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Abstract
The relationship between systemic immunity and neuroinflammation is widely recognised. Infiltration of peripheral immune 
cells to the CNS during certain chronic inflammatory states contributes significantly to neuropathology. Obesity and its 
co-morbidities are primary risk factors for neuroinflammatory and neurodegenerative conditions, including Alzheimer’s 
disease (AD). Dietary fats are among the most proinflammatory components of the obesogenic diet and play a prominent 
role in the low-grade systemic inflammation associated with the obese state. Saturated fatty acid (SFA) is largely impli-
cated in the negative consequences of obesity, while the health benefits of monounsaturated fatty acid (MUFA) are widely 
acknowledged. The current study sought to explore whether SFA and MUFA differently modulate inflammatory responses 
in the brain, compared with peripheral immune cells. Moreover, we assessed the neuroinflammatory impact of high-fat-
induced obesity and hypothesised that a MUFA-rich diet might mitigate inflammation despite obesogenic conditions. Toll-
like receptor (TLR)2 mediates the inflammation associated with both obesity and AD. Using the TLR2 agonist lipoteichoic 
acid (LTA), we report that pre-exposure to either palmitic acid (PA) or oleic acid (OA) attenuated cytokine secretion from 
microglia, but heightened sensitivity to nitric oxide (NO) production. The reduction in cytokine secretion was mirrored 
in LTA-stimulated macrophages following exposure to PA only, while effects on NO were restricted to OA, highlighting 
important cell-specific differences. An obesogenic diet over 12 weeks did not induce prominent inflammatory changes in 
either cortex or hippocampus, irrespective of fat composition. However, we reveal a clear disparity in the effects of MUFA 
under obesogenic and non-obesogenic conditions.
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Introduction

Neuroinflammation is the specific response that occurs 
within the central nervous system (CNS) in response to 
damage or infection. The degree of neuroinflammation is 
influenced by a variety of factors, including the duration and 
the source of the insult [1]. Acute inflammation comprises 
the immediate and early response against an infectious agent 
and is the first line of defence which aims to remove the 

insult and repair the damage. In contrast, chronic inflamma-
tion results from a more persistent inflammatory stimulus 
and is integral to the pathogenesis of CNS disease [2]. Neu-
roinflammation underlies various CNS conditions, includ-
ing those of psychiatric nature such as anxiety [3, 4] and 
depression [5, 6]. In addition, it is central to the pathology of 
neurodegenerative diseases such as Parkinson’s disease (PD) 
[7, 8] and Alzheimer’s disease (AD) [9]. This is generally 
understood to result from dysregulation of microglial acti-
vation, favouring a chronic production of proinflammatory 
mediators that promote pathological changes and neurobe-
havioural complications such as depression and cognitive 
deficits [10]. Moreover, chronically activated cells can dis-
rupt the integrity of the blood–brain barrier (BBB), lead-
ing to infiltration of systemic immune cells and mediators, 
which further exacerbates the proinflammatory environment 
in the CNS [11].
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The impact of inflammatory insults on neuronal and cog-
nitive dysfunction has been widely reported, and we among 
others have illustrated the key role of microglial Toll-like 
receptors (TLRs) in mediating these effects [12–17]. In 
recent years, TLR2 has been implicated as a critical regula-
tor of inflammation in the brain [18, 19]. While primarily 
a sensor for bacterial-derived pathogens, its role in disease 
pathogenesis is largely due to its ability to recognise protein 
aggregates including β-amyloid (Aβ) and α-synuclein [20, 
21] along with other endogenous damage signals. Research 
including our own has highlighted the negative impact of 
TLR2 stimulation on microglial activation and the integ-
rity of neuronal activity [13, 22–24]. In aged and AD-like 
experimental models, the degree of neuroinflammation and 
neuronal impairment is coupled to BBB disruption and infil-
tration of systemic immune cells [25, 26]. In particular, the 
contribution of macrophages to promoting the microglial 
activation and neuronal dysfunction associated with these 
conditions has been well explored [27–29].

Obesity is widely recognised among the world’s most 
significant population and healthcare challenges, with inci-
dences expected to rise to 14.2% of the global population by 
the year 2030 [30]. It is characterised by the excessive accu-
mulation of adipose tissue, a collection of adipocytes and 
associated stromal vascular fraction cells that secrete adi-
pokines including proinflammatory cytokines, chemokines 
and hormones [31, 32]. Obesity is also associated with 
increased recruitment of proinflammatory M1 macrophages 
into adipose tissue further contributing to the proinflamma-
tory milieu [33]. Together this facilitates the low-grade sys-
temic inflammation which is characteristic of the obesogenic 
state [34]. Along with common comorbidities [35–37], obe-
sity is associated with brain atrophy and cognitive decline 
[38–41] and increases risk of developing dementia and AD 
[42]. Moreover, higher levels of Aβ have been identified in 
obese individuals [43, 44], and diet-induced obesity mark-
edly increases Aβ burden in animal models of AD [45, 46].

