and ω-AGA suggesting the simultaneous 
involvement of both channels. As previously stated, acti-
vation of the P/Q- and N-type VGCCs with GV-58 results 
in the persistence of immature S1 clusters that does not 
differ from the individual block of the L and P/Q VGCC 
(Table 1b). This effect may be attributed to the activation of 
the N channel that therefore seems to play a role in postsyn-
aptic maturation.

Involvement of the Muscle Cell’s Contractile Activity

We next analyzed the postsynaptic involvement in the axon 
loss regulation (Fig. 4). Using the same protocol as for the 
other substances, we incubated with (i) μ-conotoxin GIIIB 
(1.5 μM), (ii) μ-conotoxin GIIIB (1.5 μM) + nitrendipina 
(1 μM), and (iii) μ-conotoxin GIIIB (1.5 μM) + dPPA 
(0.2 μg/ml) or FR236924 (100 nM). These experiments 
would contribute to the discrimination of the effects 
produced by postsynaptic contractile activity. After the 
postsynaptic contraction block with μ-conotoxin GIIIB, it 
can be expected that only the presynaptic normal or only 
neurotransmission restricted events in the synaptic area or 
synaptic activity operate in axon loss. Thus, a postsynap-
tic contraction discrimination with the full synaptic trans-
mission preserved can be observed (difference with the 
postsynaptic block with bungarotoxin or d-tubocurarine). 
These experiments show a delay in the synapse elimina-
tion (39% increase in multiinnervation vs control) similar 
in magnitude to that observed after the block of the TrkB 
pathway. At the postsynaptic level, the contraction block 
with μ-conotoxin GIIIB results also in a delay in nAChR 
cluster maturation with a significant persistence of the 
S1 immature clusters. Thus, a global delay in pre- and 
postsynaptic maturation was produced. Incubation with 
nitrendipine results in more retention of multi-innervation 
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that those induced by μ-conotoxin GIIIB (61.3% increase 
in multi-innervation vs control, P < 0.05). When both 
substances are simultaneously applied, we observed an 
intermediate value (in fact, 52.4% increase in multi-inner-
vation vs control while μ-conotoxin GIIIB only shows the 
aforesaid 38.6%). At the postsynaptic level, we observed 
some interference between these substances because the 
percentage of S1 clusters was less than the observed with 
the individual substances.

When μ-conotoxin GIIIB is applied simultaneously 
with dPPA or FR236924, it can be expected some preven-
tion of the postsynaptic block effect of the μ-conotoxin 
GIIIB because the simultaneous stimulation of the 
strictly presynaptic PKC isoforms (isoforms PKCβI and 
PKCε that when activated promote elimination and if 
inhibited axon loss is delayed). We observed with the use 
of both PKC-stimulatory substances a full prevention of 
the μ-conotoxin GIIIB effect with a very relevant accel-
eration of the axon loss that approaches to the values 
obtained after treatment with the PKC activators only. At 
the postsynaptic level, both PKC-stimulatory substances 
(that no produce any maturation change in the morphol-
ogy of the nAChR cluster when applied individually) 
slightly modify the μ-conotoxin GIIIB effect (a relevant 
delay of maturation) and produce some reduction of the 
most immature S1 clusters though without attaining the 
normal control value.

In summary, the block of the muscle cell’s contractile 
activity results in a delay in axon loss. The simultaneous 
application of the PKC activators dPPA or FR236924 and 
μ-conotoxin GIIIB fully prevents the postsynaptic contrac-
tion block effect on axon loss indicating the reliability of 
a presynaptic modulation of the presynaptic PKC’s inde-
pendent of the postsynaptic activity or in parallel with 
it. The maturation of the postsynaptic receptor clusters 
clearly depends on the muscle cell contractile activity.

Comparison Between VGCC Block and Stimulation 
with PKA and PKC Activity Modulation

In previous studies, we found that during the first postnatal 
days (P5–P9), PKA and PKC have opposed effects in delay-
ing and favoring, respectively, synapse maturation [3, 35, 45, 
49]. Here, we evaluate the strength of the hypothesis of the 
close relation between the effect of these serine/threonine 
kinases and VGCCs for developmental axonal competition 
and loss. We repeated some experiments of PKA and PKC 
stimulation or inhibition of the previously cited paper Gar-
cia et al. [49] and compared them with those obtained after 
VGCC stimulation or inhibition. PKA and PKC modulation 
of VDCCs has been determined, and phosphorylation sites 
of functional relevance are known for the three L-, P/Q-, 
and N-type VDCCs [50–52]. We focused on nerve terminals 
elimination and thus on the percentage of multi-innervated 
junctions after the exposition of the LAL muscle to the dif-
ferent substances.

