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Abstract
Severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) due to novel coronavirus disease 2019 (COVID-19) has 
affected the global society in numerous unprecedented ways, with considerable morbidity and mortality. Both direct and 
indirect consequences from COVID-19 infection are recognized to give rise to cardio- and cerebrovascular complications. 
Despite current limited knowledge on COVID-19 pathogenesis, inflammation, endothelial dysfunction, and coagulopathy 
appear to play critical roles in COVID-19-associated cerebrovascular disease (CVD). One of the major subtypes of CVD is 
cerebral small vessel disease (CSVD) which represents a spectrum of pathological processes of various etiologies affecting 
the brain microcirculation that can trigger subsequent neuroinflammation and neurodegeneration. Prevalent with aging, 
CSVD is a recognized risk factor for stroke, vascular dementia, and Alzheimer’s disease. In the background of COVID-19 
infection, the heightened cellular activations from inflammations and oxidative stress may result in elevated levels of micro-
thrombogenic extracellular-derived circulating microparticles (MPs). Consequently, MPs could act as pro-coagulant risk 
factor that may serve as microthrombi for the vulnerable microcirculation in the brain leading to CSVD manifestations. This 
review aims to appraise the accumulating body of evidence on the plausible impact of COVID-19 infection on the formation 
of microthrombogenic MPs that could lead to microthrombosis in CSVD manifestations, including occult CSVD which may 
last well beyond the pandemic era.
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Introduction

In 2020, the world is battling a pandemic caused by a 
novel coronavirus disease 2019 (COVID-19). The first 
appeared in Wuhan, China, in December 2019 with 41 
cases of atypical pneumonia; it was not until early Janu-
ary 2020 that these cases were confirmed as an infection 
attributed to COVID-19 [1]. The pneumonia it caused 
was later named as severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2) [2]. By early March 2020, 
COVID-19 has been declared as a pandemic by the World 
Health Organization (WHO), and to date, it remains una-
bated worldwide surpassing 100 million cases and over 
two million deaths as on 15 January 2021 [3]. The clini-
cal manifestations of COVID-19 and the disease course 
are erratic, ranging from asymptomatic to mild respiratory 
infections, pneumonia to acute respiratory distress syn-
drome (ARDS), and even death [4, 5]. At present, we have 
no definitive treatment for COVID-19, while concerted 
global efforts are well in progress [6]. Given that our pre-
sent knowledge of COVID-19 and SARS-CoV-2 is still 
expanding, most countries are currently putting their best 
efforts by implementing preventive and control strategies 
to break the chain of COVID-19 infection.

Beyond the pulmonary manifestations, both direct 
and indirect consequences from COVID-19 infection are 
known to cause cardio- and cerebrovascular complica-
tions [7]. Despite current limited knowledge on COVID-
19 pathogenesis, inflammation, endothelial dysfunction, 
and coagulopathy appear to play critical roles in COVID-
19-associated acute cerebrovascular disease (CVD) [8, 
9]. One of the major subtypes of CVD is cerebral small 
vessel disease (CSVD) which represents a spectrum of 
pathological processes of various etiologies affecting the 
brain microcirculation that can trigger subsequent neu-
roinflammation and neurodegeneration. Prevalent with 
aging, CSVD is a recognized risk factor for stroke, vascu-
lar dementia, and Alzheimer’s disease (AD) [10, 11]. In 
the background of COVID-19 infection, the known height-
ened cellular activation from inflammation and oxidative 
stress may result in elevated levels of microthrombogenic 
extracellular-derived circulating microparticles (MPs). 
Consequently, MPs could act as pro-coagulant risk fac-
tor that could serve as microthrombi for the vulnerable 
microcirculation in the brain leading to recognized CSVD 
manifestations [12, 13], i.e., from asymptomatic (occult) 
to symptomatic (typical lacunar stroke).

Hence, this review aims to appraise the accumulating 
body of evidence on the plausible impacts of COVID-19 on 
the formation of microthrombogenic MPs that could lead to 
microthrombosis in CSVD manifestations, including occult 
CSVD which may last well beyond the pandemic era.

Characteristic of COVID‑19

The family Coronaviridae are large, enveloped viruses 
with a positive sense ribonucleic acid (RNA) genome that 
can infect both animals and humans. These coronaviruses 
may resemble one another in terms of their pathogenesis 
and pathological features and even share similar clinical 
manifestations [14]. Bats are widely viewed as its reservoir, 
while Malayan pangolins (Manis javanica) is thought to be 
the intermediate host to facilitate the zoonotic transfer to 
humans [15].