The mechanisms through which obesity influences cogni-
tive ability are largely unknown; however, it is likely that the 
systemic inflammatory environment precipitates brain dys-
function [42]. Indeed, lipopolysaccharide (LPS) challenge in 
rats with diet-induced obesity (DIO) resulted in an enhanced 
and prolonged fever in addition to an increase in circulating 
TNF-α and IL6 [47]. Similar inflammatory changes have been 
reported in hippocampus of leptin receptor-deficient animals, 
accompanied by cognitive and behavioural deficits [48]. Integ-
rity of the BBB is impaired by obesity [49–52], offering a 
route for infiltration of inflammatory cells and mediators to the 
CNS, similar to that reported with age and AD [26, 53, 54]. 
Little, however, is currently understood about how nutritional 
composition within an obesogenic diet, independent of weight 
gain, may impact on neuroinflammation. Over-consumption of 
saturated fatty acids (SFAs) is widely associated with obesity 

[55, 56]. Within the CNS, a fat-rich diet is known to induce 
inflammation [57], facilitate infiltration of immune cells [51, 
52] and accelerate the cognitive decline associated with AD 
[58]. Conversely, unsaturated fats are reported for their anti-
inflammatory properties [56] and are proven to convey cog-
nitive and neuroprotective benefits [59–61]. Consumption of 
the monounsaturated fatty acid (MUFA)-enriched Mediterra-
nean diet is associated with reduced risk of cognitive impair-
ment and reduced dysfunction in experimental models of AD 
[62, 63], while postprandial lipoproteins isolated following a 
MUFA-rich meal bias microglia towards adoption of an anti-
inflammatory phenotype [64]. Similarly, obesity-induced 
proinflammatory changes in adipose tissue are reduced by 
replacement of SFA for MUFA, despite equivalent weight gain 
[56]. Little, however, is understood about the potential impact 
of replacing dietary SFA for MUFA on obesity-associated 
neuroinflammation.

The majority of evidence implicates TLRs as the primary 
interface between free fatty acids and NF-κB-dependent pro-
duction of proinflammatory mediators in macrophages and 
adipocytes [65–67]. Indeed, the SFA lauric acid has been 
reported to promote both TLR4- and TLR2-mediated NF-κB 
and cyclooxygenase (COX)2 activation in macrophages, 
whereas this is mitigated in the presence of PUFA [68, 69]. 
As free fatty acids can access the brain, it is likely that they 
may act similarly in the resident cells to initiate an inflam-
matory response. Palmitic acid (PA), the most common SFA, 
has been shown to modulate the microglial response to LPS 
[70, 71]. In light of the prominent role of TLR2 in mediating 
neuroinflammation, the current study set out to determine the 
impact of PA priming on the responsiveness of BV2 micro-
glia to the TLR2 agonist lipoteichoic acid (LTA). As the 
anti-inflammatory effects of MUFA have also been reported, 
we evaluated whether the microglial response to LTA may 
be differently modulated by priming with oleic acid (OA). 
We further assessed whether these inflammatory effects are 
reflected in changes in hippocampal and cortical tissue from 
obese mice, following an obesogenic diet rich in either SFA or 
MUFA. Recognising the potential impact of systemic immune 
mediators in the central inflammation associated with obesity, 
we compared our findings in microglia to those from PA- and 
OA-primed macrophages. Furthermore, to model the effects 
of macrophage infiltration to the CNS under obesogenic condi-
tions, we assessed their activation following exposure to solu-
ble brain extract from chronically SFA- and MUFA-fed mice.

Materials and Methods

Diet‑Induced Obesity (DIO) Model

Male C57BL/6 mice (Harlan, UK) were randomly assigned 
to three feeding groups: a diet rich with SFA, in particular 
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PA (45% total kCal from palm oil) and a diet rich in MUFA, 
in particular OA (45% total kCal from oleic sunflower oil) 
or a normal, micronutrient-matched, low-fat ‘chow’ diet 
(10% total kCal from palm oil/oleic acid combination; 
Research Diets, USA). Animals were group-housed and 
weight-matched at baseline prior to starting the diets aged 
6–8 weeks, and fed ad libitum for a total of 12 weeks. Food 
intake, body weights and fat-pad weights were monitored 
to confirm obesogenic phenotype as previously reported 
[56]. Animals were euthanised by cervical dislocation under 
isoflurane anaesthetic. Following decapitation, brains were 
rapidly removed and placed on ice-cold phosphate buffered 
saline (PBS; Thermo Scientific, UK). Hippocampal and 
temporal/parietal cortical tissues were isolated and blunt 
dissected. Tissue samples were flash frozen in liquid nitro-
gen and stored at − 80 °C for later use. All animal-based 
experiments were carried out at the UCD Biomedical Facil-
ity, following approval of the UCD Animal Ethics Commit-
tee and under licence from the Health Products Regulatory 
Authority of Ireland.

