Skip to main content

Advertisement

Log in

Alleviating Oxidative Damage–Induced Telomere Attrition: a Potential Mechanism for Inhibition by Folic Acid of Apoptosis in Neural Stem Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

DNA oxidative damage can cause telomere attrition or dysfunction that triggers cell senescence and apoptosis. The hypothesis of this study is that folic acid decreases apoptosis in neural stem cells (NSCs) by preventing oxidative stress–induced telomere attrition. Primary cultures of NSCs were incubated for 9 days with various concentrations of folic acid (0–40 µM) and then incubated for 24 h with a combination of folic acid and an oxidant (100-µM hydrogen peroxide, H2O2), antioxidant (10-mM N-acetyl-L-cysteine, NAC), or vehicle. Intracellular folate concentration, apoptosis rate, cell proliferative capacity, telomere length, telomeric DNA oxidative damage, telomerase activity, intracellular reactive oxygen species (ROS) levels, cellular oxidative damage, and intracellular antioxidant enzyme activities were determined. The results showed that folic acid deficiency in NSCs decreased intracellular folate concentration, cell proliferation, telomere length, and telomerase activity but increased apoptosis, telomeric DNA oxidative damage, and intracellular ROS levels. In contrast, folic acid supplementation dose-dependently increased intracellular folate concentration, cell proliferative capacity, telomere length, and telomerase activity but decreased apoptosis, telomeric DNA oxidative damage, and intracellular ROS levels. Exposure to H2O2 aggravated telomere attrition and oxidative damage, whereas NAC alleviated the latter. High doses of folic acid prevented telomere attrition and telomeric DNA oxidative damage by H2O2. In conclusion, inhibition of telomeric DNA oxidative damage and telomere attrition in NSCs may be potential mechanisms of inhibiting NSC apoptosis by folic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are available from the corresponding author on reasonable request.

Abbreviations

CAT:

Catalase

DAPI:

4′,6-Diamidino-2-phenylindole

FPG:

Formamidopyrimidine DNA-glycosylase

GSH-PX:

Glutathione peroxidase

GSSG:

Oxidized glutathione

H2O2 :

Hydrogen peroxide

LDH:

Lactate dehydrogenase

LPO:

Lipid peroxide

MDA:

Malondialdehyde

MTS:

3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium

8-OxoG:

8-Oxoguanine

PBS:

Phosphate-buffered saline

NAC:

N-acetyl-L-cysteine

NSC:

Neural stem cell

ROS:

Reactive oxygen species

SAMP8:

Senescence-accelerated mouse prone 8

SD:

Sprague–Dawley

SOD:

Superoxide dismutase

T-AOC:

Total antioxidant capacity

References

  1. Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L (2017) Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid Med Cell Longev 2017:1–11. https://doi.org/10.1155/2017/2525967

    Article  CAS  Google Scholar 

  2. Kieroń M, Żekanowski C, Falk A, Wężyk M (2019) Oxidative DNA damage signalling in neural stem cells in Alzheimer’s disease. Oxid Med Cell Longev 2019:1–10. https://doi.org/10.1155/2019/2149812

    Article  CAS  Google Scholar 

  3. Shoemaker LD, Kornblum HI (2016) Neural stem cells (NSCs) and proteomics. Mol Cell Proteomics 15(2):344–354. https://doi.org/10.1074/mcp.O115.052704

    Article  CAS  PubMed  Google Scholar 

  4. O’Sullivan RJ, Karlseder J (2010) Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 11(3):171–181. https://doi.org/10.1038/nrm2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shay JW, Wright WE (2019) Telomeres and telomerase: three decades of progress. Nat Rev Genet. https://doi.org/10.1038/s41576-019-0099-1

    Article  PubMed  Google Scholar 

  6. Srinivas N, Rachakonda S, Kumar R (2020) Telomeres and telomere length: a general overview. Cancers 12(3):558. https://doi.org/10.3390/cancers12030558

    Article  CAS  PubMed Central  Google Scholar 

  7. Graf M, Bonetti D, Lockhart A, Serhal K, Kellner V, Maicher A, Jolivet P, Teixeira MT, et al. (2017) Telomere length determines TERRA and R-loop regulation through the cell cycle. Cell 170(1):72-85.e14. https://doi.org/10.1016/j.cell.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  8. Li W, Ma Y, Li Z, Lv X, Wang X, Zhou D, Luo S, Wilson JX, et al. (2019) Folic acid decreases astrocyte apoptosis by preventing oxidative stress-induced telomere attrition. Int J Mol Sci 21(1):62. https://doi.org/10.3390/ijms21010062