According to the International Committee on Taxonomy 
of Viruses, SARS-CoV-2 belongs to a member of the genus 
Betacoronavirus [16] that can cause multi-system clinical 
manifestations involving respiratory, enteric, hepatobiliary, 
and nervous systems [17]. SARS-CoV-2 has now proven 
itself as a highly pathogenic coronavirus to infect human 
populations. Two other members of this family, the severe 
acute respiratory syndrome coronavirus (SARS‐CoV) and 
Middle East respiratory syndrome coronavirus (MERS‐
CoV), had previously resulted in significant global out-
breaks in 2002 and 2012, respectively [18], though not to 
the scale of a pandemic. SARS-CoV-2 is genetically distinct 
from SARS-CoV (near 79% similarity) and MERS-CoV 
(near 50% similarity) [1]. Structurally, SARS-CoV-2 RNA 
encodes four principal proteins: one nucleocapsid protein 
surrounding the RNA genome and three membrane pro-
teins, the spike glycoprotein (S) with S1 and S2 domains, 
the matrix glycoprotein, and the envelope protein [19].

The Virology of COVID‑19

During the initial phase of the infection, the virus infiltrates 
and proliferates in the lung parenchyma. Upon entry into the 
respiratory tract, the virus targets the surfactant-producing, 
alveolar epithelial type 2 (AT2) cells. Surfactant decreases 
the surface tension within alveoli to reduce airway collapse. 
This early phase is characterized clinically by mild constitu-
tional symptoms as the virus releases inflammatory media-
tors to stimulate monocyte/macrophage infiltration as the 
innate immune system initial response [20].

The entry into the AT2 cell is mediated by S glycopro-
tein interaction with the host angiotensin converting enzyme 
2 (ACE2) receptor [21] (Fig. 1). Of note, ACE2 receptors 
can also be found in the kidney, heart, gut, pancreas, and 
endothelial cells (ECs) [22]. In normal physiology, ACE2 
helps to regulate the blood pressure via inhibition of the 
angiotensin renin-aldosterone pathways [23]. However, ele-
vated level of angiotensin II has been associated with vaso-
constriction oxidative process and apoptosis that lead to neu-
rodegeneration and age-related degenerative disease [24]. 
The S1 domain facilitates the virus-receptor binding, while 
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the S2 domain causes fusion of the viral RNA with the cell 
membrane [24]. Notably, the CoV S protein is cleaved by 
a group of serine proteases, including elastase, cathepsins, 
trypsin, type 2 transmembrane serine protease (TMPRSS2) 
[20], and integrins that enable invasion into the epithelial 
cells [25]. On this basis, the use of chloroquine and hydroxy-
chloroquine is linked to their ability to increase endosomal 
pH which can prevent ACE2 separation from SARS-CoV-2 
[26] and, hence, guard against an intracellular virus diffu-
sion. The anti-viral drugs (remdesivir, ribavirin, favipiravir, 
umifenovir, lopinavir/ritonavir) interfere with RNA process-
ing steps to arrest the viral replication [27]. Furthermore, 
neutralizing antibodies from those who recovered from 

COVID-19 had resulted in reduction of the viral loads [28]. 
Meanwhile, candidate vaccines with promising leads include 
adenovirus recombinant vectors, type 26 (rAd26) and type 5 
(rAd5) carrying the gene for SARS-CoV-2 spike glycopro-
tein (rAd26-S and rAd5-S) and the chimpanzee adenovirus-
vectored vaccine (ChAdOx1 nCoV-19) (Oxford University/
AstraZeneca) expressing the SARS-CoV-2 spike protein [29, 
30]. Moreover, two encapsulated RNA-based vaccines have 
been proven effective including mRNA-1273 (Moderna) 
with 94.1% efficacy [31] and BNT162b2 (Pfizer/BioNTech) 
with 95% efficacy [32] with emergence use approvals by 
regulatory bodies in over 70 countries worldwide to date 
and counting. Aside from vaccines, there are also efforts 

Fig. 1   A schematic illustration of direct SARS-CoV-2 infection from 
the lung alveolus and blood circulation. The virus SARS-CoV-2 
(and its main structure) acquired through respiratory droplets attack-
ing angiotensin converting enzymes (ACE) type 2 receptors that are 
present on the surface of alveolus epithelium, namely, the alveolar 
epithelial type (AT2). The attachment of SARS-CoV-2 with ACE 
elicited the inflammatory reaction of the AT2 cells, releasing pro-
inflammatory cytokines; i.e., interleukin-8 (IL-8) alongside the acti-
vation of monocytes and neutrophil elevate the inflammation causing 
lung parenchymal injury. In addition, SARS-CoV-2 also can enter 

blood circulation and raise activation of circulating cells (i.e., mac-
rophage, monocytes, platelets, and neutrophil) to release pro-inflam-
matory cytokines causing endothelial inflammation (endotheliitis). 
Endotheliitis then activates the coagulation cascade and production 
of thrombin followed by fibrinolysis and fibrin. If left untreated, 
the infection will progress to cause hypercoagulation state lead-
ing to coagulopathy. Collectively, cytokines, cellular activation, and 
endothelial inflammation drive the production of microparticles 
(MPs) which further instigate the production of microthrombus, cell-
endothelium adhesion, and aggregation0
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to synthesize recombinant immunoglobulins to mimic the 
endogenous, neutralizing antibodies [19]. Numerous clinical 
trials are also underway that target antiprotease activities, 
including the plasmin(ogen) inhibitor, tranexamic acid, or 
TMPRSS2 antagonist (camostat mesylate and nafomastat) 
[33].