Preparation of Brain Tissue Lysate and Soluble Brain 
Extract

Portions of isolated cortical and hippocampal tissue 
(described above) were homogenised in radioimmunopre-
cipitation assay buffer (RIPA; containing: Tris 50 mM, 
NaCl 150 mM, 0.5% sodium deoxycholate, sodium dode-
cyl sulphate (SDS) 0.1%, Igepal 1%, pH 8.0) supplemented 
with protease and phosphatase inhibitor cocktails (Sigma-
Aldrich, UK), using a handheld homogenisation system. 
Homogenised samples were centrifuged at 15,000  rpm 
for 10 min/4 °C. Supernatants were collected and protein 
quantification was conducted using the bicinchoninic acid 
(BCA) assay (Pierce, UK). Samples were equalised with 
RIPA buffer and stored at − 80 °C. Separate fractions of tis-
sue were weighed and homogenised under aseptic condi-
tions, in sterile Tris-buffered saline (TBS; 100 μL/0.01 g) 
supplemented with protease and phosphatase inhibitors [28]. 
The tissue suspension was centrifuged at 21,000 rpm for 
1 h at 4 °C. The supernatant was isolated as soluble brain 
extract (SBE). Protein concentration was quantified using 
BCA assay, equalised to 1 mg/mL in sterile TBS and stored 
at − 80 °C.

BV2 and N2a Cell Culture and Treatment

Murine BV2 microglia and N2a neuroblastoma cells were 
grown in Dulbecco’s modified Eagle’s medium (DMEM/
F12; Lonza or Sigma-Aldrich, UK) containing heat-
inactivated foetal bovine serum (FBS; 10%) and penicil-
lin–streptomycin (100 U/ml; Gibco, UK), and maintained 
as previously described [17, 22]. In brief, cells were plated 

in 24-well culture plates at a density of 1.5 ×  105 cells/
well and incubated overnight in a humidified environment 
at 37 °C/5%  CO2. BV2 cells were primed with PA or OA 
(100 μM; Sigma-Aldrich) for 20 h in a final volume of 200 
μL per well. PA was conjugated with fatty acid-free bovine 
serum albumin (BSA) and reconstituted in dimethyl sulfox-
ide (DMSO; Sigma-Aldrich, UK) at final concentrations of 
0.004% and 0.1%, respectively. OA was pre-conjugated with 
BSA combined with DMSO, in respective final concentra-
tions of 0.002% and 0.07%. Vehicle controls were carried 
out in DMEM containing 0.004% BSA and 0.1% DMSO. 
Cells were exposed to LTA (1 or 5 μg/mL) ± PA or OA for 
a further 4 h or 24 h, respectively. N2a cells were primed 
with PA, OA or vehicle as above for 6 h, followed by 18 h 
exposure to LTA (5 μg/mL). To promote differentiation of 
a neuronal-like phenotype, N2a cells were incubated and 
treated with DMEM containing 2% FBS. Supernatants were 
harvested for later analysis of cytokine and nitrite concentra-
tion. Cells were stored at − 20 °C in RIPA buffer contain-
ing protease and phosphatase inhibitor cocktails (Sigma-
Aldrich, UK) as previously described [22], for subsequent 
analysis of protein expression.

Preparation of Bone Marrow‑Derived Macrophages

Bone marrow was isolated from the femurs and tibiae of 
13-week-old naïve male C57BL/6 mice in DMEM as previ-
ously described [28]. In brief, the cell suspension was filtered 
through a 40 μm nylon filter and centrifuged (2,000 rpm, 
3 min). The supernatant was removed and the pellet was 
resuspended in red blood cell lysis buffer (3 ml/1 min; con-
taining (mM):  NH4Cl 155;  KHCO3 12; EDTA 0.1) and 
centrifuged as above. Cells were resuspended in DMEM 
supplemented with filter-sterilised conditioned media from 
L929 cells (20%) and incubated in 75  cm2 culture flasks for 
approximately 7 days. Cells were seeded in 24-well tissue 
culture plates at 1.5 ×  105 cells/well and incubated over-
night at 37 °C/5%  CO2. BMDMs were primed with PA, OA 
(100 μM) or vehicle for 24 h prior to LTA exposure (5 μg/
mL) for 24 h. In a separate set of experiments, BMDMs 
were exposed to media containing SBE from DIO animals 
at a final protein concentration of 0.25 mg/ml (24 h). Super-
natants and cell protein lysates were harvested as above and 
stored at − 20 °C.

Determination of Supernatant Cytokine and Nitrite 
Concentration

Supernatant concentration of TNF-α and interleukin (IL)-6 
was determined by enzyme-linked immunosorbent assay 
(ELISA), according to the manufacturer’s guidelines (Bio-
legend, UK). Concentration of nitrite was measured in cell 
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supernatants using the Griess assay (Sigma-Aldrich, UK) as 
previously described [17, 22].

Western Immunoblot Analysis

Protein lysates from BV2 cells, N2a cells, BMDMs and 
brain tissue were harvested in RIPA buffer, supplemented 
with protease and phosphatase inhibitor cocktails (Sigma-
Aldrich, UK). Proteins (5, 10 or 20 µg) were separated 
using SDS-PAGE, transferred to nitrocellulose membranes 
and blocked in 5% semi-skimmed milk prior to overnight 
incubation with antibodies against iNOS (1:1,000; BD Bio-
sciences, UK), nNOS (1:500 or 1: 1000; Cell Signaling, 
UK), COX2 (1:1000), PSD-99 (1:1000; Santa Cruz, USA), 
drebrin (1:1000; Santa Cruz, USA), synaptophysin (1:1000; 
Santa Cruz, USA) and β-actin (1:2,000; Santa Cruz, USA). 
Membranes were washed and incubated with DyLightTM 
680/800 fluorescent anti-mouse or anti-rabbit secondary 
antibodies (Thermo Scientific, UK). Fluorescent immuno-
reactive bands were visualised using the LI-COR Odyssey 
and quantified with Image Studio Lite software.