When considering the involvement of PKA in synapse 
elimination, it seems (Table 2) that the tonic coupling of 
PKA is weak. This is because its full inhibition (H89) just 
causes a small effect on axon loss and RI- or RII-preferential 
blockers (Rp8-Br or Rp-cAMPs that prevent cAMP binding 
to the regulatory subunits blocking their dissociation from 
the catalytic subunits and their action) do not produce any 
significant effect. However, it seems that the potential of 
PKA to influence elimination is strong because activation 
(Sp8Br) induces a great delay in elimination. Contrarily, 
PKC has a relevant tonic involvement manifested on inhibi-
tion (for instance, CaC and Che cause an important reduc-
tion of monoinnervation). A similar effect on axon loss is 
produced by specific block of the presynaptic cPKCβI and 
nPKCε isoforms (with βIV5–3 and εV1–2 peptides, respec-
tively). Interestingly, the PKC involvement on axon loss can 
be moderately increased by general stimulation (Bry-1 or 
PMA) or by the specific cPKCβI and nPKCε stimulation 
(dPPA and FR236924). Thus, activation versus inhibition of 
both PKA and PKC result in opposed effects on axon loss. 
However, the strongest effects are produced with PKA stim-
ulation and PKC inhibition suggesting that axonal retraction 
would occur mainly in a context of low PKA/PKC ratio.

In analyzing the relation between PKA, PKC, and VGCC, 
Table 2 shows that the block of the L-type VGCC with NT 
results in the same delay in axonal loss to the PKA stimula-
tion with Sp8Br and the block of PKC with CaC, Che, or the 
cPKCβI blocker βIV5–3. Interestingly however, the nPKCε 
blocker εV1–2 produces a significantly greater delay in the 
axon loss than the L channel block. The activation of the L 
channel with Bay-K8644 results in the opposed effect that 
PKA stimulation and PKC inhibition whereas intracellular 
calcium sequestration with BAPTA-AM results in the same 
effect than L channel (see Table 1) and PKC block and also 

Fig. 3  In (a) we show the percentage of singly- and polyinnervated 
NMJ after 4 applications over the LAL surface (one application 
every day between P5–P8 (observation at P9) of one of the follow-
ing VGCC inhibitor substances: nitrendipine (NT 1  μM, an L-type 
channel blocker), ω-conotoxin-GVIA (ω-CON 1 μM, N-type channel 
blocker), and ω-agatoxin-IVA (ω-AGA 100  nM, P/Q-type blocker). 
Also, the L activator Bay-K8644 (5 μM), the P/Q- and N-type activa-
tor GV-58 (20  μM), and the intracellular calcium chelator BAPTA-
AM (5  μM). The histogram in (b) shows the percentage of S1-S4 
clusters in the untreated control mice (PBS) and after the 4 applica-
tions of the aforesaid substances. Data were presented as percentages 
of NMJ ± SD. Fisher’s test: * p < 0.05, ** p < 0.01, *** p < 0.005. The 
confocal images in (c) show examples of representative NMJ areas 
with singly, dually, and innervated by three or more axons (the cor-
responding number of asterisks) from YFP muscles. At the left, the 
L-type channel blocker nitrendipine (NT) delays axon loss because 
many multi-innervated NMJs persist. By the contrary, at the right, 
the L activator Bay-K8644 increases the number of monoinnervated 
junctions. The bar indicates 10 μm

◂
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PKA stimulation. However, also in this case, the nPKCε 
blocker εV1–2 produces a significantly greater delay in the 
axon loss than BAPTA-AM. The greater effect produced 

by the nPKCε block as compared with the L channel block 
and intracellular calcium sequestration suggests a calcium-
independent effect contributing to axonal loss. On the other 