Clinico‑pathological Features of COVID‑19

COVID-19 affects all ages with adult predominance [4]. The 
established risk factors include age greater than 65 years, 
diabetes mellitus (i.e., type 2 diabetes mellitus, T2DM) and 
hypertension in nearly 40% of cases [7]. The advocated 
physical distancing is a measure to minimize human-to-
human transmission that can occur through droplets from 
the infected respiratory tract which can reach up to 2 m from 
a sneeze or a cough of an infected person [34]. The aver-
age incubation period is between 1 and 14 days [33], with 
up to 25% of those tested positives for COVID-19 that are 
asymptomatic [5, 35]. Upon entry across the mucous mem-
branes (nose and/or larynx), COVID-19 viruses can track its 
way to reach the lung parenchyma and subsequently result in 
viremia once in the systemic circulatory system resulting in 
a widespread hyperinflammation (Fig. 1). The commonest 

symptoms include fever, dry cough, dyspnea, ageusia, anos-
mia, myalgias, and/or fatigue [36]. Majority of cases would 
also have radiological evidence pneumonic changes [37]. 
Hence, the infected persons could worsen clinically, between 
7 and 14 days after the onset [38].

Based on the current targeted therapies for COVID-19 
cases that correspond to some extent with the evolving 
pathophysiological processes, the infection has been pro-
posed to constitute three key phases [39, 40]: The first phase 
involves viral replication and manifests with mild symptoms 
(viremia phase); the second phase features adaptive immu-
nity stimulation and more prominent respiratory symptoms 
(pneumonic phase); and the last phase, in severe cases, is 
characterized by a hyperinflammation phase (Fig. 2). How-
ever, overlaps do exist between these phases in individual 
patients. In general, individuals with competent immune 
functions and without notable risk factors may effectively 
suppress the virus in the first and/or second phase. However, 
patients with immune-compromised conditions may have a 
higher risk of progressing to the severe hyperinflammation 
phase leading to death.

Moreover, the lung parenchymal injury is mediated by 
inflammatory responses with vasodilation, endothelial per-
meability, and leukocyte recruitment (Fig. 1). The features 

Fig. 2   The known phases of COVID-19 infection: from viremia, 
pulmonary to multi-system manifestations; emphasis made on the 
impacts on the nervous system. Also shown are the simplified under-
lying COVID-19 likely pathomechanisms as the infection progresses, 
and the current corresponding therapeutic targets in the clinical man-

agement of each phase. It is probable that even after the recovery at 
any phase of the disease, the involvement of cellular activation by-
product (such as microparticles) may persist and result in an undesir-
able health sequel
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of respiratory dysfunction in this phase are distinct from 
the typical ARDS. The pulmonary compliance is slightly 
decreased in intubated COVID-19 patients [41] and respon-
sive to prone positioning and moderate levels of positive 
end expiratory pressure oxygen therapy. Unlike typical 
ARDS where alveoli are primarily affected [42], combina-
tion of severe hypoxemia without significant reduction in 
pulmonary compliance is rare. However, in COVID-19, it 
disrupts the pulmonary vascular endothelium resulting in 
a diffuse systemic disease. This is aggravated by a rapid 
activation of the coagulation cascade, which leads to perva-
sive micro- and macro-thrombogenesis within the lungs and 
other organs. Evidently, a markedly raised D-dimer level has 
been associated with a worse prognosis. Pulmonary vascular 
occlusion caused by the thrombotic microangiopathy and/
or pulmonary embolism leads to accumulation of respira-
tory dead space. Hence, this inflicts further damage to the 
lung whereby some patients could progress into ARDS-like 
features [41, 42]. Thus, multiple pathomechanisms are being 
implicated in the progression to ARDS in COVID-19 that 
feature disproportionate endothelial damage with hypoxic 
pulmonary vasoconstriction (i.e., ventilation-perfusion mis-
match), hypoxemia, as well as thrombogenesis [43]. In some 
cases, these occur within the background of heightened 
inflammatory responses that progress into the next phase 
of the infection.

COVID‑19 Complications

It is recognized that even with reducing viral loads, some 
COVID-19 patients continue to mount heightened inflamma-
tory storms leading into the final, hyperinflammation phase 
of the disease. This phase features systemic inflammation 
and distant organ damage that cause multi-organ dysfunction 
syndrome (MODS) [39, 44] (Fig. 2). Several serum markers 
found to be elevated and may influence prognosis include 
C-reactive protein (CRP), pro-inflammatory cytokines such 
as interleukin (IL)-2, IL-6, IL-7, interferon-γ inducible 
protein 10 (IP-10), granulocyte-colony stimulating factor 
(G-CSF), tumor necrosis factor alpha (TNF-α), macrophage 
inflammatory protein 1 alpha (MIP-1α), and monocyte che-
moattractant protein 1 (MCP-1) [45–48].