Statistical Analysis

Statistical comparisons were made using one-way analy-
sis of variance (ANOVA), followed by post hoc Newman-
Keuls analysis to examine the effects of a single variable 
between multiple groups. To assess the effects of two inde-
pendent variables (e.g. LTA and fatty acid) and interactions 
between these effects, comparisons were made using two-
way ANOVA followed by Bonferroni post-tests. All graphs 
and statistical analysis were carried out using GraphPad 
Prism 5 software. Statistical significance is represented as 
*p < 0.05, **p < 0.01 and ***p < 0.001 w.r.t. vehicle control 
and #p < 0.05, ##p < 0.01 and ###p < 0.001 w.r.t. LTA-stimu-
lated, unless otherwise stated in the figure legend.

Results

Pre‑exposure of BV2 Microglial Cells to PA 
Attenuates LTA‑induced TNF‑α, but not IL‑6 
Secretion

Having previously evaluated the impact of the TLR2 ago-
nist LTA on BV2 cell activation [22], we used this as a 
model to examine the effect of PA on microglial cytokine 
production. Pre-exposure of BV2 cells to PA (100 µM) sig-
nificantly attenuated supernatant concentration of TNF-α 
in response to both low (1 µg/ml; Fig. 1a) and high (5 µg/
ml; Fig. 1b) LTA concentrations. That withstanding, pre-
exposure of BV2 cells to PA did not attenuate IL-6 secre-
tion in response to LTA at either concentration (Fig. 1c, d). 

Cytokine expression was accompanied by a small increase 
in cellular expression of COX2, which reached significance 
following application of 5 µg/mL LTA, when compared to 
controls (Fig. 1e, f). While PA alone also appeared to mar-
ginally promote COX2 expression, this did not influence the 
LTA-induced change (Fig. 1e, f).

Incubation with PA Enhances LTA‑Induced 
NO Production from BV2 Microglia

The production of nitric oxide (NO) has become a critical 
determinant of microglial activation, at least under experi-
mental conditions [72]. To evaluate its contribution to fatty 
acid-related changes, expression of inducible nitric oxide 
synthase (iNOS) and the stable NO metabolite nitrite were 
evaluated in BV2 cells following priming with PA. Exposure 
to PA significantly enhanced LTA-induced iNOS expression 
following 4 h LTA stimulation (Fig. 2a) with a similar trend 
observed in response to 24 h stimulation (Fig. 2b). Simi-
larly, concentration of nitrite was significantly higher in the 
supernatant from PA-primed cells stimulated with LTA for 
both 4 h (Fig. 2c) and 24 h (Fig. 2d), compared with cells 
exposed to LTA alone (Fig. 2c, d).

OA Has Opposing Effects to PA on LTA‑Induced 
Inflammatory Changes in BV2 Microglial Cells

Unlike that observed in the presence of PA, pre-exposure 
of BV2 cells to OA (100 µM) did not alter TNF-α secre-
tion after stimulation with LTA (5 µg/ml) for 4 h (Fig. 3a). 
By contrast, pre-exposure to OA significantly reduced IL-6 
secretion in LTA-stimulated cells (Fig. 3b). Pre-incuba-
tion of BV2 cells with OA enhanced LTA-induced iNOS 
expression, which reached significance following 24 h LTA 
exposure when compared to cells treated with LTA alone 
(Fig. 3d). Most interestingly however, basal expression of 
iNOS was significantly reduced in unstimulated cells (24 h 
only) following incubation with OA, when compared with 
vehicle-treated controls (Fig. 3d) This was further associated 
with a significant reduction in basal concentration of nitrite 
in OA-primed cells, compared with supernatants from cells 
exposed to the vehicle alone (Fig. 3e, f).

PA and OA Differently Modulate Neuronal Cell 
Inflammation Relative to Microglial Cells

Although not primarily responsible for immune regulation 
in the nervous system, neurons are known to be cytokine- 
and NO-producing cells. Similarly to our previous finding 
in microglia, exposing N2a cells to PA significantly reduced 
LTA-induced TNF-α concentration (Fig. 4a), with no impact 
on IL-6 (Fig. 4b), when compared to un-primed cells. Mean-
while, incubation of N2a cells with OA did not impact the 
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expression of either TNF-α or IL-6 in the presence of LTA, 
compared with un-primed cells (Fig. 4a, b). Interestingly, 
however, neither the expression of iNOS (Fig. 4c) or nitrite 
(Fig. 4d) was impacted by exposure to PA or OA, either in 
control or LTA-stimulated cells.

