Skip to main content

Advertisement

Log in

Effect of environmental enrichment on behavioral and morphological outcomes following neonatal hypoxia-ischemia in rodent models: A systematic review and meta-analysis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neonatal hypoxia-ischemia (HI) is a major cause of mortality and morbidity in newborns and, despite recent advances in neonatal intensive care, there is no definitive treatment for this pathology. Once preclinical studies have shown that environmental enrichment (EE) seems to be a promising therapy for children with HI, the present study conducts a systematic review and meta-analysis of articles with EE in HI rodent models focusing on neurodevelopmental reflexes, motor and cognitive function as well as brain damage. The protocol was registered a priori at PROSPERO. The search was conducted in PubMed, Embase and PsycINFO databases, resulting in the inclusion of 22 articles. Interestingly, EE showed a beneficial impact on neurodevelopmental reflexes (SMD= -0.73, CI= [-0.98; -0.47], p< 0.001, I2= 0.0%), motor function (SMD= -0.55, CI= [-0.81; -0.28], p< 0.001, I2= 62.6%), cognitive function (SMD= -0.93, CI= [-1.14; -0.72], p< 0.001, I2= 27.8%) and brain damage (SMD= -0.80, CI= [-1.03; -0.58], p< 0.001, I2= 10.7%). The main factors that potentiate EE positive effects were enhanced study quality, earlier age at injury as well as earlier start and longer duration of EE exposure. Overall, EE was able to counteract the behavioral and histological damage induced by the lesion, being a promising therapeutic strategy for HI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Douglas-Escobar M, Weiss MD (2015) Hypoxic-Ischemic Encephalopathy A Review for the Clinician. JAMA Pediatr 169:397–403. https://doi.org/10.1001/jamapediatrics.2014.3269

    Article  PubMed  Google Scholar 

  2. Kurinczuk JJ, White-Koning M, Badawi N (2010) Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 86:329–338. https://doi.org/10.1016/j.earlhumdev.2010.05.010

    Article  PubMed  Google Scholar 

  3. Vannucci SJ, Hagberg H (2004) Hypoxia-ischemia in the immature brain. J Exp Biol 207:3149–3154. https://doi.org/10.1242/jeb.01064

    Article  CAS  PubMed  Google Scholar 

  4. Davidson JO, Gonzalez F, Gressens P, Gunn AJ (2021) Update on mechanisms of the pathophysiology of neonatal encephalopathy. Semin. Fetal Neonatal Med.

  5. Hamdy N, Eide S, Sun HS, Feng ZP (2020) Animal models for neonatal brain injury induced by hypoxic ischemic conditions in rodents. Exp Neurol 334:113457. https://doi.org/10.1016/j.expneurol.2020.113457

    Article  PubMed  Google Scholar 

  6. Netto CA, Sanches E, Odorcyk FK et al (2017) Sex-dependent consequences of neonatal brain hypoxia-ischemia in the rat. J Neurosci Res 95:409–421. https://doi.org/10.1002/jnr.23828

    Article  CAS  PubMed  Google Scholar 

  7. Alexander M, Garbus H, Smith AL et al (2014) Behavioral and histological outcomes following neonatal HI injury in a preterm (P3) and term (P7) rodent model. Behav Brain Res 259:85–96. https://doi.org/10.1016/j.bbr.2013.10.038

    Article  CAS  PubMed  Google Scholar 

  8. Sanches EF, Arteni N, Nicola F et al (2015) Sexual dimorphism and brain lateralization impact behavioral and histological outcomes following hypoxia–ischemia in P3 and P7 rats. Neuroscience 290:581–593. https://doi.org/10.1016/j.neuroscience.2014.12.074

    Article  CAS  PubMed  Google Scholar 

  9. Favrais G, Van De Looij Y, Fleiss B et al (2011) Systemic inflammation disrupts the developmental program of white matter. Ann Neurol. https://doi.org/10.1002/ana.22489

  10. Badr Zahr LK, Purdy I (2006) Brain injury in the infant: the old, the new, and the uncertain. J Perinat Neonatal Nurs 20:163–175 quiz 176–7