Table 1  Comparison of the values of multi-innervation (a) and 
immature postsynaptic clusters (b) between the different VGCC and 
 [Ca2+]i modulators. Data are repeated both, at the right and at the 

back of the table, to allow for multiple comparison. (-): no compari-
son, (coincidence of the same value)
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hand, the block of the P/Q-type channel with ω-AGA results 
in a similar delay in axonal loss as the PKA stimulation or 
PKC inhibition similarly as with the block of the L channel. 
However, the statistical analysis shows, in this case, that 
several comparisons are significantly different because the 
P/Q block effect is smaller than, for instance, PKA activation 
with Sp8Br or nPKCε isoform block with the peptide εV1–2 

or even general PKC block with CaC. The activation of the 
P/Q and N channels with GV-58 results in the opposed effect 
of PKA stimulation and PKC inhibition. The intracellular 
calcium sequestration with BAPTA-AM results in the same 
effect than P/Q channel block (see Table 1), PKA stimula-
tion, and PKC block except for the nPKCε blocker εV1–2 
which also produces a greater delay in the axon loss than 
BAPTA-AM.

In summary, the block of L- or P/Q VGCC or  [Ca2+]i 
sequestration results in a similar delay of axonal loss as that 
of the cPKCβI isoform block or PKA activation. On the 
other hand, data suggests an additional contribution of the 
calcium-independent nPKCε isoform.

Discussion

We found that both L- and P/Q-type VGCCs (but not the 
N-type) are equally involved in postnatal axonal competi-
tion and synapse elimination. Judging by the effect of the 
specific block and activation of the channels, and the effect 
of intracellular  Ca2+ chelators, their normal function can 
favor supernumerary axonal loss by increasing  [Ca2+]i. The 
block of these VGCC or  [Ca2+]i sequestration results in the 
same delay of axonal loss to the cPKCβI isoform block or 
PKA activation. However, nPKCε block causes a greater 
delay, suggesting the involvement in this case of an addi-
tional calcium-independent mechanism. The involvement 
of the VGCC in the postsynaptic maturation seems more 
complex. In addition to the agrin mechanism, activation of 
nAChRs through neuromuscular transmission can be suffi-
cient to induce receptors aggregation with the involvement 
of muscle L-type channels [53]. Also, developing muscle 
cells are intrinsically “pre-patterned” in the center of the 
muscle fibers for motor nerve innervation and NMJ forma-
tion, and a functional skeletal muscle L-type VGCC (and 
also sarcoplasmic reticulum calcium release) was required 
[54–56]. However, some contribution of the N-type VGCC 
cannot be discarded and merits further investigation.

Developmental synapse elimination depends mainly on 
the activity-dependent nerve terminal competition based 
on differences of transmitter release from the competing 
axons [5, 57–59]. Thus, a relation exists between transmit-
ter release and nerve endings retraction or stabilization. 
Several types of VGCC have been identified, but the P/Q 
type  (CaV2.1) is the main channel involved in nerve-evoked 
transmitter release at many synapses including the adult 
NMJ. However, in several physiological (including devel-
opment), pathological, or experimental conditions, other 
channel types (N-type  CaV2.2 and L-type  CaV1.1) can be 
present or unmasked. Calcium channels may be recruited 
to neurotransmission in different functional demands [60]. 
Several α1 and β VGCC subunits were present at the adult 

Fig. 4  Diagrams are graphic representations that collectively show 
the pattern of action of the different agents and combinations of 
agents used. a Multi-innervation values. b Postsynaptic cluster (S1) 
values. The line between the blue and white areas means the ratio 1 
(experimental value/control value) or “no effect.” Orange filled cir-
cles mean that the experimental value is not significantly different 
from the control value (p < 0.05). and filled circles that there is a sig-
nificant difference (p > 0.05). SEMs are eliminated for clarity
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NMJ suggesting some redundancy for the transmitter 
release-mediating function, and the compensatory expres-
sion between them [61–63] suggests the ability to substi-
tute the P/Q channel. For instance, spontaneous release was 
dependent only on P/Q-type VGCC in normal NMJs. How-
ever, when neurotransmitter release was potentiated by the 
presence of the  K+ channel blocker 4-aminopyridine (4-AP) 
[64], under conditions of intense nerve terminal depolariza-
tion or during high-frequency bursts of NMJ activity, L-type 
channels may be recruited to facilitate transmitter release 
[65]. In pathological conditions as the Lambert-Eaton Myas-
thenic syndrome, an autoimmune attack on P/Q channels is 
followed by unmasking of an L-type current [64, 66].