Differential Effects of OA and PA 
on the Inflammatory Profile of BMDMs Stimulated 
with LTA

To compare the microglial response to that of their closest 
systemic equivalent, BMDMs prepared from naïve C57BL/6 
mice were primed with PA, OA (100 µM) or vehicle for 
24 h, followed by the subsequent application of LTA (5 µg/

mL) for a further 24 h. Similarly to that observed in micro-
glia and neurons, exposure to PA significantly reduced the 
LTA-induced release of TNF-α compared with un-primed 
cells (Fig. 5a). Unlike microglia and neurons, however, this 
effect also extended to LTA-stimulated IL-6 which was sig-
nificantly attenuated in PA-primed cells compared to un-
primed controls (Fig. 5b). Interestingly, prior exposure to 
OA had no impact on the concentration of either cytokine 
released in response to LTA (Fig. 5a, b). Also in contrast to 
microglia, exposure to PA did not influence the production 
of NO in LTA-stimulated BMDMs (Fig. 5c, d). However, 
the LTA-induced expression of both iNOS and nitrite was 
significantly increased in OA-primed cells compared with 
cells exposed to LTA alone (Fig. 5c, d).

Fig. 1  Palmitic acid attenuates 
LTA-induced TNF-α release 
from microglia. BV2 cells were 
exposed to palmitic acid (PA; 
100 μM) or vehicle control 
(Veh) for 24 h, and stimulated 
with LTA (1 or 5 μg/mL) during 
the final 4 h. Supernatant con-
centrations of TNF-α (a, b) and 
IL-6 (c, d) were assessed using 
ELISA (n = 9–24 replicates). 
Western immunoblot was used 
to determine the expression of 
COX2 in cell lysates (e, f), rela-
tive to the expression of β-actin 
(n = 9–14 replicates from 3–6 
independent experiments). Data 
is presented as mean ± SEM. 
**p < 0.01, ***p < 0.0001, 
compared to Veh; ++p < 0.01, 
+++p < 0.0001, compared 
with PA; #p < 0.05, ##p < 0.01, 
compared with Veh + LTA; 
two-way ANOVA followed by 
Bonferroni and Newman-Keuls 
analysis. Inserts illustrate repre-
sentative immunoreactive bands 
for COX2 and β-actin (triplicate 
samples)
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Chronic Exposure to Obesogenic SFA‑ 
or MUFA‑enriched High‑Fat Diets Did not Impact 
on Synaptic Density in the Cortex or Hippocampus

We further sought to examine how chronic exposure to SFA- 
or MUFA-enriched HFDs in vivo affects expression of mark-
ers of synaptic integrity within the cortical and hippocampal 
regions of the brain. Both HFDs induced significant weight 
gain, insulin resistance and hypercholesterolemia as previ-
ously described [56]. No significant changes in expression 
of PSD-95 (Fig. 6a, b), drebrin (Fig. 6c, d, g, h) and synap-
tophysin (Fig. 6e, f, g, h) were observed following SFA- or 
MUFA-rich diets relative to tissue from non-obese controls 
in either brain region.

Chronic Exposure to MUFA‑ and SFA‑Enriched 
HFDs Differently Modulates Nitrite Concentration 
in the Brain

Recognising the dual inflammatory and regulatory role 
of NO in the brain, we also assessed expression of iNOS 
(Fig. 7a, b) and nNOS (Fig. 7c, d). Interestingly, despite 
our previous observations in microglia, neither HFD 

induced significant alterations in either iNOS or nNOS 
when compared to tissue from low fat-fed controls. A por-
tion of cortical tissue was used to prepare soluble brain 
extract (SBE), which was assessed for expression of nitrite 
(Fig. 7e). Although also not robustly different from chow-
fed controls, nitrite concentration was significantly lower 
in SBE from SFA-fed animals compared with those on 
a MUFA-rich diet (Fig. 7e (i)). Indeed, further analysis 
revealed an inverse relationship in nitrite concentration 
SBE from MUFA- and SFA-fed mice (expressed relative 
to expression in SBE from chow-fed animals; Fig. 7e (ii)). 
We have previously demonstrated the influence of brain-
derived inflammatory proteins on macrophage activation 
[28]. To model the impact on macrophages which infil-
trate the brain parenchyma under obesogenic conditions, 
we co-incubated SBE of equal total protein concentration 
with cultured BMDMs prepared from naïve control mice. 
Independently of diet composition, SBE from all groups 
suppressed basal secretion of TNF-α from BMDMs when 
compared to naïve cells (Fig. 7f). However, nitrite expres-
sion was significantly higher in BMDMs exposed to SBE 
from chow- and SFA-fed animals compared with cells 
incubated with SBE from the MUFA-fed group (Fig. 7g).

Fig. 2  Palmitic acid promotes 
nitric oxide production from 
LTA-stimulated microglia. BV2 
cells were exposed to palmitic 
acid (PA; 100 μM) or vehicle 
control (Veh) for 24 h, and 
stimulated with LTA (5 μg/mL) 
during the final 4 h, or for a fur-
ther 24 h. Expression of iNOS 
(a, b) and supernatant concen-
tration of nitrite (c, d) were 
examined. Data is presented 
as mean ± SEM (n = 6–45 
replicates, from 3–12 independ-
ent experiments). **p < 0.01, 
***p < 0.0001, compared to 
vehicle control; +++p < 0.0001, 
compared with PA; ###p < 0.001, 
compared with Veh + LTA. 
Interactions based on two-way 
ANOVA, followed by Bonfer-
roni post-tests. Inserts illustrate 
representative immunoreactive 
bands for iNOS and β-actin (a, 
b; triplicate samples)
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Discussion