    Article  PubMed  Google Scholar 

  11. Frajewicki A, Laštůvka Z, Borbélyová V et al (2020) Perinatal Hypoxic-Ischemic Damage: Review of the Current Treatment Possibilities. Physiol Res 69:S379–S401

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Davidson JO, Wassink G, van den Heuij LG et al (2015) Therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy - Where to from here? Front Neurol 6:198. https://doi.org/10.3389/fneur.2015.00198

    Article  PubMed  PubMed Central  Google Scholar 

  13. Singer D (2021) Pediatric Hypothermia : An Ambiguous Issue. Int J Environ Res Public Health 18(21):11484. https://doi.org/10.3390/ijerph182111484

    Article  PubMed  PubMed Central  Google Scholar 

  14. Netto C, Sanches E, Odorcyk F et al (2018) Pregnancy as a valuable period for preventing hypoxia-ischemia brain damage. Int J Dev Neurosci 18:12–24. https://doi.org/10.1016/j.ijdevneu.2018.06.004

    Article  Google Scholar 

  15. Rocha-Ferreira E, Hristova M, Rocha-Ferreira E, Hristova M (2016) Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury. Neural Plast 2016:1–16. https://doi.org/10.1155/2016/4901014

    Article  CAS  Google Scholar 

  16. Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7:697–709. https://doi.org/10.1038/nrn1970

    Article  CAS  PubMed  Google Scholar 

  17. Kentner AC, Speno AV, Doucette J, Roderick RC (2021) The contribution of environmental enrichment to phenotypic variation in mice and rats. eNeuro 8:1–10. https://doi.org/10.1523/ENEURO.0539-20.2021

    Article  Google Scholar 

  18. Sale A (2018) A Systematic Look at Environmental Modulation and Its Impact in Brain Development. Trends Neurosci 41:4–17. https://doi.org/10.1016/j.tins.2017.10.004

    Article  CAS  PubMed  Google Scholar 

  19. Rosenzweig MR (2007) Chapter 4 Modification of Brain Circuits through Experience. In: Neural Plasticity and Memory

  20. Petrosini L, De Bartolo P, Foti F et al (2009) On whether the environmental enrichment may provide cognitive and brain reserves. Brain Res Rev 61:221–239. https://doi.org/10.1016/j.brainresrev.2009.07.002

    Article  PubMed  Google Scholar 

  21. Mering S, Jolkkonen J (2015) Proper housing conditions in experimental stroke studies-special emphasis on environmental enrichment. Front Neurosci 9:1–8. https://doi.org/10.3389/fnins.2015.00106

    Article  Google Scholar 

  22. Yuan M, Guo YS, Han Y et al (2021) Effectiveness and mechanisms of enriched environment in post-stroke cognitive impairment. Behav Brain Res 410:113357

    Article  PubMed  Google Scholar 

  23. Chen J-Y, Yu Y, Yuan Y et al (2017) Enriched housing promotes post-stroke functional recovery through astrocytic HMGB1-IL-6-mediated angiogenesis. Cell Death Dis 3:17054. https://doi.org/10.1038/cddiscovery.2017.54

    Article  CAS  Google Scholar 

  24. Komitova M, Mattsson B, Johansson BB, Eriksson PS (2005) Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke 36:1278–1282. https://doi.org/10.1161/01.STR.0000166197.94147.59

    Article  PubMed  Google Scholar 

  25. Plane JM, Whitney JT, Schallert T, Parent JM (2008) Retinoic acid and environmental enrichment alter subventricular zone and striatal neurogenesis after stroke. Exp Neurol 214:125–134. https://doi.org/10.1016/j.expneurol.2008.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang Y, Xu D, Qi H et al (2018) Enriched environment promotes post-stroke neurogenesis through NF-κB-mediated secretion of IL-17A from astrocytes. Brain Res 1687:20–31. https://doi.org/10.1016/j.brainres.2018.02.030

    Article  CAS  PubMed  Google Scholar 

  27. Wang X, Chen A, Wu H et al (2016) Enriched environment improves post-stroke cognitive impairment in mice by potential regulation of acetylation homeostasis in cholinergic circuits. Brain Res 1650:232–242. https://doi.org/10.1016/j.brainres.2016.09.018