    Article  CAS  PubMed Central  Google Scholar 

  9. Cui S, Lv X, Li W, Li Z, Liu H, Gao Y, Huang G (2018) Folic acid modulates VPO1 DNA methylation levels and alleviates oxidative stress-induced apoptosis in vivo and in vitro. Redox Biol 19:81–91. https://doi.org/10.1016/j.redox.2018.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barnes RP, Fouquerel E, Opresko PL (2018) The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev. https://doi.org/10.1016/j.mad.2018.03.013

    Article  PubMed  PubMed Central  Google Scholar 

  11. Reynolds E (2006) Vitamin B12, folic acid, and the nervous system. Lancet Neurol 5(11):949–960. https://doi.org/10.1016/s1474-4422(06)70598-1

    Article  CAS  PubMed  Google Scholar 

  12. Li W, Yu M, Luo S, Liu H, Gao Y, Wilson JX, Huang G (2013) DNA methyltransferase mediates dose-dependent stimulation of neural stem cell proliferation by folate. J Nutr Biochem 24(7):1295–1301. https://doi.org/10.1016/j.jnutbio.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  13. Luo S, Zhang X, Yu M, Yan H, Liu H, Wilson JX, Huang G (2013) Folic acid acts through DNA methyltransferases to induce the differentiation of neural stem cells into neurons. Cell Biochem Biophys 66(3):559–566. https://doi.org/10.1007/s12013-012-9503-6

    Article  CAS  PubMed  Google Scholar 

  14. Jia D, Liu H, Wang F, Liu S, Ling E, Liu K, Hao A (2008) Folic acid supplementation affects apoptosis and differentiation of embryonic neural stem cells exposed to high glucose. Neurosci Lett 440(1):27–31. https://doi.org/10.1016/j.neulet.2008.05.053

    Article  CAS  PubMed  Google Scholar 

  15. Khandelwal S, Boylan M, Kirsch G, Spallholz JE, Gollahon LS (2020) Investigating the potential of conjugated selenium redox folic acid as a treatment for triple negative breast cancer. Antioxidants 9(2):138. https://doi.org/10.3390/antiox9020138

    Article  CAS  PubMed Central  Google Scholar 

  16. Pang Z, Zhou J, Sun C (2020) Ditelluride-bridged PEG-PCL copolymer as folic acid-targeted and redox-responsive nanoparticles for enhanced cancer therapy. Front Chem, 8. https://doi.org/10.3389/fchem.2020.00156

  17. Lv X, Wang X, Wang Y, Zhou D, Li W, Wilson JX, Chang H, Huang G (2019) Folic acid delays age-related cognitive decline in senescence-accelerated mouse prone 8: alleviating telomere attrition as a potential mechanism. Aging 11(22):10356–10373. https://doi.org/10.18632/aging.102461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim J, Wong PKY (2009) Loss of ATM impairs proliferation of neural stem cells through oxidative stress-mediated p38 MAPK signaling. Stem Cells 27(8):1987–1998. https://doi.org/10.1002/stem.125

    Article  CAS  PubMed  Google Scholar 

  19. Chen C-C, Hsia C-W, Ho C-W, Liang C-M, Chen C-M, Huang K-L, Kang B-H, Chen Y-H (2017) Hypoxia and hyperoxia differentially control proliferation of rat neural crest stem cells via distinct regulatory pathways of the HIF1α-CXCR4 and TP53-TPM1 proteins. Dev Dyn 246(3):162–185. https://doi.org/10.1002/dvdy.24481

    Article  CAS  PubMed  Google Scholar 

  20. Liu XL, Lu YS, Gao JY, Marshall C, Xiao M, Miao DS, Karaplis A, Goltzman D, et al. (2013) Calcium sensing receptor absence delays postnatal brain development via direct and indirect mechanisms. Mol Neurobiol 48:590–600. https://doi.org/10.1007/s12035-013-8448-0

    Article  CAS  PubMed  Google Scholar 

  21. Cawthon RM (2009) Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res 37(3):e21–e21. https://doi.org/10.1093/nar/gkn1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dong Y, Zhang G, Yuan X, Zhang Y, Hu M (2016) Telomere length and telomere repeating factors: cellular markers for post-traumatic stress disorder-like model. J Affect Disord 195:156–162. https://doi.org/10.1016/j.jad.2016.02.032