Hence, these pathophysiological mechanisms lead to both 
focal and systemic microvascular inflammation, which in 
turn trigger endothelial activation and aggravate the pro-
thrombotic states (Fig. 2). The massively elevated serum 
D-dimer levels may also be due to the vascular disease 
reported in this phase. Clinically, a significant number of 
hospitalized COVID-19 patients also suffered from acute 
pulmonary vascular thrombosis or embolism, myocardial 
infarction, CVD, and systemic arterial thrombosis that wors-
ened their prognosis [7]. There are amplified fibrin degra-
dation products (FDPs) reported in most severe cases with 

ARDS, septic shock, concurrent bacterial infections, dis-
seminated intravascular coagulopathy (DIC), and MODS 
[45, 49]. In such cases, heparin has been used as part of the 
multi-therapy regime. Thus, given this immune-coagulation 
systems interaction, heparin inhibition of thrombin activ-
ity may attenuate the inflammatory storms [50]. Similarly, 
potentials of corticosteroids, tocilizumab, sarilumab, and 
monoclonal antibodies against IL-6 receptor are actively 
being pursued to mitigate the severity of this phase.

COVID‑19 and Cerebrovascular Disease

It is well known that viral infections can inflict severe dam-
age to the structure and function of the nervous system, for 
example, viral infection in central nervous system (CNS) 
causing encephalitis and acute demyelinating lesions while 
systemic viral infections causing toxic encephalopathy 
[51]. Numerous evidence and case series reported SARS-
CoV-2 complications are not limited to respiratory system 
but include obvious manifestations of neurological distur-
bances including seizures, anosmia, stroke, encephalopathy, 
confusion, acute CVD, and total paralysis [9, 52–54]. It is 
estimated about 20% of COVID-19 patients admitted to 
the intensive care unit (ICU) exhibited neurological conse-
quences with a higher risk of mortality [55, 56]. Given the 
wide-ranging healthcare accessibility to COVID-19 patients 
management worldwide, these neurological symptoms may 
manifest until after discharge from COVID-19 hospitaliza-
tion, and some may even result in death [57]. Alarmingly, 
recovered COVID-19 patients are believed to be at a possible 
higher risk for long-term effects of neurodegenerative, neu-
rocognitive, and neuropsychiatric disorders such as demen-
tia, depression, anxiety, AD, and Parkinson’s disease [58, 
59] (Fig. 2).

Furthermore, gradual reports have emerged since the 
outbreak of COVID-19 demonstrating the link between 
COVID-19 and CVD/acute CVD among those with a higher 
risk of cardio-embolic as well as arterio-arterial embolic 
events [54, 57, 60, 61]. Through neuroimaging, Li et al. 
[62] confirmed the evidence of CVD and reported that most 
COVID-19 patients had cerebral ischemic infarcts in both 
large and small arterial vessels [62]. This is in parallel with 
the observed complication of DIC which is higher among 
COVID-19 patients with higher FDPs levels and prolonged 
prothrombin time (PT) and activated partial thromboplas-
tin time (aPTT) [57, 62], with risk of death. In Wuhan, 
where the disease originated, about 36% of patients with 
COVID-19 showed signs and symptoms of acute CVD, 
where up to 6% among those with a more severe disease 
(elevated D-dimer and depleted platelets) [9, 63, 64]. The 
common types of acute CVD associated with COVID-19 
infection in most reports are cryptogenic strokes (65%) [60]. 
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Nevertheless, the causality between CVD and COVID-19 
infection remains obscure, although recognized multi-fac-
torial triggers include hypercoagulability, hyperviscosity, 
thrombogenesis, and cytokines release syndrome (CRS) as 
observed in growing case series [46, 57, 63] (Fig. 1).

Cerebral Small Vessel Disease

Accumulating body of evidence implicates SARS-CoV-2 
role in eliciting the systemic event (i.e., inflammation and 
pro-coagulant/thrombotic cascade) within the large vessel 
environment linking COVID-19 with large vessel strokes. 
Hence, similar repercussion may well extend into the small 
vessel microenvironment within the brain [65]. Since the 
involvement of small vessel disease (SVD) has been con-
firmed as a complication from COVID-19 infection, it is 
important to appreciate that one of the most significant man-
ifestations of SVD (i.e., stroke) occurs from the occlusion 
(ischemia) of small blood vessels deep within the brain or 
so-called cerebral ischemia or ischemic stroke [66]. Preva-
lent among healthy aging adults, about 30% of ischemic or 
lacunar strokes are thought to represent CSVD [66]. CSVD 
is due to the spectrum of complex and overlapping patho-
physiological mechanism and often occult or asymptomatic 
in nature that often incidentally found after neuroimaging 
(i.e., magnetic resonance imaging, MRI). However, it is well 
supported that CSVD is mainly due to the pathological con-
sequences of SVD on the brain parenchyma rather than the 
underlying diseases of the vessels [67]. Therefore, the term 
CSVD signifies a brain parenchyma injury (often progres-
sive or accumulating) associated with distal leptomeningeal 
and intracerebral vessel pathology that resides in poorly col-
lateralized subcortical gray and deep white matter. Moreo-
ver, it is mainly due to several focal or diffuse microvascular 
pathological processes that affect and cause occlusion to the 
small perforating cerebral capillaries (of sizes 50–400 mm), 
small arteries (mostly branches of MCAs), arterioles (diam-
eter < 0.1 mm), and venules that penetrate and supply the 
brain cortical and subcortical region [68, 69].