    Article  CAS  PubMed  Google Scholar 

  28. Johanson BB (2000) Brain Plasticity and Stroke Rehabilitation The Willis Lecture. Stroke 31:223–230. https://doi.org/10.1161/01.CIR.0000121563.47232.2A

    Article  Google Scholar 

  29. McDonald MW, Hayward KS, Rosbergen ICM et al (2018) Is Environmental Enrichment Ready for Clinical Application in Human Post-stroke Rehabilitation? Front Behav Neurosci 12:1–16. https://doi.org/10.3389/fnbeh.2018.00135

    Article  CAS  Google Scholar 

  30. van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1:191–198. https://doi.org/10.1038/35044558

    Article  CAS  PubMed  Google Scholar 

  31. Silbereis JC, Huang EJ, Back SA, Rowitch DH (2010) Towards improved animal models of neonatal white matter injury associated with cerebral palsy. Dis Model Mech 3:678–688. https://doi.org/10.1242/dmm.002915

    Article  PubMed  PubMed Central  Google Scholar 

  32. Qiu L, Zhu C, Wang X et al (2007) Less neurogenesis and inflammation in the immature than in the juvenile brain after cerebral hypoxia-ischemia. J Cereb Blood Flow Metab 27:785–794. https://doi.org/10.1038/sj.jcbfm.9600385

    Article  CAS  PubMed  Google Scholar 

  33. Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3:728–739. https://doi.org/10.1038/nrn920

    Article  CAS  PubMed  Google Scholar 

  34. Brekke E, Morken TS, Sonnewald U (2015) Glucose metabolism and astrocyte-neuron interactions in the neonatal brain. Neurochem Int 82:33–41. https://doi.org/10.1016/j.neuint.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  35. Odorcyk FK, Duran-Carabali LE, Rocha DS et al (2020) Differential glucose and beta-hydroxybutyrate metabolism confers an intrinsic neuroprotection to the immature brain in a rat model of neonatal hypoxia ischemia. Exp Neurol 330:113317. https://doi.org/10.1016/j.expneurol.2020.113317

    Article  CAS  PubMed  Google Scholar 

  36. Odorcyk FK, Ribeiro RT, Roginski AC et al (2021) Differential Age-Dependent Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis Induced by Neonatal Hypoxia-Ischemia in the Immature Rat Brain. Mol Neurobiol. https://doi.org/10.1007/s12035-020-02261-1

  37. Janssen H, Bernhardt J, Collier JM et al (2010) An Enriched Environment Improves Sensorimotor Function Post-Ischemic Stroke. Neurorehabil Neural Repair 24:802–813. https://doi.org/10.1177/1545968310372092

    Article  PubMed  Google Scholar 

  38. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339. https://doi.org/10.1136/bmj.b2700

  39. de Vries RBM, Hooijmans CR, Langendam MW et al (2015) A protocol format for the preparation, registration and publication of systematic reviews of animal intervention studies. Evid-based Preclin Med 2:e00007. https://doi.org/10.1002/ebm2.7

    Article  Google Scholar 

  40. Hu K, Deng W, Yang J et al (2020) Intermittent hypoxia reduces infarct size in rats with acute myocardial infarction: A systematic review and meta-analysis. BMC Cardiovasc Disord 20:422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. du Sert NP, Hurst V, Ahluwalia A et al (2020) The arrive guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol 18:1769–1777. https://doi.org/10.1371/journal.pbio.3000410

    Article  CAS  Google Scholar 

  42. Macleod MR, O’Collins T, Howells DW, Donnan GA (2004) Pooling of animal experimental data reveals influence of study design and publication bias. Stroke 35:1203–1208

    Article  PubMed  Google Scholar 

  43. Cho SR, Suh H, Yu JH et al (2016) Astroglial activation by an enriched environment after transplantation of mesenchymal stem cells enhances angiogenesis after hypoxic-ischemic brain injury. Int J Mol Sci 17:1550. https://doi.org/10.3390/ijms17091550

    Article  CAS  PubMed Central  Google Scholar 

  44. Durán-Carabali L, Arcego D, Odorcyk F et al (2017) Prenatal and Early Postnatal Environmental Enrichment Reduce Acute Cell Death and Prevent Neurodevelopment and Memory Impairments in Rats Submitted to Neonatal Hypoxia Ischemia. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0604-5