During NMJ synaptogenesis, there is a normal progres-
sive switching from N- to P/Q-type VGCC-mediated trans-
mitter release [67]. Thus, during mammalian NMJ formation 
(and regeneration) evoked transmitter release was strongly 
reduced by a P/Q-type VGCC blocker. It seems that the P/Q-
type VGCCs were more efficiently coupled to transmitter 
release than were N-type at the neonatal neuromuscular 

junction [68]. Interestingly enough various L-type blockers, 
both dihydropyridine and nondihydropyridine antagonists, 
increased evoked (but not spontaneous) release in a dose-
dependent manner at newly formed NMJs. This presynaptic 
potentiation disappeared as NMJs matured. Thus, L-type 
VGCC plays also a modulatory role in evoked transmitter 
release by activating a mechanism linked to PTX-sensitive 
G-proteins that reduce transmitter release during synapse 
maturation [69].

However, during neuromuscular synaptogenesis, there are 
several nerve terminals in competition showing, at a given 
time, different levels of maturation or involution, and the 
specific involvement of each VGCC in different endings is 
not well enough known. In relation with the aforesaid role of 
the L channel in reducing transmitter release, we observed 
previously that the weak nerve terminal in dually innervated 
NMJs (the ending that evokes the small synaptic potentials 
at postnatal week one) was potentiated by partially reduc-
ing calcium entry by any VGCC [P/Q-, N- (in this case only 
transitorily during the first minutes of the block), or L-type 

Table 2  Comparison between VGCC and  [Ca2+]i modulation with 
PKA and PKC activity modulation. Comparison of the values of 
multi-innervation (percentage) observed after VGCC block and acti-

vation with the values after the block and activation of PKC and 
PKA. (-): no comparison (coincidence of the same value)

4057



1 3

Molecular Neurobiology  (2022) 59:4044–4064

VGCC-specific block] or 500 μM magnesium ions in the 
bath,  M1-type selective mAChR block with pirenzepine, or 
PKC block with CaC or Che [25, 27, 70–72]. This effect 
does not occur in the strongest nerve terminal and neither in 
the only one ending in most mature junctions some time later 
at 2-week-old animals. Moreover, reducing calcium entry or 
blocking PKC or mAChRs results in unmasking functionally 
silent nerve endings that transitorily now recover transmitter 
release [27, 72]. The PKA-linked  M2 subtype is also present 
in the weakest endings, but it is related only to P/Q and 
N channels to potentiate release. In fact, L channel is cou-
pled to  M1 mAChRs only in the weak and strong endings in 
dual synapses but not in the more mature solitary endings. 
In the strongest and mature endings, the coupling of  M1 to 
PKC activity results in ACh release potentiation using  Ca2+ 
inflow only through the P/Q-channel [25, 72–74]. There-
fore, functional L-type channels transitorily present in the 
weak endings, intervene in differential transmitter release, 
and may contribute to the competitive interactions between 
axonal endings. It can be speculated that the high-calcium 
entry through the several operative channels present in some 
nerve endings during development (including the transitory 
L channel) results in the final loss of some nerve terminals. 
Our present results strongly support this interpretation. 
Thus, L and P/Q channel-mediated increased calcium inflow 
contributes to both transmitter release reduction from certain 
axons and the final nerve terminal loss and this coincidence 
argues in favor of a unitary mechanism.

It’s known that PQ-type channels are the primary chan-
nels responsible for neurotransmission at the NMJ. Our 
results showed similar levels of innervation when NT and 
W-Aga were used. Even if both channels contributed equally 
to presynaptic calcium signals at this stage of development, 
blocking either channel would be unlikely to produce equal 
effects on total calcium signal blocking with BAPTA. How-
ever, we favor the hypothesis that only a part of the calcium 
inflow is devoted to contribute to the axonal retraction and 
this aliquot, probably acting through a saturable mechanism, 
can be indistinctly carried by the operative VGCC present 
in the endings in process of elimination. Because of this 
consideration, we think that the effects of L- and PQ-type 
channel block (or activation) may not be additive.