There are several etiopathogenic classifications of CSVD. 
However, the most well-recognized forms of CSVD are the 
amyloidal CSVD (e.g., sporadic, and hereditary cerebral 
amyloid angiopathy [CAA]) and non-amyloidal CSVD 
including age-related and vascular risk factor-related SVD 
(i.e., arteriolosclerosis and age) [68]. Other less common 
forms of CSVD include inherited or genetic (monogenic) 
CSVD that is recognizably different from CAA (i.e., Fab-
ry’s disease and cerebral autosomal dominant arteriopathy 
with subcortical ischemic strokes and leukoencephalopa-
thy [CADASIL]), inflammatory and immunologically 
mediated CSVD, venous collagenosis, and other CSVD 
(i.e., non-amyloid micro-vessel degeneration in AD and 
post-radiation angiopathy) [70]. Several manifestations of 

CSVD can be seen through clinical, such as acute lacunar 
infarct and intraparenchymal hemorrhage, and radiological 
(i.e., neuroimaging), such as white matter hyperintensities 
(WMHs) of presumed vascular origin, cerebral microbleeds 
(CMBs), cortical microinfarcts, lacunar infarcts and recent 
subcortical brain infarcts (RSBI) and enlarged perivascular 
spaces (PVS), or pathological phenomena with multifaceted 
etiologies [13, 69, 71]. However, the lack of standardiza-
tion and consistency in neuroimaging techniques lead to the 
development of STandards for Reporting Vascular changes 
on nEuroimaging (STRIVE), aided in the imaging based 
visual identification and classification of CSVD spectrum 
[72]. Figure 3 describes the neuroimaging correlates of dif-
ferent CSVD manifestations based on the STRIVE method 
and COVID-19 findings.

COVID‑19 and CSVD: Inter‑current Risk Factors

A recent study has highlighted that young and healthy indi-
viduals either symptomatic (i.e., cough or fever) or asymp-
tomatic of COVID-19 can present with large vessel stroke 
[76], while hypertensive COVID-19 patients are more likely 
to develop CVD, both large and small vessel strokes [77]. 
Moreover, metabolic syndromes such as obesity and high 
body mass index (BMI) have been associated with the sever-
ity of respiratory viral infection [78] and COVID-19, hence 
being considered a risk factor for acquiring the infection 
[79, 80]. However, there are several and complex known 
risk factors towards development and progression of CSVD 
manifestation. For example, increase in WMHs, lacunar 
infarcts, and recent subcortical brain infarct (RSBI) were 
associated with lifetime exposure towards cardio-cerebrovas-
cular risks such as metabolic syndrome (i.e., hypertension, 
obesity, hyperlipidemia, dyslipidemia), lifestyle (i.e., smok-
ing, extreme alcohol intake), and T2DM which can progress 
towards acute ischemic (lacunar) stroke [81]. Apparently, 
age has served as one of the most significant determinants 
of the onset, proportion, and progression of all CSVD mani-
festation (prevalent with healthy aging [~ 6%] in CMBs). 
A higher risk of CMBs has been found in individuals with 
symptomatic CVD such as ischemic stroke and intraparen-
chymal hemorrhage [11]. Therefore, metabolic syndromes 
and age are major risk factors for CVD-related COVID-19 
infection.

Meanwhile, genetic factors such as NOTCH3 gene (chro-
mosome 19) mutation as seen in CADASIL; mitochondria 
DNA mutation as seen in mitochondrial encephalomyopa-
thy; lactic acidosis; and stroke like syndrome (MELAS), 
Fabry’s disease, and familial CAA increase the burden and 
prevalence of CSVD [82]. One case report demonstrated the 
presence of chronic SVD in a young (38 years old) COVID-
19 patient with a family history of CADASIL, whereby 
bilateral acute cerebral infarcts in multiple locations within 
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internal border zone (or subcortical lesion) distribution (i.e., 
at the junction of two arterial territories) were found after 
neuroimaging. Hence, this suggests the involvement of small 
vessel attributable to compromised cerebral microcirculation 
[75] (Fig. 3).

Intriguingly, a recent retrospective case–control study 
(41 COVID-19 cases) had shown that COVID-19 was an 
independent risk factor for cerebral ischemia (i.e., acute 
ischemic stroke), whereby the association was achieved 
even after age, sex, and other risk factors (i.e., hypertension, 
T2DM) were adjusted and matched [83], suggesting that age 
is not associated with COVID-19-mediated CVD. This is 
supported by Moriguchi and colleagues [84] who reported 
hyperintense signal on brain MRI in the hippocampus and 
inferior horn of the right ventricle and right mesial temporal 
lobe in a young (24-year-old) COVID-19 patient [84] that 
indicated the presence of CSVD manifestation. Addition-
ally, a case report highlighted the involvement of cerebral 

microcirculation insults with a COVID-19 test positive but 
asymptomatic young individual (i.e. without COVID-19 
flu-like symptoms) who suffered from a sudden onset dys-
phasia and left hemiparesis where subsequent neuroimaging 
revealed two recent small infarctions in the right perirolan-
dic cortex (hence, involving small vessel) without signs of 
any previous ischemic/hemorrhagic lesion and with rigor-
ous exclusions of other conventional stroke risk factors [85]. 
Thus, the involvement of symptomatic small vessel stroke 
is recognized in COVID-19 small case series and often 
regarded as cryptogenic [57, 63].