  45. Durán-Carabali L, Arcego D, Sanches E et al (2019) Preventive and therapeutic effects of environmental enrichment in Wistar rats submitted to neonatal hypoxia-ischemia. Behav Brain Res 359:485–497. https://doi.org/10.1016/j.bbr.2018.11.036

    Article  CAS  PubMed  Google Scholar 

  46. Durán-Carabali L, Sanches E, Reichert L, Netto C (2019) Enriched experience during pregnancy and lactation protects against motor impairments induced by neonatal hypoxia-ischemia. Behav Brain Res. https://doi.org/10.1016/j.bbr.2019.03.048

  47. Durán-Carabali LE, Kawa Odorcyk F, Greggio S et al (2020) Pre- and early postnatal enriched environmental experiences prevent neonatal hypoxia-ischemia late neurodegeneration via metabolic and neuroplastic mechanisms. J Neurochem 1–19. https://doi.org/10.1111/jnc.15221

  48. Forbes TA, Goldstein EZ, Dupree JL et al (2020) Environmental enrichment ameliorates perinatal brain injury and promotes functional white matter recovery. Nat Commun 11:1–17. https://doi.org/10.1038/s41467-020-14762-7

    Article  CAS  Google Scholar 

  49. Galeano P, Blanco E, Logica Tornatore TMA et al (2015) Life-long environmental enrichment counteracts spatial learning, reference and working memory deficits in middle-aged rats subjected to perinatal asphyxia. Front Behav Neurosci 8:1–12. https://doi.org/10.3389/fnbeh.2014.00406

    Article  Google Scholar 

  50. Griva M, Lagoudaki R, Touloumi O et al (2017) Long-term effects of enriched environment following neonatal hypoxia-ischemia on behavior, BDNF and synaptophysin levels in rat hippocampus: Effect of combined treatment with G-CSF. Brain Res 1667:55–67. https://doi.org/10.1016/j.brainres.2017.05.004

    Article  CAS  PubMed  Google Scholar 

  51. Iuvone L, Geloso MC, Dell’Anna E (1996) Changes in Open Field Behavior, Spatial Memory, and Hippocampal Parvalbumin Immunoreactivity Following Enrichment in Rats Exposed to Neonatal Anoxia. Exp Neurol 139:25–33. https://doi.org/10.1006/exnr.1996.0077

    Article  CAS  PubMed  Google Scholar 

  52. Kiss P, Vadasz G, Kiss-Illes B et al (2013) Environmental enrichment decreases asphyxia-induced neurobehavioral developmental delay in neonatal rats. Int J Mol Sci 14:22258–22273. https://doi.org/10.3390/ijms141122258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Orso R, Creutzberg KC, Lumertz FS et al (2021) Early environmental enrichment rescues memory impairments provoked by mild neonatal hypoxia-ischemia in adolescent mice. Behav Brain Res 407:113237. https://doi.org/10.1016/j.bbr.2021.113237

    Article  CAS  PubMed  Google Scholar 

  54. Pereira LO, Arteni NS, Petersen RC et al (2007) Effects of daily environmental enrichment on memory deficits and brain injury following neonatal hypoxia-ischemia in the rat. Neurobiol Learn Mem 87:101–108. https://doi.org/10.1016/j.nlm.2006.07.003

    Article  PubMed  Google Scholar 

  55. Pereira LO, Strapasson ACP, Nabinger PM et al (2008) Early enriched housing results in partial recovery of memory deficits in female, but not in male, rats after neonatal hypoxia-ischemia. Brain Res 1218:257–266. https://doi.org/10.1016/j.brainres.2008.04.010

    Article  CAS  PubMed  Google Scholar 

  56. Rha DW, Kang SW, Park YG et al (2011) Effects of constraint-induced movement therapy on neurogenesis and functional recovery after early hypoxic-ischemic injury in mice. Dev Med Child Neurol 53:327–333. https://doi.org/10.1111/j.1469-8749.2010.03877.x