However, there are some complementary interpretations 
from our results. The drug modulation of the L-type chan-
nel’s activity we performed could affect the function of 
the muscle CaV1.1 channel. This L-type  Ca2+ channel in 
skeletal muscle, functions primarily as a voltage sensor 
that couples depolarization of the transverse tubules to 
ryanodine receptor opening and release of  Ca2+ from the 
sarcoplasmic reticulum promoting contraction. Dihydro-
pyridine actions on the muscle CaV1.1 could contribute to 
synapse elimination by affecting both directly a change in 
the postsynaptic activity and postsynaptic specializations 

and the nerve terminals via retrograde signals. This possi-
bility can be not disconsidered and merits further analysis 
because, in fact, modulation of the BDNF-TrkB retrograde 
signaling affects axonal elimination [5, 75]. However, 
the changes in the rate of axonal elimination can be pro-
duced by acting directly on presynaptic molecular targets 
as the P/Q VGCC and also presynaptic muscarinic and 
purinergic autoreceptors. It is known since many years 
ago that changes in developmental synapse elimination 
are produced after blocking or reducing muscle activity. 
In almost all cases, reducing activity results in an extended 
period of synapse elimination [76]. Classical experiments 
were made by Thompson [77], who paralyzed the soleus 
muscle by TTX and observed that the synaptic elimina-
tion was prevented. Brown et al. [78] and Duxson [79] 
using α-bungarotoxin to inactivate the muscle found an 
increased number of synaptic terminals on muscle fibers 
in newborn rat muscle. Later, Ding et al. [80] described 
the effects of curarization in chicken embryos where all 
the normal motoneuronal cell death was essentially pre-
vented. Also, Callaway and Van Essen [81] studied the 
treatment by α-bungarotoxin from postnatal day 6 at 11 in 
rabbit soleus muscle and observed that the elimination of 
polyneuronal innervation was significantly reduced.

A postsynaptic discrimination with the full synaptic 
transmission preserved can be observed after the contrac-
tion block with μ-conotoxin GIIIB. Here, the results show 
that, as expected, the block of the muscle cell’s contrac-
tile activity results in a delay of synapse maturation (both 
supernumerary axon loss rate and nAChRs maturation). We 
think that a part of this effect at the presynaptic site may 
be mediated by a retrograde influence (via BDNF-TrkB) on 
the presynaptic CaV1.3, which, when directly inhibited by 
nitrendipine results, however, in a greater effect in delay-
ing axon loss. Experiments in the adult show an increase 
in the mBDNF production when synaptic activity results in 
muscle cell contraction [82]. A contrary effect to that of the 
μ-conotoxin GIIIB is produced by presynaptic PKC isoforms 
which are directly activated by dPPA or FR236924 because 
of strongly accelerated axon loss. The simultaneous applica-
tion of these substances and μ-conotoxin GIIIB completely 
prevents the postsynaptic contraction block effect on axon 
loss indicating the reliability of the presynaptic modulation 
of the PKC’s by muscarinic, purinergic, or other synaptic 
mechanisms to affect synapse elimination independent of 
the postsynaptic contractile activity or in parallel with it. 
The maturation of the postsynaptic receptor clusters clearly 
depends on the muscle cell contractile activity. However, 
some presynaptic-mediated influence in the postsynaptic 
maturation is revealed because PKC stimulation in the nerve 
terminal reduces significatively (though not completely) the 
effect of the μ-conotoxin GIIIB on the postsynaptic cluster 
maturation.
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What could be the mechanism activated by the high 
 [Ca2+]i? It is plausible that a calcium-activated neutral pro-
tease (CANP) present in nerve endings could contribute 
[83]. A greater increase of  Ca2+ concentration in smaller 
terminals would be expected, because of their surface-to-
volume ratio and the collegiate activity of several VGCC. 
Interestingly, it seems that, in some cells, L channels cou-
ple to increase spontaneous and evoked quantal transmitter 
release when phosphorylated by PKC and PKA and pro-
vided that serine/threonine protein phosphatases are blocked 
(okadaic acid) and low intracellular calcium (BAPTA-AM). 
When only L-type channels were available, quantal content 
increased when  [Ca2+]o increased from 0.5 to 1 mM, but 
decreased significantly at 2 mM [60]. This may be due to 
the activation of the phosphatases by calcium leading to the 
inactivation of relevant molecular targets involved in neu-
rotransmission. It is known that cross talk between protein 
kinases and phosphatases regulates synaptic strength in 
the mammalian brain [84]. Changes in the synaptic activ-
ity of neurons promoted the redistribution of protein phos-
phatase 1 (PP1) associated with the actin-rich cytoskeletal 
structures near the plasmalemma [85] to allow effective 
dephosphorylation of PP1 substrates. Moreover, synaptic 
elimination seems to be driven by a reorganization of the 
F-actin cytoskeleton [86] and disassembly of the microtu-
bules [87]. Thus, it may be a specific coupling of the L-type 
VGCC in the weakest nerve terminals that contribute to a 
high increase in calcium entry (mediated in fact by the three 
considered channels that are operative at this time) resulting 
in the downregulation of the transmitter release in these end-
ings and also—with regard to L and P/Q VGCC—promoting 
terminal destabilization by protein phosphatases activation.