Additionally, Hanafi and colleagues [86] had reported 
the possibility of a small intracranial vascular injury in 
the distribution of cerebral distal perforating arteries (i.e., 
enlarged PVS, deep WMHs) without large vessel (intra- or 
extracranial) involvement as COVID-19 neurovascular com-
plications in an older individual suggestive of small vessel 
damage [86], while Brun and colleagues [87] reported the 

Fig. 3   Neuroimaging correlates of CSVD based on STRIVE method. 
A Recent small subcortical infarct (RSBI) on diffusion weighted 
imaging (DWI) (red arrow). Usual diameter is around 3–15 mm, with 
hyperintense rim surrounding ovoid cavity. RSBI seen as increased 
T2-weighted, fluid attenuated inverse recovery (FLAIR), and DWI 
signal intensities and decreased T1-weighted signal and iso-intense 
in T2*-weighted gradient recoiled echo (GRE) signal and suscepti-
bility weighted imaging (SWI). RSBI is best identified through DWI 
with usual infarct diameter of ≤ 20 mm. B Lacunar infracts on FLAIR 
(red arrow). Lacunar infarcts appeared as increase hyperintensity in 
T2-weighted signal, decrease T1-weighted, and FLAIR signal and 
iso-intense in DWI. Usual diameter is around 3–15 mm, with hyper-
intense rim surrounding ovoid cavity. C White matter hyperintensi-
ties (WMHs) of presumed vascular origin on FLAIR (arrow). WMHS 
seen as increase intensity or hyperintensity on T2-weighted imag-
ing, T2*-weighted GRE and FLAIR (best identified); iso-intense on 
DWI; and hypointense (decrease intensity) on T1-weighted imaging. 
D FLAIR WMHs at left superior frontal gyrus and left anterior cin-
gulate cortex, from a 60-year-old COVID-19 patient without history 

of seizures. E Enlarged perivascular spaces (PVS) on T1-weighted 
imaging (red arrow) with usual diameter of ≤ 2 mm. PVS is seen as 
decrease FLAIR and T1-weighted signal intensity, with increase 
T2-weighted signal. Meanwhile, T2*-weighted GRE and DWI 
appeared iso-intense, and they also appeared in similar signal inten-
sity with cerebrospinal fluid (CSF). F Cerebral microbleeds (CMBs) 
on T2*-GRE (red arrow). CMBs are small, rounded areas of signal 
void with blooming, whereby they were visualized as iso-intense 
T1- and T2-weighted signal, FLAIR, and DWI. They are best identi-
fied under T2*-weighted GRE or SWI as reduced signal intensities. 
Usual diameter is around ≤ 10 mm (mostly 2–5 mm). G 3 Tesla-MRI 
representation of cortical microinfarcts (red arrow) on T1-weighted 
(hypointense). H FLAIR WMHs in multiple foci, including the deep 
white matter, periventricular, and subcortical regions in COVID-
19 patient with CADASIL. Notes: (A), (B), (C), (E), and (F) were 
adapted from Mustapha et  al. [70]; (D) was adapted from Muham-
medi et al. [73]; (G) was adapted from Takasugi et al. [74], and (H) 
was adapted from Williams et al. [75]
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involvement of acute demyelination (restricted diffusion 
with FLAIR-MRI hyperintensities) as seen from bilateral 
and asymmetrical periventricular (involving corpus callo-
sum) and deep WMHs of a 54-year-old COVID-19 patient, 
hence suggesting cerebral ischemia due to small vessel vas-
culitis [87]. Meanwhile, a prospective study conducted on 
60 recovered COVID-19 patients (age- and sex-matched) 
found more than half (55%) presented with neurological 
syndromes [88]. Neuroimaging study (including diffusion 
tensor imaging, DTI) revealed that these individuals had 
bilateral enlargement of gray matter volumes (GMV) in 
their central olfactory system, suggesting that SARS-CoV-2 
may invade CNS through olfactory bulb via retrograde route 
and the GMV enlargement indicates neuronal compensa-
tion during recovery period after COVID-19 [88]. Besides, 
DTI parameters revealed that these individuals had higher 
mean diffusivity (MD) and lower fractional anisotropy (FA) 
in white matter tracts (i.e., corona radiata, external capsule, 
and superior fronto-occipital fasciculus) [88], suggesting an 
increase in white matter fibers alignment and limited dif-
fusion prior to an intrinsic neuronal remyelination after an 
infection or during the recovery period [89]. Collectively, 
there is enough evidence to deduce the likely cerebral micro-
circulation (structural and function) disruption and cerebral 
white matter loss of integrity during and after (i.e., recovery 
period) COVID-19 infection, hence indicating the risk and 
consequences of COVID-19 on onset and progression of 
CSVD even after the infection has ceased, be it asympto-
matic or symptomatic manifestations.