    Article  PubMed  Google Scholar 

  57. Rojas JJ, Deniz BF, Miguel PM et al (2013) Effects of daily environmental enrichment on behavior and dendritic spine density in hippocampus following neonatal hypoxia-ischemia in the rat. Exp Neurol 241:25–33. https://doi.org/10.1016/j.expneurol.2012.11.026

    Article  PubMed  Google Scholar 

  58. Salmaso N, Silbereis J, Komitova M et al (2012) Environmental Enrichment Increases the GFAP+ Stem Cell Pool and Reverses Hypoxia-Induced Cognitive Deficits in Juvenile Mice. J Neurosci 32:8930–8939. https://doi.org/10.1523/JNEUROSCI.1398-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saucier DM, Yager JY, Armstrong EA (2010) Housing environment and sex affect behavioral recovery from ischemic brain damage. Behav Brain Res 214:48–54. https://doi.org/10.1016/j.bbr.2010.04.039

    Article  PubMed  Google Scholar 

  60. Schuch CP, Diaz R, Deckmann I et al (2016) Early environmental enrichment affects neurobehavioral development and prevents brain damage in rats submitted to neonatal hypoxia-ischemia. Neurosci Lett 617:101–107. https://doi.org/10.1016/j.neulet.2016.02.015

    Article  CAS  PubMed  Google Scholar 

  61. Seo JH, Kim H, Park ES et al (2013) Environmental enrichment synergistically improves functional recovery by transplanted adipose stem cells in chronic hypoxic-ischemic brain injury. Cell Transplant 22:1553–1568. https://doi.org/10.3727/096368912X662390

    Article  PubMed  Google Scholar 

  62. Seo JH, Yu JH, Suh H et al (2013) Fibroblast Growth Factor-2 Induced by Enriched Environment Enhances Angiogenesis and Motor Function in Chronic Hypoxic-Ischemic Brain Injury. PLoS One 8:e74405. https://doi.org/10.1371/journal.pone.0074405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Song SY, Pyo S, Choi S et al (2021) Environmental enrichment enhances cav 2.1 channel-mediated presynaptic plasticity in hypoxic–ischemic encephalopathy. Int J Mol Sci 22:3414. https://doi.org/10.3390/ijms22073414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang M, Wu J, Huo L et al (2016) Environmental Enrichment Prevent the Juvenile Hypoxia-Induced Developmental Loss of Parvalbumin-Immunoreactive Cells in the Prefrontal Cortex and Neurobehavioral Alterations Through Inhibition of NADPH Oxidase-2-Derived Oxidative Stress. Mol Neurobiol 53:7341–7350. https://doi.org/10.1007/s12035-015-9656-6

    Article  CAS  PubMed  Google Scholar 

  65. Cohen J (1988) Statistical Power Analysis for the Behavioural Science (2nd Edition)

  66. Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558. https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  67. Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. Br Med J 315:629–634. https://doi.org/10.1136/bmj.315.7109.629

    Article  CAS  Google Scholar 

  68. Duval S, Tweedie R (2000) Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463. https://doi.org/10.1111/j.0006-341X.2000.00455.x

    Article  CAS  PubMed  Google Scholar 

  69. Higgins J, Thompson S, Deeks J, Altman D (2002) Statistical heterogeneity in systematic reviews of clinical trials: A critical appraisal of guidelines and practice. J Heal Serv Res Policy 7:51–61

    Article  Google Scholar 

  70. Pereira LO, Nabinger PM, Strapasson ACP et al (2009) Long-term effects of environmental stimulation following hypoxia-ischemia on the oxidative state and BDNF levels in rat hippocampus and frontal cortex. Brain Res 1247:188–195. https://doi.org/10.1016/j.brainres.2008.10.017

    Article  CAS  PubMed  Google Scholar 

  71. Baroncelli L, Braschi C, Spolidoro M et al (2009) Nurturing brain plasticity : impact of environmental enrichment. Cell Death Differ 17:1092–1103. https://doi.org/10.1038/cdd.2009.193

