Skip to main content

Advertisement

Log in

Targeting iNOS Alleviates Early Brain Injury After Experimental Subarachnoid Hemorrhage via Promoting Ferroptosis of M1 Microglia and Reducing Neuroinflammation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Numerous studies have demonstrated the role of neuroinflammation in mediating acute pathophysiological events of early brain injury after subarachnoid hemorrhage (SAH). However, it is not clear how to target this inflammatory cascade after SAH. M1 activation of microglia is an important pathological mechanism driving neuroinflammation in SAH, which is considered aggressive, leading to cytotoxicity and robust inflammation related to the release of proinflammatory cytokines and chemokines after SAH. Thus, reducing the number of M1 microglia represents a potential target for therapies to improve outcomes after SAH. Previous studies have found that inducible nitric oxide synthase (iNOS/NO•) plays an essential role in promoting the survival of M1 microglia by blocking ferroptosis. Ferroptosis is a new type of iron-dependent cellular procedural death associated with pathological cell death related to mammalian degenerative diseases, cerebral hemorrhage, and traumatic brain injury. Here, we investigated the effect of L-NIL, an inhibitor of iNOS, on M1 microglia, neuroinflammation, neuronal cell death, brain edema, and neurological function in an experimental SAH model in vivo and in vitro. We found that L-NIL reduced the number of M1 microglia and alleviated neuroinflammation following SAH. Notably, treatment with L-NIL relieves brain edema and neuronal injury and improves outcomes of neurological function after SAH in rats. Mechanistically, we found that L-NIL inhibited the expression of iNOS and promoted ferroptosis of M1 microglia by increasing the expression of ferroptosis-related proteins and lipid peroxidation in an in vitro model of SAH, which was reversed by a ferroptosis inhibitor, liproxstatin-1. In addition, inhibiting iNOS had no significant effect on ferroptosis of neurons after oxyhemoglobin stimulation in vitro. Thus, our research demonstrated that inhibition of iNOS might represent a potential therapeutic strategy to improve outcomes after SAH by promoting ferroptosis of M1 microglia and reducing neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article and its supplementary information files.

Abbreviations

SAH:

Subarachnoid hemorrhage

EBI:

Early brain injury

iNOS:

Inducible nitric oxide synthase

Lip-1:

Liproxstatin-1

qRT–PCR:

Quantificational real-time polymerase chain reaction

FJB:

Fluoro-Jade B

BBB:

Blood–brain barrier

CNS:

Central nervous system

ROS:

Reactive oxygen species

L-NIL:

L-N (6)-iminoethyl-lysine

RNS:

Reactive nitrogen species

GPX4:

Glutathione peroxidase 4

OxyHb:

Oxyhemoglobin

CSF:

Cerebrospinal fluid

Lipid-ROS:

Lipid peroxidation-reactive oxygen species

DAPI:

4’, 6-Diamidino-2-phenylindol

H2O2 :

Hydrogen peroxide

DAB:

3,3-Diaminobenzidine

CCK8:

Cell Counting Kit-8

TMB:

3, 3, 5,5-Tetramethylbenzidine

MWM:

Morris Water Maze

STEAP3:

Six-transmembrane epithelial antigen of the prostate 3

DMT1:

Divalent metal transporter 1

Fth:

Ferritin heavy chain

Ftl:

Ferritin light chain

GSH:

Glutathione

Cys:

Cysteine

Cox2:

Cyclooxygenase 2

TfR1:

Transferrin receptor 1

Tf:

Transferrin

References

  1. Macdonald RL (2014) Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol 10:44–58

    Article  CAS  PubMed  Google Scholar 

  2. Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A et al (2011) Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). The Lancet Neurology 10:618–625

    Article  CAS  PubMed  Google Scholar 

  3. Sehba FA, Hou J, Pluta RM, Zhang JH (2012) The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 97:14–37

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lucke-Wold BP, Logsdon AF, Manoranjan B, Turner RC, McConnell E, Vates GE et al (2016) Aneurysmal subarachnoid hemorrhage and neuroinflammation: a comprehensive review. Int J Mol Sci 17:497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Doll DN, Barr TL, Simpkins JW (2014) Cytokines: their role in stroke and potential use as biomarkers and therapeutic targets. Aging Dis 5:294–306

    PubMed  PubMed Central  Google Scholar 

  6. Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perego C, Fumagalli S, De Simoni MG (2011) Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation 8:174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K et al (2013) Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis 4:e525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Taylor RA Sansing LH (2013) Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin Dev Immunol 2013: 746068.