Obesity is known to promote the risk of brain dysfunction 
and cognitive decline associated with neurodegenerative 
states [40, 42]. However, the exact mechanisms connect-
ing these disorders remain elusive. As neuroinflammation 
is integral to these collective pathologies, the current study 
sought to explore the impact the obesogenic diet on prim-
ing the inflammatory environment in the brain and further 
characterise the neuroinflammatory potential of individual 
fatty acids in vitro/ex vivo. Dietary fats, in particular SFA 
such as PA, are the most proinflammatory element of an 
obesogenic diet, and heightened levels of PA and OA have 
been identified in the AD brain [73]. Therefore, we have 

restricted our investigation to the role of dietary fat in reg-
ulating brain inflammation. The specific role for TLR2 in 
obesity, and separately in AD, has been well reported [74, 
75], and we have previously described the influence of TLR2 
agonists on inflammatory-induced neuronal dysfunction [22, 
23]. Here we demonstrate a clear disparity between PA and 
OA on regulation of cytokine production, widely considered 
indicators of microglial activation. In particular, we report 
that acute exposure to PA exerts an inhibitory influence on 
LTA-induced TNF-α release. Our findings are in line with a 
previous report that basal secretion of TNF-α was mitigated 
in PA-exposed BV2 cells [71]; however, more specifically, 
we highlight that PA attenuates TNF-α secretion in response 
to LTA in both microglia and macrophages. By contrast 

Fig. 3  Oleic acid mitigates 
LTA-induced release of IL-6 
and basal nitrite expression 
in microglia. BV2 cells were 
exposed to oleic acid (OA; 
100 μM) or vehicle control 
(Veh) for 24 h, and stimulated 
with LTA (5 μg/mL) during the 
final 4 h, or for a further 24 h. 
Concentration of TNF-α (a) and 
IL-6 (b) was measured in the 
supernatant following 4 h LTA 
exposure (n = 6–45 replicates, 
from 3–12 independent experi-
ments). Expression of iNOS and 
supernatant concentration of 
nitrite were examined both 4 h 
(c, e) and 24 h (d, f) following 
LTA stimulation (n = 9–45 rep-
licates, from 3–12 independent 
experiments). Data is presented 
as mean ± SEM. *p < 0.05, 
**p < 0.01, ***p < 0.0001, com-
pared to Veh; ~  ~  ~ p < 0.001, 
compared with OA; 
###p < 0.001, compared with 
Veh + LTA. Interactions based 
on two-way ANOVA, followed 
by Bonferroni post-tests. Inserts 
illustrate representative immu-
noreactive bands for iNOS and 
β-actin (c, d; triplicate samples)
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pre-incubation with PA is known to heighten LPS-induced 
cytokine production in microglia [67] as well as in BMDMs 
[76]. When considered along with previous reports [70], our 
findings support the observation that saturated fat does not 
bias microglia towards the adopting the classical state of 
activation seen in systemic immune cells. Consistent with 
our findings in microglia, priming with PA also attenuated 
cytokine secretion from LTA-stimulated BMDMs. Based on 
these findings, we speculate that PA priming likely attenu-
ates TLR2-induced proinflammatory signalling, while the 
same conditions exacerbate TLR4-induced signalling as 
reported previously [67, 70, 76]. We hypothesise that pre-
exposure to PA-enriched diets may augment the systemic 
inflammatory response to TLR4 ligands, but potentially 
compromise host response to TLR2 ligands. However, a 
future study to evaluate this effect within a TLR2-deficient 
model would be essential to fully assess this hypothesis. 
Since SFA is known to promote NF-κB activity in mac-
rophages [66, 69], along with post-translational cytokine 
processing [77], this may also suggest that PA and LTA 
converge on a common mechanism to disrupt cytokine pro-
duction and secretion.

MUFA-rich diets are widely acknowledged for their ben-
efits to cognitive function under challenging conditions [78], 
an effect which is largely ascribed to their anti-inflamma-
tory capacity [63, 79]. Recent evidence also supports the 

regulation of microglial activation as underlying the pro-
tective effects of MUFA under obesogenic conditions [64]. 
Consistent with this, the current study reports that while 
OA did not modulate TNF-α release, we saw a downregu-
lation of LTA-induced IL6 concentration in OA-primed 
BV2 cells. Strikingly, however, we demonstrate that PA 
and OA differently regulate sensitivity of microglia to NO 
production. NO is a critical regulator of neuronal function, 
and production from glial cells is widely associated with 
neurodegenerative and neuroinflammatory states [80, 81]. 
Along with TNF-α, the expression of iNOS has become 
a routine determinant of proinflammatory microglia [72]. 
Here we offer the confounding evidence that exposure to PA 
mitigates TNF-α secretion while enhancing NO production 
from LTA-stimulated microglia. Meanwhile, OA suppressed 
basal expression of NO in naïve BV2 cells, but had minimal 
impact upon LTA-induced NO production. These findings 
further highlight the complexity of fatty acids as inflamma-
tory regulators in the brain, relative to the systemic immune 
system. Interestingly, supernatant expression of IL-1β was 
not detected in our samples (data not shown). Unlike pre-
vious observations in response to LPS, this data does not 
support a primary role for the inflammasome in mediating 
the FA-mediated modulation of LTA-induced inflammation.