    Article  PubMed  Google Scholar 

  72. Hobbs CE, Oorschot DE (2008) Neonatal rat hypoxia-ischemia: long-term rescue of striatal neurons and motor skills by combined antioxidant-hypothermia treatment. Brain Pathol 18:443–454. https://doi.org/10.1111/j.1750-3639.2008.00146.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Durán-Carabali L, Sanches E, Marques M et al (2017) Longer hypoxia–ischemia periods to neonatal rats causes motor impairments and muscular changes. Neuroscience 340:291–298. https://doi.org/10.1016/j.neuroscience.2016.10.068

    Article  CAS  PubMed  Google Scholar 

  74. Dixon G, Badawi N, Kurinczuk JJ et al (2002) Early developmental outcomes after newborn encephalopathy. Pediatrics 109:26–33. https://doi.org/10.1542/peds.109.1.26

    Article  PubMed  Google Scholar 

  75. Jamon M (2006) The early development of motor control in neonate rat. Comptes Rendus - Palevol 5:657–666. https://doi.org/10.1016/j.crpv.2005.11.018

    Article  Google Scholar 

  76. Dehorter N, Vinay L, Hammond C, Ben-Ari Y (2012) Timing of developmental sequences in different brain structures: Physiological and pathological implications. Eur J Neurosci 35:1846–1856. https://doi.org/10.1111/j.1460-9568.2012.08152.x

    Article  CAS  PubMed  Google Scholar 

  77. Schmidt A, Wellmann J, Schilling M et al (2014) Meta-analysis of the efficacy of different training strategies in animal models of ischemic stroke. Stroke 45:239–247. https://doi.org/10.1161/STROKEAHA.113.002048

    Article  PubMed  Google Scholar 

  78. Malá H, Rasmussen CP (2017) The effect of combined therapies on recovery after acquired brain injury: Systematic review of preclinical studies combining enriched environment, exercise, or task-specific training with other therapies. Restor Neurol Neurosci 35:25–64. https://doi.org/10.3233/RNN-160682

    Article  CAS  PubMed  Google Scholar 

  79. Keyvani K, Schallert T (2002) Plasticity-associated molecular and structural events in the injured brain. J Neuropathol Exp Neurol 61:831–840

    Article  CAS  PubMed  Google Scholar 

  80. Katušić A (2011) Early brain injury and plasticity: Reorganization and functional Recovery. Transl Neurosci 2:33–42. https://doi.org/10.2478/s13380-011-0006-5

    Article  Google Scholar 

  81. Johnston MV (2009) Plasticity in the developing brain: implications for rehabilitation. Dev Disabil Res Rev 15:94–101. https://doi.org/10.1002/ddrr.64

    Article  PubMed  Google Scholar 

  82. Sizonenko SV, Kiss JZ, Inder T et al (2005) Distinctive neuropathologic alterations in the deep layers of the parietal cortex after moderate ischemic-hypoxic injury in the P3 immature rat brain. Pediatr Res 57:865–872. https://doi.org/10.1203/01.PDR.0000157673.36848.67

    Article  CAS  PubMed  Google Scholar 

  83. Patel SD, Pierce L, Ciardiello A et al (2015) Therapeutic hypothermia and hypoxia-ischemia in the term-equivalent neonatal rat: characterization of a translational preclinical model. Pediatr Res 78:264–271. https://doi.org/10.1038/pr.2015.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Patel SD, Pierce L, Ciardiello AJ, Vannucci SJ (2014) Neonatal encephalopathy: pre-clinical studies in neuroprotection. Biochem Soc Trans 42:564–568. https://doi.org/10.1042/BST20130247

    Article  CAS  PubMed  Google Scholar 

  85. Semple BD, Blomgren K, Gimlin K et al (2013) Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106–107:1–16. https://doi.org/10.1016/j.pneurobio.2013.04.001

    Article  PubMed  Google Scholar 

  86. Komitova M, Xenos D, Salmaso N et al (2013) Hypoxia-Induced Developmental Delays of Inhibitory Interneurons Are Reversed by Environmental Enrichment in the Postnatal Mouse Forebrain. J Neurosci 33:13375–13387. https://doi.org/10.1523/JNEUROSCI.5286-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Simpson J, Kelly JP (2011) The impact of environmental enrichment in laboratory rats-Behavioural and neurochemical aspects. Behav Brain Res 222:246–264. https://doi.org/10.1016/j.bbr.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  88. Schuch CP, Jeffers MS, Antonescu S et al (2016) Enriched rehabilitation promotes motor recovery in rats exposed to neonatal hypoxia-ischemia. Behav Brain Res 304:42–50. https://doi.org/10.1016/j.bbr.2016.02.010