  10. Ponomarev ED, Maresz K, Tan Y, Dittel BN (2007) CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci 27:10714–10721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang M, Wan Y, Mao L, He QW, Xia YP, Li M et al (2017) Inhibiting the Migration of M1 Microglia at Hyperacute Period Could Improve Outcome of tMCAO Rats. CNS Neurosci Ther 23:222–232

    Article  CAS  PubMed  Google Scholar 

  12. Ma Y, Wang J, Wang Y, Yang GY (2017) The biphasic function of microglia in ischemic stroke. Prog Neurobiol 157:247–272

    Article  CAS  PubMed  Google Scholar 

  13. Xu Y, Cui K, Li J, Tang X, Lin J, Lu X et al (2020) Melatonin attenuates choroidal neovascularization by regulating macrophage/microglia polarization via inhibition of RhoA/ROCK signaling pathway. J Pineal Res 69:e12660

    CAS  PubMed  Google Scholar 

  14. Kapralov AA, Yang Q, Dar HH, Tyurina YY, Anthonymuthu TS, Kim R et al (2020) Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol 16:278–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bayir H, Anthonymuthu TS, Tyurina YY, Patel SJ, Amoscato AA, Lamade AM et al (2020) Achieving life through death: redox biology of lipid peroxidation in ferroptosis. Cell Chem Biol 27:387–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cui R, Liu S, Wang C, Liu T, Ren J, Jia Y et al (2020) Methane-rich saline alleviates CA/CPR brain injury by inhibiting oxidative stress, microglial activation-induced inflammatory responses, and ER stress-mediated apoptosis. Oxid Med Cell Longev 2020:8829328

    PubMed  PubMed Central  Google Scholar 

  17. Tewari D, Sah AN, Bawari S, Nabavi SF, Dehpour AR, Shirooie S et al (2020) Role of nitric oxide in neurodegeneration: function, regulation, and inhibition. Curr Neuropharmacol 19:114–126

    Article  Google Scholar 

  18. Luo Y, Yin X, Shi S, Ren X, Zhang H, Wang Z et al (2019) Non-destructive 3D microtomography of cerebral angioarchitecture changes following ischemic stroke in rats using synchrotron radiation. Front Neuroanat 13:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang JY, Wang Y, Milton MN, Kraus L, Breau AP, Paulson SK (2004) Disposition and pharmacokinetics of L-N6-(1-iminoethyl)lysine-5-tetrazole-amide, a selective iNOS inhibitor, in rats. J Pharm Sci 93:1229–1240

    Article  CAS  PubMed  Google Scholar 

  20. Venkataramana S, Lourenssen S, Miller KG, Blennerhassett MG (2015) Early inflammatory damage to intestinal neurons occurs via inducible nitric oxide synthase. Neurobiol Dis 75:40–52

    Article  CAS  PubMed  Google Scholar 

  21. Cao Y, Li Y, He C, Yan F, Li JR, Xu HZ et al (2021) Selective ferroptosis inhibitor Liproxstatin-1 attenuates neurological deficits and neuroinflammation after subarachnoid hemorrhage. Neurosci Bull 37:535–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garcia JH Wagner S Liu KF Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26: 627–634; discussion 635.

  23. Alfieri JA, Pino NS, Igaz LM (2014) Reversible behavioral phenotypes in a conditional mouse model of TDP-43 proteinopathies. J Neurosci 34:15244–15259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luo CL, Li BX, Li QQ, Chen XP, Sun YX, Bao HJ et al (2011) Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice. Neuroscience 184:54–63

    Article  CAS  PubMed  Google Scholar 

  25. Liu R, Cao S, Hua Y, Keep RF, Huang Y, Xi G (2017) CD163 Expression in Neurons After Experimental Intracerebral Hemorrhage. Stroke 48:1369–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang L, Guo K, Yin S, Peng J, Pang J, Ma N et al (2020) RNA-Seq reveals underlying transcriptomic mechanisms of bone marrow-derived mesenchymal stem cells in the regulation of microglia-mediated neuroinflammation after subarachnoid hemorrhage. Stem Cells Dev 29:562–573

    Article  CAS  PubMed  Google Scholar 

  27. Rui T, Wang H, Li Q, Cheng Y, Gao Y, Fang X et al (2021) Deletion of ferritin H in neurons counteracts the protective effect of melatonin against traumatic brain injury-induced ferroptosis. J Pineal Res 70:e12704

    Article  CAS  PubMed  Google Scholar 

  28. Ma Z, Zhang Z, Bai F, Jiang T, Yan C, Wang Q (2019) Electroacupuncture pretreatment alleviates cerebral ischemic injury through alpha7 nicotinic acetylcholine receptor-mediated phenotypic conversion of microglia. Front Cell Neurosci 13:537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaneki M, Fukushima Y, Shinozaki S, Fukaya M, Habiro M, Shimizu N et al (2013) iNOS inhibitor, L-NIL, reverses burn-induced glycogen synthase kinase-3beta activation in skeletal muscle of rats. Metabolism 62:341–346

    Article  CAS  PubMed  Google Scholar 

  30. Chen C Chen J Wang Y Liu Z Wu Y (2020) Ferroptosis drives photoreceptor degeneration in mice with defects in all-trans-retinal clearance. J Biol Chem.