    Article  CAS  PubMed  Google Scholar 

  23. Mishra D, Rai R, Srivastav SK, Srivastav AK (2011) Histological alterations in the prolactin cells of a teleost, Heteropneustes fossilis, after exposure to cypermethrin. Environ Toxicol 26(4):359–363. https://doi.org/10.1002/tox.20562

    Article  CAS  PubMed  Google Scholar 

  24. Canton CG, Anadon A, Meredith C (2012) γ-H2AX as a novel endpoint to detect DNA damage: applications for the assessment of the in vitro genotoxicity of cigarette smoke. Toxicol In Vitro 26(7):1075–1086. https://doi.org/10.1016/j.tiv.2012.06.006

    Article  CAS  Google Scholar 

  25. O’Callaghan N, Baack N, Sharif R, Fenech M (2011) A qPCR-based assay to quantify oxidized guanine and other FPG-sensitive base lesions within telomeric DNA. Biotechniques, 51(6). https://doi.org/10.2144/000113788

  26. Tang LS, Santillano DR, Wlodarczyk BJ, Miranda RC, Finnell RH (2005) Role of Folbp1 in the regional regulation of apoptosis and cell proliferation in the developing neural tube and craniofacies. Am J Med Genetics Part C-Seminars Med Genetics, 15;135C(1):48–58. https://doi.org/10.1002/ajmg.c.30053

  27. Liu H, Huang G, Zhang X, Ren D, Wilson JX (2010) Folic acid supplementation stimulates notch signaling and cell proliferation in embryonic neural stem cells. Journal of Clinical Biochemistry and Nutrition 47(2):174–180. https://doi.org/10.3164/jcbn.10-47

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cheng M, Yang L, Dong Z, Wang M, Sun Y, Liu H, Wang X, Sai N, et al. (2019) Folic acid deficiency enhanced microglial immune response via the Notch1/nuclear factor kappa B p65 pathway in hippocampus following rat brain I/R injury and BV2 cells. J Cell Mol Med. https://doi.org/10.1111/jcmm.14368

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shen Y, Dong Z, Pan P, Xu G, Huang J, Liu C (2019) Association of homocysteine, folate, and white matter hyperintensities in Parkinson’s patients with different motor phenotypes. Neurol Sci. https://doi.org/10.1007/s10072-019-03906-3

    Article  PubMed  PubMed Central  Google Scholar 

  30. Coray TW (2016) Ageing, neurodegeneration and brain rejuvenation. Nature 539(7628):180–186. https://doi.org/10.1038/nature20411

    Article  CAS  Google Scholar 

  31. Violi F, Loffredo L, Carnevale R, Pignatelli P, Pastori D (2017) Atherothrombosis and oxidative stress: mechanisms and management in elderly. Antioxid Redox Signal 27(14):1083–1124. https://doi.org/10.1089/ars.2016.6963

    Article  CAS  PubMed  Google Scholar 

  32. Kahya MC, Nazıroğlu M, Övey İS (2016) Modulation of diabetes-induced oxidative stress, apoptosis, and Ca2+ entry through TRPM2 and TRPV1 channels in dorsal root ganglion and hippocampus of diabetic rats by melatonin and selenium. Mol Neurobiol 54(3):2345–2360. https://doi.org/10.1007/s12035-016-9727-3

    Article  CAS  PubMed  Google Scholar 

  33. Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N (2016) Oxidative stress and inflammation: what polyphenols can do for us? Oxid Med Cell Longev 2016:1–9. https://doi.org/10.1155/2016/7432797

    Article  CAS  Google Scholar 

  34. Liu Z, Nie R, Liu Y, Li Z, Yang C, Xiong Z (2017) Effects of total soy saponins on free radicals in the quadriceps femoris, serum testosterone, LDH, and BUN of exhausted rats. J Sport Health Sci 6(3):359–364. https://doi.org/10.1016/j.jshs.2016.01.016

    Article  PubMed  Google Scholar 

  35. Moretti E, Micheli L, Noto D, Fiaschi AI, Menchiari A, Cerretani D (2019) Resistin in human seminal plasma: relationship with lipid peroxidation, CAT activity, GSH/GSSG ratio, and semen parameters. Oxid Med Cell Longev 2019:1–8. https://doi.org/10.1155/2019/2192093