    Article  PubMed  Google Scholar 

  89. Corbett D, Jeffers M, Nguemeni C, et al (2015) Lost in translation: Rethinking approaches to stroke recovery. In: Progress in Brain Research. pp 413–434

  90. Morgan C, Novak I, Badawi N (2013) Enriched Environments and Motor Outcomes in Cerebral Palsy: Systematic Review and Meta-analysis. Pediatrics 132:e735–e746. https://doi.org/10.1542/peds.2012-3985

    Article  PubMed  Google Scholar 

  91. Morgan C, Novak I, Dale RC et al (2016) Single blind randomised controlled trial of GAME (Goals - Activity - Motor Enrichment) in infants at high risk of cerebral palsy. Res Dev Disabil 55:256–267. https://doi.org/10.1016/j.ridd.2016.04.005

    Article  PubMed  Google Scholar 

  92. Bernhardt J, Borschmann K, Boyd L et al (2016) Moving rehabilitation research forward: Developing consensus statements for rehabilitation and recovery research. Int J Stroke 11:454–458. https://doi.org/10.1177/1747493016643851

    Article  PubMed  Google Scholar 

  93. Bernhardt J, Kwakkel G, Lannin NA et al (2017) Consensus Statements from the Stroke Recovery and Rehabilitation Roundtable Standardized Measurement of Sensorimotor Recovery in Stroke Trials: Consensus-Based Core Recommendations from the Stroke Recovery and Rehabilitation Roundtable*. Neurorehabil Neural Repair 31:784–792

    Article  PubMed  Google Scholar 

  94. Kwakkel G, Lannin NA, Borschmann K et al (2017) Standardized Measurement of Sensorimotor Recovery in Stroke Trials: Consensus-Based Core Recommendations from the Stroke Recovery and Rehabilitation Roundtable. Neurorehabil Neural Repair 31:784–792. https://doi.org/10.1177/1545968317732662

    Article  PubMed  Google Scholar 

  95. Lin EJD, Choi E, Liu X et al (2011) Environmental enrichment exerts sex-specific effects on emotionality in C57BL/6J mice. Behav Brain Res 216:349–357. https://doi.org/10.1016/j.bbr.2010.08.019

    Article  PubMed  Google Scholar 

  96. Newberry RC (1995) Environmental enrichment: Increasing the biological relevance of captive environments. Appl Anim Behav Sci 44:229–243. https://doi.org/10.1016/0168-1591(95)00616-Z

    Article  Google Scholar 

  97. Harland B, Dalrymple-Alford J (2020) Enriched Environment Procedures for Rodents: Creating a Standardized Protocol for Diverse Enrichment to Improve Consistency across Research Studies. Bio-Protocol 10:1–19. https://doi.org/10.21769/bioprotoc.3637

    Article  Google Scholar 

Download references

Funding

This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of research: D-C.LE, O.FK, literature search: D-C.LE, O.F, S.EF, studies evaluation: O.F, dM.MM, data extraction: D-C.LE, O.FK, dM.MM, analyzed data: D-C.LE, drafted manuscript: D-C.LE, O.FK, S.EF, A.F, edited and revised manuscript: D.C-LE, A.F, N.CA.

Corresponding authors

Correspondence to L. E Durán-Carabali or C. A. Netto.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

This article is a review; therefore, it does not contain any experiments with human participants or animals performed by any of the authors.

Consent to participate

Not applicable for that section.

Consent for publication

All authors have read and approved the final version of the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 322 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durán-Carabali, L.E., Odorcyk, F.K., Sanches, E.F. et al. Effect of environmental enrichment on behavioral and morphological outcomes following neonatal hypoxia-ischemia in rodent models: A systematic review and meta-analysis. Mol Neurobiol 59, 1970–1991 (2022). https://doi.org/10.1007/s12035-022-02730-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02730-9

Keywords

Navigation