COVID‑19 and CSVD: Putative 
Pathomechanisms

Relatively small micro-vessels play essential roles in CNS 
in terms of neurovascular unit or the blood–brain barrier 
(BBB). To date, various and intensive investigations have 
been carried out to study the mechanism of interaction 
between cerebral parenchyma and its surrounding micro-
vasculature [90]. However, it is well accepted that neuro-
vascular unit or BBB owns the prior role in brain health and 
plasticity (capacity to recover) from insults that may initiate 
the pathologic cascade towards neurodegenerative disease 
(NDD). Two classical clinicopathologic representations 
of CSVD are linked to arteriolosclerosis or lipohyalinosis 
(thickening and/or damage the wall of arterioles) and occlu-
sion of cerebral penetrating arteries [91]. However, most of 
the SVD are representation of cerebral arterial microcircula-
tion flow obstruction (intrinsic or extrinsic). For example, 
an arteriolar occlusion or narrowing resulted in ischemia as 
seen in small lacunar infarcts.

Various pathological changes of CSVD not only give rise 
to cerebral parenchyma damage (i.e., axonal injury, neuronal 

apoptosis, demyelination, and oligodendrocyte damage), 
with consequent neurological symptoms, signs, and mul-
tifaceted neuroimaging findings [92]. Nonetheless, the 
underlying pathomechanism of CSVD remains contentious 
despite the growing insights from histopathological, epide-
miological, and physiological studies. Several systemic dys-
regulations including abnormal coagulation, elevated micro-
thrombosis, genetic mutation, increase cellular activation, 
inflammation, and oxidative stress are the major contributors 
towards endothelial dysfunction, altered cerebral blood flow 
(CBF), and BBB breakdown which provide further insights 
on the current known pathomechanism of CSVD.

Moreover, during the course of COVID-19 infection, 
the hypercoagulability and thrombotic vascular events are 
known to be associated with neurovascular involvement 
such as acute CVD [52]. Interestingly, SARS-CoV-2 has 
been detected in the cerebrospinal fluid (CSF) indicating its 
direct ability to invade and infect the nervous system from 
ACE2 receptor-mediated entry through retrograde route 
[52]. Hence, various studies have proposed several plausible 
mechanisms of COVID-19-related nervous system damage 
including direct infection injury such as viral neurotropism 
through neuronal pathway (retrograde route) and systemic 
blood circulation or hematogenous route (i.e., endothelial 
dysfunction, coagulopathy, inflammation). Other indirect 
infection also has been proposed such as cardio-embolism 
and viral proliferation in the lung that mediate hypoxia 
injury and immune injury [52, 93]. These proposed mecha-
nisms are associated with the current spectrum of dynamic 
cerebral microvascular pathological process towards the 
onset and progression of CSVD. Hence, the foregoing sec-
tions will deliberate on the potential pathomechanism of 
COVID-19-related CSVD.

COVID‑19 Neurotropism: Neuronal Pathway

Researchers have reported the presence of viral genetic 
materials and proteins from the samples of nervous tissues 
such as CSF or brain tissues, suggesting neurotrophic prop-
erties of viruses whereby they can directly invade the nerv-
ous tissues that trigger subsequent immune responses from 
nerve cells such as microglia, macrophages, or astrocytes 
and cause nervous system injury [94–96]. After the invasion 
into the neural tissues, the viruses can migrate and further 
infect the sensory or motor neurons, hence achieving antero-
grade or retrograde transport aided by motor proteins (i.e., 
kinesins and/or dynein) [97]. In this case, olfactory neu-
ronal transport is the main example. Evidently, in COVID-19 
early viremia phase, many patients have reported anosmia 
and dysgeusia, probably from the spread through the olfac-
tory epithelium or cribriform bone in the nasal cavity and 
reach the brain through retrograde route transfer, thought 
to occur within seven days after infection in the respiratory 
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tract [98]. A recent study had confirmed through genomic 
sequencing that new pneumonic virus such as SARS-CoV-2 
were present in CSF, neural, and cerebral capillary ECs of 
COVID-19 patients, supporting the fact that SARS-CoV-2 
can infect the CNS from peripheral neuronal pathway and 
mediate further nervous system damage [99, 100]. Inter-
estingly, one pre-clinical animal study had shown that the 
removal of the olfactory bulb from mice inhibited the direct 
invasion of SARS-CoV infection into the CNS [101].