Adenosine receptors (AR:  A1 and  A2A), presynaptic mus-
carinic ACh autoreceptors (mAChR:  M1,  M2, and  M4 types), 
and the tropomyosin-related kinase B neurotrophin receptor 
(TrkB), among other receptors, support competitive sign-
aling between motor axons. In previous studies, we inves-
tigated the synergistic and antagonistic relations between 
these receptors affecting synapse elimination [5, 88, 89]. The 
receptors  M1,  A1, and TrkB operate mainly through PKC 
whereas  M2,  M4, and  A2A are coupled to PKA [15–17, 19, 
20, 90–92]. At P9, all these receptors are tonically coupled 
to promote axonal removal through PKC stimulation or PKA 
inhibition [4, 14, 21]. A change in the PKA/PKC activity 
ratio is the main parameter that seems to change after all the 
direct and crossed inhibitions of the mAChR, AR, and TrkB 
that had been checked. We also reported that multi-innerva-
tion could be stabilized by delaying axonal elimination when 
PKA-I and II were activated (see Table 2) in P5–P9 neo-
natal mice. Contrarily, PKC activity, through cPKCβI and 
nPKCε isoforms action, promotes axonal loss [24]. Moreo-
ver, a similar level of PKC potentiation and PKA inhibition 
is required during developmental synaptic elimination [49] 

and no significant differences exist between the effects of 
PKA activators and PKC inhibitors or PKA inhibitors and 
PKC activators on the developmental axon loss rate, which 
indicates the complementarity of the kinases [49]. Changes 
in the phosphorylation of PKA and PKC targets involved in 
transmitter release and nerve terminal stability could realize 
the final molecular mechanism of synapse loss. PKC phos-
phorylation and activation of VGCC would allow the high 
calcium inflow that seems necessary for axon loss. Coinci-
dentally, calcium inflow would activate classic PKCs such as 
cPKCβI to reinforce their role in axonal elimination.

Here, we performed a detailed statistical analysis of the 
comparison between the serine kinases results with those 
of the VGCC stimulation or inhibition. The results show 
the same tendency to delay maturation with the block of 
L and P/Q channels than with the block of PKC (cPKCβI 
and nPKCε isoforms) and activation of PKA. The greater 
effect produced by the nPKCε block as compared with the L 
and P/Q channel block and intracellular calcium sequestra-
tion suggests the possible existence of a calcium or VGCC-
independent effect contributing to axonal loss. These results 
encourage new experiments to explore the mechanism that 
links synaptic activity and membrane receptor signaling, the 
downstream serine kinases, and calcium channels with syn-
apse elimination. Thus, the hypothesis that calcium channels 
activity, linked to PKC and PKA activity, is a key component 
of the synapse elimination events is strengthened and merits 
further study.

Conclusions

We investigated the involvement of the P/Q-, N-, and L-sub-
types of the VGCC in synapse elimination during neuro-
muscular junction development. All three proteins increase 
between P5 and P7. Observation at P30 reveals that P/Q 
channel levels continue increasing, α1D-L channel protein 
stabilizes at the P7 value, and N channel protein falls back 
to the low value observed at P5. Thus, a relevant differen-
tial transition affects the channel proteins around the crucial 
period (P5–P9) for synapse elimination.