  31. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22:266–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bai T, Li M, Liu Y, Qiao Z, Wang Z (2020) Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med 160:92–102

    Article  CAS  PubMed  Google Scholar 

  33. Drummen GP, Gadella BM, Post JA, Brouwers JF (2004) Mass spectrometric characterization of the oxidation of the fluorescent lipid peroxidation reporter molecule C11-BODIPY(581/591). Free Radic Biol Med 36:1635–1644

    Article  CAS  PubMed  Google Scholar 

  34. Zheng VZ, Wong GKC (2017) Neuroinflammation responses after subarachnoid hemorrhage: A review. J Clin Neurosci 42:7–11

    Article  PubMed  Google Scholar 

  35. Geraghty JR, Davis JL, Testai FD (2019) Neuroinflammation and Microvascular Dysfunction After Experimental Subarachnoid Hemorrhage: Emerging Components of Early Brain Injury Related to Outcome. Neurocrit Care 31:373–389

    Article  PubMed  PubMed Central  Google Scholar 

  36. Heinz R, Brandenburg S, Nieminen-Kelha M, Kremenetskaia I, Boehm-Sturm P, Vajkoczy P et al (2021) Microglia as target for anti-inflammatory approaches to prevent secondary brain injury after subarachnoid hemorrhage (SAH). J Neuroinflammation 18:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gregersen R, Lambertsen K, Finsen B (2000) Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20:53–65

    Article  CAS  PubMed  Google Scholar 

  38. Tse JKY (2017) Gut Microbiota, Nitric Oxide, and Microglia as Prerequisites for Neurodegenerative Disorders. ACS Chem Neurosci 8:1438–1447

    Article  CAS  PubMed  Google Scholar 

  39. Ghasemi M, Fatemi A (2014) Pathologic role of glial nitric oxide in adult and pediatric neuroinflammatory diseases. Neurosci Biobehav Rev 45:168–182

    Article  CAS  PubMed  Google Scholar 

  40. del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X, Feuerstein GZ (2000) Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol 10:95–112

    Article  PubMed  Google Scholar 

  41. Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME (1997) Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 17:9157–9164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Crow JP, Beckman JS (1995) Reactions between Nitric Oxide. Superoxide, and Peroxynitrite: Footprints of Peroxynitrite in Vivo 34:17–43

    CAS  Google Scholar 

  43. Shan Y, Yang G, Huang H, Zhou Y, Hu X, Lu Q et al (2020) Ubiquitin-Like Modifier Activating Enzyme 1 as a Novel Diagnostic and Prognostic Indicator That Correlates With Ferroptosis and the Malignant Phenotypes of Liver Cancer Cells. Front Oncol 10:592413

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K et al (2018) Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell 172: 409–422 e421

  45. Bridges RJ, Natale NR, Patel SA (2012) System xc(-) cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol 165:20–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Nature Science Foundation of China (Nos. 81571121 and 81971163).

Author information

Authors and Affiliations

Authors

Contributions

W.Q. and Y.C. contributed equally to this paper. J.Z. and C.L. comprehended the study, provided critical suggestions, contributed to manuscript preparation, oversaw the research program, and wrote the main manuscript.

W.Q., Y.C., and T.R. performed the Western blot, qRT–PCR, and immunostaining experiments and analyzed the data.

W.Q., Y.C. and Y.W. performed the lipid peroxidation (lipid ROS) assay and malondialdehyde (MDA) content measurement and analyzed the data.

W.Q., Y.C., T.R., and W.P. performed the Nissl staining, FJB staining, the behavioral experiment, and the brain edema test and analyzed the data.

All the authors listed in the manuscript have agreed upon and reviewed the manuscript and provided feedback.

Corresponding authors

Correspondence to Chengliang Luo or Jian Zhang.

Ethics declarations

Ethics Approval

Our study was approved by the Ethical Committee of Soochow University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, W., Cheng, Y., Peng, W. et al. Targeting iNOS Alleviates Early Brain Injury After Experimental Subarachnoid Hemorrhage via Promoting Ferroptosis of M1 Microglia and Reducing Neuroinflammation. Mol Neurobiol 59, 3124–3139 (2022). https://doi.org/10.1007/s12035-022-02788-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02788-5

Keywords

Navigation