Obesity associated with a fat-rich diet is known to pro-
mote region-specific microglial activation in the brain, 

Fig. 4  Neither priming with 
PA or OA alters the response 
to LTA in N2a neuroblastoma 
cells. N2a cells were incubated 
with PA, OA (100 μM) or vehi-
cle control (Veh) for 6 h, prior 
to the inclusion of LTA (5 μg/
mL) for a further 18-h period. 
Supernatant was assessed for 
concentration of TNF-α (a), 
IL-6 (b) and nitrite (d), and 
cell lysates were analysed 
for expression of iNOS (c) 
(n = 6–12 replicates from 3–6 
independent experiments). Data 
are presented as mean ± SEM. 
*p < 0.05, **p < 0.01, 
***p < 0.001; +p < 0.05, com-
pared to PA alone; ~  ~ p < 0.01
, ~  ~  ~ p < 0.001, compared to 
OA alone. Comparisons were 
made using two-way ANOVA 
followed by Bonferroni analysis. 
Inserts illustrate representa-
tive immunoreactive bands for 
iNOS and β-actin (c; triplicate 
samples)
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within a 12- to 20-week feeding period [52, 82]. More 
recently, inflammatory indicators have been reported in 
hippocampus and amygdala within 3 days of a high-fat 
diet comprised of SFA, MUFA and PUFA combined [83]. 
Heightened PA and OA levels have been identified in the 
brain under neurodegenerative conditions [73, 84]. In light 
of the prominent microglial regulation we observed follow-
ing acute application of these dietary fats in vitro, we sought 
to examine whether chronic exposure to PA and OA in iso-
lation would similarly impact inflammatory processes the 
brain in the absence of a subsequent inflammatory challenge. 
Despite their obesogenic phenotype [56], we determined that 
a 12-week diet comprised of 45% total kCal from either SFA 
or MUFA did not disrupt the expression of synaptic proteins 
in either cortical or hippocampal tissue. While more exten-
sive analysis is required to fully evaluate the potential impact 
of these diets on neuronal morphology and synaptic integ-
rity, our limited evaluation did not support gross alteration 
in synaptic density. Moreover, although we identified some 
dysregulation in NO expression in brains of SFA- relative 
to MUFA-fed animals, these changes were not indicative 
of robust microglial activation. These findings indicate that 
the 12-week feeding period with either high-SFA or -MUFA 
in isolation was insufficient to drive marked pathological 

consequences within the brain. However, we also recognise 
that the analysis within the current study was limited to spe-
cific hippocampal and cortical brain regions, and therefore 
we cannot conclude that a 12-week obesogenic diet rich in 
SFA or MUFA in isolation does not result in more region-
specific effects. Exposure to higher concentration of a multi-
fat diet as demonstrated by Lainez and colleagues [52] and 
Butler and colleagues [83], and/or longer duration of feeding 
such as employed by Jeon et al. [82], is likely necessary 
to see significant deterioration in integrity of brain tissues 
concomitant with inflammatory changes.

An important outcome from the current study is the cau-
tion of examining cellular responses in isolation. This is 
particularly true for obesity-related inflammation, given the 
multi-cellular nature of the condition. Our in vitro exami-
nation indicated that the inflammatory changes in the brain 
in response to dietary fats are likely restricted to microglia, 
and moreover are mitigated by neuronal-derived mediators. 
Despite responding similarly to TLR agonists, neurons are 
thought to utilise different downstream mechanisms to pro-
cess these signals [18], which likely accounts for their lack 
of responsiveness to fatty acids in our study. However, the 
bi-directional communication that exists between microglia 
and neurons includes an ever‐growing list of molecules 

Fig. 5  Palmitic and oleic acid 
differently modulates inflamma-
tory responses in macrophages. 
BMDMs from C57BL/6 mice 
were primed with PA, OA 
(100 µM) or vehicle (Veh) for 
24 h, followed by the sub-
sequent application of LTA 
(5 µg/mL) for a further 24 h. 
Supernatant concentrations 
of TNF-α (a), IL-6 (b) and 
nitrite (d), along with cellular 
expression of iNOS (c), were 
measured. Data is presented as 
mean ± SEM (n = 6–8 replicates, 
from 3 independent experi-
ments). Interaction and LTA 
effect determined by two-way 
ANOVA. *p < 0.05, **p < 0.01, 
***p < 0.001; Bonferroni post-
tests. Inserts illustrate represent-
ative immunoreactive bands for 
iNOS and β-actin (c; duplicate 
samples)
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known to either directly or indirectly downregulate micro-
glial function [85, 86]. Plausibly therefore, this interaction is 
a contributing factor to the paucity of inflammatory changes 
we identified in the brain following a 12-week 45% high-fat 
diet, and the preservation of synaptic integrity.