Both L and P/Q-type, but not the N-type channel, toni-
cally promotes the postnatal synapse maturation because 
their block at the half-time period of axonal elimination 
strongly prolongs both multi-innervation and delays post-
synaptic nAChR cluster maturation. The exogenous stimula-
tion with channel activators results in the contrary effect on 
axon loss, though some involvement of the N channel at the 
postsynaptic site may be unmasked.

There is no significant difference between the effects of L 
channel block, P/Q channel block, and intracellular calcium 
sequestration in favoring a delay in axonal elimination. How-
ever, at the postsynaptic site, though no significant difference 
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exists between the effects of L and P/Q block themselves, 
the effect of BAPTA-AM is higher than the separate effect 
of nitrendipine and ω-AGA suggesting the simultaneous 
involvement of both channels.

We confirmed previous results showing that PKA activ-
ity seems to stabilize multi-inervation. Contrarily, PKC 
activity promotes axonal loss (through cPKCβI and nPKCε 
isoform action). We evaluated the hypothesis of the close 
link between the serine/threonine kinases PKA and PKC 
and VGCC for developmental synapse elimination and found 
that the result after the block of the L-channel (and also 
after intracellular calcium sequestration) is not different 
from the block of cPKCβI and from stimulation of PKA 

with an important delay in maturation in all cases. Inter-
estingly, the block of the nPKCε results in an even greater 
delay in the axon loss than the L or P/Q channels block or 
calcium sequestration, suggesting a PKC-mediated VGCC-
independent component contributing to axonal loss. Similar 
to the block of the L channel, the block of the P/Q-type chan-
nel results in a delay in axonal loss similar to that observed 
after cPKCβI inhibition; however, the effect of P/Q block 
is smaller than PKA activation (in addition to the nPKCε 
block). Thus, activation of PKA produces a significantly 
greater effect than P/Q block but not than L block.

Interestingly, the block of the muscle cell’s contractile 
activity with μ-conotoxin GIIIB also results in a delay in 

Fig. 5  Graphic representation of the results. The activity-dependent 
signaling between the nerve terminals that are in competition through 
several metabotropic receptors can result in the modulation of the 
downstream effector kinases, specifically cPKCβI, nPKCε, and PKA. 
Changes in kinases activity can allow the coordinate phosphorylation 
of the L-type CaV1.3 and P/Q-type VGCC. The high calcium entry 

through these operative channels present in immature nerve endings 
can result in their final loss. Also, muscle CaV1.1 and contractile 
activity can contribute to the synapse elimination. A component of 
this mechanism may be mediated by a retrograde influence from the 
postsynaptic site, via the BDNF-TrkB pathway, on the presynaptic 
calcium channels
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axon loss, and thus, a retrograde influence from the post-
synaptic site may contribute to the synapse elimination. In 
fact, the drug modulation of the L-type channel’s activity we 
performed could affect the function of the muscle CaV1.1 
channel and contribute also to the observed changes. The 
simultaneous application of the PKC activators dPPA or 
FR236924 and μ-conotoxin GIIIB fully prevents the post-
synaptic contraction block effect on axon loss indicating the 
reliability of a direct presynaptic modulation of the presynap-
tic PKC’s independent of the postsynaptic activity or in par-
allel with it. The fact of the observed modulation of axonal 
loss by acting directly in presynaptic targets suggests that the 
involvement of the postsynaptic retrograde influence would 
be not necessary. Nevertheless, there exists the possibility 
that the above-cited presynaptic targets themselves may be 
modulated in part by a retrograde control, and this argues in 
favor of a complex regulation through pre- and postsynaptic 
activity of the mediators of the synapse elimination.

In summary, a relevant actor in developmental synapse elim-
ination is  [Ca2+]i elevation in some nerve terminals through L- 
and P/Q-type VGCC (Fig. 5). The high calcium entry through 
these operative channels that are present in immature nerve 
endings (including the transitory L channel) results in their final 
loss. Thus, a  [Ca2+]i increase contributes to both transmitter 
release reduction in certain axons and nerve terminal loss, 
and this coincidence argues in favor of a unitary mechanism. 
Channel activation would be modulated by cPKCβI and nPKCε 
activity and also PKA inhibition. The greater effect of nPKCε 
block on delaying axons elimination suggests the contribution 
of a calcium-independent mechanism in the normal maturation.
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