    Article  CAS  Google Scholar 

  36. Shay JW (2018) Telomeres and aging. Curr Opin Cell Biol 52:1–7. https://doi.org/10.1016/j.ceb.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  37. Rivera T, Haggblom C, Cosconati S, Karlseder J (2016) A balance between elongation and trimming regulates telomere stability in stem cells. Nat Struct Mol Biol 24(1):30–39. https://doi.org/10.1038/nsmb.3335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu J, Wang L, Wang Z, Liu J (2019) Roles of telomere biology in cell senescence replicative and chronological ageing. Cells 8(1):54. https://doi.org/10.3390/cells8010054

    Article  CAS  PubMed Central  Google Scholar 

  39. Sousounis K, Baddour JA, Tsonis PA (2014) Aging and regeneration in vertebrates. Curr Topics Develop Biol, 217–246. https://doi.org/10.1016/b978-0-12-391498-9.00008-5

  40. Aeby E, Ahmed W, Redon S, Simanis V, Lingner J (2016) Peroxiredoxin 1 protects telomeres from oxidative damage and preserves telomeric DNA for extension by telomerase. Cell Rep 17(12):3107–3114. https://doi.org/10.1016/j.celrep.2016.11.071

    Article  CAS  PubMed  Google Scholar 

  41. Von Zglinicki T, Pilger R, Sitte N (2000) Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radical Biol Med 28(1):64–74. https://doi.org/10.1016/s0891-5849(99)00207-5

    Article  Google Scholar 

  42. Chernikov AV, Gudkov SV, Usacheva AM, Bruskov VI (2017) Exogenous 8-oxo-7,8-dihydro-2′-deoxyguanosine: biomedical properties, mechanisms of action, and therapeutic potential. Biochem Mosc 82(13):1686–1701. https://doi.org/10.1134/s0006297917130089

    Article  CAS  Google Scholar 

  43. Kurz DJ (2004) Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci 117(11):2417–2426. https://doi.org/10.1242/jcs.01097

    Article  CAS  PubMed  Google Scholar 

  44. Gorelova V, De Lepeleire J, Van Daele J, Pluim D, Meï C, Cuypers A, Leroux O, Rébeillé F, Schellens JHM, Blancquaert D, Stove CP, Van Der Straeten D (2017) Dihydrofolate reductase/thymidylate synthase fine-tunes the folate status and controls redox homeostasis in plants. Plant Cell, 29(11), 2831–2853. https://doi.org/10.1105/tpc.17.00433

  45. Zhang XF, Yang RF, Wang J, Zhao L, Li L, Shen FM, Su DF (2006) Arterial baroreflex function does not influence telomere length in kidney of rats. Acta Pharmacol Sin 27(11):1409–1416. https://doi.org/10.1111/j.1745-7254

    Article  CAS  PubMed  Google Scholar 

  46. Li Z, Zhou D, Zhang D, Zhao J, Li W, Sun Y, Chen Y, Liu H, et al. (2021). Folic acid inhibits aging-induced telomere attrition and apoptosis in astrocytes in vivo and in vitro. Cerebral Cortex, 5; bhab208. https://doi.org/10.1093/cercor/bhab208

  47. Hastings R, Qureshi M, Verma R, Lacy PS, Williams B (2004) Telomere attrition and accumulation of senescent cells in cultured human endothelial cells. Cell Prolif 37(4):317–324. https://doi.org/10.1111/j.1365-2184.2004.00315.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Huan Liu, Bei Xu, and Suhui Luo from National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, for their suggestions and technical assistance.

Funding

This research was supported by a grant from the National Natural Science Foundation of China (No. 81730091) and Natural Science Foundation of Tianjin (No. 19JCQNJC11700).

Author information

Authors and Affiliations

Authors

Contributions

ZL and WL conducted data curation; ZL and WL wrote the original draft; ZL and DZ analyzed the data; JZ, YM, and LH contributed to the methodology; CD contributed to software; JXW and GH reviewed and edited the draft; GH and WL contributed to funding acquisition. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Guowei Huang.

Ethics declarations

Ethics Approval

The Tianjin Medical University Animal Ethics Committee approved all experimental protocols in this study.

Consent to Participate

Not applicable to this study.

Consent for Publication

Not applicable to this study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, W., Zhou, D. et al. Alleviating Oxidative Damage–Induced Telomere Attrition: a Potential Mechanism for Inhibition by Folic Acid of Apoptosis in Neural Stem Cells. Mol Neurobiol 59, 590–602 (2022). https://doi.org/10.1007/s12035-021-02623-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02623-3

Keywords

Navigation