The infiltration of peripheral macrophages into the CNS 
is thought to contribute significantly to the neuroinflamma-
tory consequences of obesity [49, 52]. To model this interac-
tion in vitro, we incubated macrophages with soluble factors 

isolated from the brain of DIO animals [28]. We found that 
TNF-α secretion from macrophages was similarly supressed 
by exposure brain extract from each feeding group, indepen-
dently of diet composition or obesity. This perhaps illustrates 
a similar response of macrophages to the inhibitory influ-
ence of neuronal-derived factors. Surprisingly, while expo-
sure to brain extract from chow- and SFA-fed mice enhanced 
NO production in macrophages, this was not evident when 
cells were incubated with extract from MUFA-fed mice. A 

Fig. 6  A 12-week fat-rich diet 
does not alter synaptic density 
in cortex and hippocampus. 
Cortical and hippocampal tissue 
was isolated from C57BL/6 
mice, following 12-week feed-
ing with obesogenic diets rich 
in palmitic acid (SFA; 45% total 
kCal) or oleic acid (MUFA; 
45% total kCal), or a non-
obesogenic, nutrient-matched 
control diet (chow; 10% total 
kCal from fat). Protein lysates 
were assessed for the expression 
of PSD-95, drebrin and synap-
tophysin (SYN) in cortex (a, c, 
e, g) and hippocampus (b, d, f, 
h), respectively. N = 3 animals 
per group. Data is presented 
as mean ± SEM overlaid with 
individual data points. Statisti-
cal differences were assessed 
using one-way ANOVA. 
Inserts illustrate representative 
immunoreactive bands for PSD-
95, drebrin, SYN and β-actin 
(triplicate samples)
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Fig. 7  Expression of NO 
expression is differently 
regulated in brain extract from 
SFA- and MUFA-fed animals. 
Cortical and hippocampal tissue 
was isolated from high-fat-
induced obese animals (SFA, 
MUFA) and non-obese controls 
(chow). Protein lysates were 
assessed for the expression of 
iNOS and nNOS from cortex 
(a, c) and hippocampus (b, 
d), respectively. Soluble brain 
extract (SBE) prepared from 
cortical tissue of DIO mice 
was assessed for expression of 
nitrite (e (i)). Correlations were 
made between concentration of 
nitrite (e (ii)) measured in SBE 
from SFA versus MUFA fed 
animals (N = 3–4 animals per 
group). BMDMs from naïve 
animals were incubated with 
SBE (0.25 mg/mL total protein) 
for 24 h. Supernatant expres-
sion of TNF-α (f) and nitrite 
(g) was determined. Statistical 
comparisons were made using 
one-way ANOVA, followed 
by Neuman-Keuls analysis. 
*p < 0.05, ***p < 0.001 (n = 5–8 
replicates, from 3 independent 
experiments). Data is presented 
as mean ± SEM. Inserts illus-
trate representative immunore-
active bands for iNOS (a, b), 
nNOS (c, d) and β-actin (a–d, 
triplicate samples)
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consistent finding throughout the study has been enhanced 
production of NO, particularly in response to MUFA. Under 
inflammatory conditions, including TLR stimulation, NO is 
also an essential component of the host-defence response 
[87]. However, its over-production promotes cellular toxic-
ity and accordingly has been widely implicated in disease 
pathogenesis [80]. A previous exploration revealed that PA 
and OA induce a concentration-dependent increase in NO 
production from LPS-stimulated macrophages [88], while a 
subsequent study reported that an acute 1 h pre-exposure to 
OA had the opposing effect on LPS-induced NO in microglia 
[89]. Based on our in vitro analysis of direct OA exposure 
and ex vivo brain extract from MUFA-fed animals, we can 
speculate that excess NO production in the brain in response 
to a MUFA-rich diet is likely driven by infiltrating mac-
rophages and not microglia. Taken together, this evidence 
points towards a potential difference in the response to OA 
following post-prandial and chronic dietary exposure [64]. It 
is also tempting to speculate that disruption in the balance of 
NO production may therefore account for some of the appar-
ently conflicting outcomes of the healthy ‘Mediterranean 
diet’ compared with the MUFA-rich obesogenic diet.

The current study focused on investigating the role of 
dietary fats as inflammatory regulators. Our findings reveal 
that exposure to fatty acids may determine the response of 
microglia to subsequent inflammatory challenge by a TLR2-
targetting stimulus, which may have a critical impact on 
neurodegenerative disease processes. We further highlight 
NO as an important mediator of fatty acid-related sensitivity 
to neuroinflammation, under acute and chronic conditions. 
Moreover, the current findings support the proposal that the 
influence of a HFD on the brain is likely to be sensitive to 
both the total fat content and diet duration. However, we also 
recognise that the obese state is associated with the over-
consumption of a combination of nutrients, contributing to 
intracellular stress and activation of an immune response 
[31]. As fats are rarely consumed in isolation as part of an 
obesogenic diet, we must also consider the influence of sec-
ondary metabolic perturbations resulting from sugar and 
cholesterol intake which are known to impact negatively on 
cognition [90], and act as primary risk factors for AD [91]. 
Replacing SFA for MUFA within the obesogenic diet may 
indeed convey some protection against cognitive decline. 
However, the current findings suggest that this will likely be 
coupled with mitigation of obesity-associated comorbidities 
rather than a direct influence on inflammatory processes in 
the brain.
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