Furthermore, in the pneumonic phase of the infection, the 
presence of ACE2 receptors in glial cells in the brain and 
neurons in the spinal cord provide access to the virus prolif-
eration [97]. In this case, SARS-CoV-2 spike protein interac-
tion with ACE2 receptors invades the capillary endothelium, 
hence breaching the BBB to infiltrate the nervous system 
[61, 63], and increases the risk towards CSVD and other 
neurovascular disease. The involvement of the renin-angi-
otensin system (RAS) also leads to an exaggerated blood 
pressure increment that poses a risk of acute cerebral hem-
orrhage [63, 64]. In the final, hyperinflammatory phase, the 
presence of CRS with further deterioration in the neurologi-
cal status of COVID-19 patients may result in altered senso-
rium, seizures, or even death [64]. Furthermore, neurotropic 
nature of the virus could also activate glial cells and induce 
a pro-inflammatory state that correspond with the elevated 
serum levels of inflammatory markers such as IL-6, IL-12, 
IL-15, and TNF-α [64].

Apart from direct infection through neuronal pathway, 
another recent report had shown SARS-CoV-2 direct 
infiltration through hematogenous route of cerebral small 
vessel-ECs, causing endothelial inflammation and dysfunc-
tion or endotheliitis [87]. Subsequently, such endotheliitis 
would lead to cerebral vasoconstriction, BBB damage, and 
cerebral vasculitis and likely to pose imminent cerebral 
ischemic damage (given the proximity to deep and periven-
tricular white matter) despite an apparent absence of overt 
neurological symptoms [43, 87]. Thus, little is known at 
present on the likely impact of such COVID-19-related dis-
ease mechanisms or complications on the brain small ves-
sel microenvironment, especially on the recognized asymp-
tomatic manifestation of CVSD. Therefore, the foregoing 
sections will elaborate on the COVID-19-mediated direct 
complications that may contribute to the pathomechanism of 
CSVD through several processes including cytokine storm-
mediated hyperinflammation, oxidative stress, coagulopathy, 
cellular activation, and microthrombosis.

Cytokine Storm and Oxidative Stress

SARS-CoV-2 infection in COVID-19 patients has been 
widely reported to induce cytokine storm or CRS, whereby 
a burst of cytokines release triggers the hyperinflamma-
tion and immune cells infiltration in their lungs [102, 103] 

(Fig. 1). Such a phenomenon may also be the factors of onset 
for acute CVD [46, 49]. However, during the early stage 
of the infection (i.e., viremia) upon entering the nervous 
system, the SARS-CoV-2 binding to the ACE2 receptor 
is only limited to the gustatory and nasal epithelial cells. 
The activated CRS is still minimal at this stage, whereby 
patients may often recover after having only taste and smell 
impairments [104] (Fig. 2). However, past reports of SARS-
CoV and MERS-CoV patients have demonstrated extensive 
CRS as the infection progresses, particularly in severely 
ill patients [105]. Moreover, pre-clinical animal study had 
shown that these viruses were able to aggravate the cer-
ebral ischemic injury by triggering the cytokine cascade 
and potentiate the risk towards cerebral hemorrhage after 
administration of tissue plasminogen activator (tPA) [106]. 
Therefore, CRS seems to elevate the vascular permeabil-
ity, edema, and widespread inflammation, and followed by 
MODS [107].

In COVID-19 patients, increased plasma pro-inflamma-
tory cytokines such as IL-1, IL-6, IL-8, and TNF-α levels 
have been reported that may contribute to CRS onset in 
severe COVID-19 patients [102, 103]. IL-1 is produced 
by activated macrophages and dendritic cells in response 
to microbial stimuli that triggers fever, systemic inflamma-
tion, and tissues destruction. IL-1 is thought to exacerbate 
CRS, and phase 3 randomized control trial (RCT) of sep-
sis patients showed that IL-1 receptor antagonist anakinra 
(already approved for the treatment of rheumatoid arthritis) 
demonstrated survival benefits for patients with hyperinflam-
mation [46, 108]. In severe COVID-19, the expression of 
IL-1α, IL-1β, and IL-1 receptor and their associated down-
stream signaling molecules were induced before respiratory 
function worsened. T cells activation was also observed, sug-
gesting that IL-1 pathway exacerbated the disease through 
T cell-mediated cytotoxicity [109]. A retrospective study 
of severe COVID-19 patients with acute severe respiratory 
failure and systemic inflammation showed that those treated 
with anakinra demonstrated clinical improvements without 
deaths, decrease in oxygen requirements, and prolonged 
ventilation-free days [110]. Moreover, in severe COVID-19 
patients, hyperinflammatory response has been reported in 
relation to ARDS and MODS [111]. In an independent retro-
spective cohort study of COVID-19 patients with moderate-
to-severe ARDS and hyperinflammation, anakinra adminis-
tration significantly improved the survival compared with 
patients receiving standard treatment [110]. Validation of 
anakinra as an anti-inflammatory treatment for COVID-19 
is currently underway in RCTs (e.g., NCT04324021).

Numerous reports have also proposed IL-6 as an 
important mediator of CRS and severe respiratory failure 
[112, 113]. In acute inflammation, IL-6 is produced by 
activated macrophages and neutrophils [105, 114]. IL-6 
promotes inflammatory cell infiltrate by rescuing T cells 
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from apoptosis, promoting the maturation of T cells into 
effector T cells and inducing vessel permeability [114, 
115], potentially contributing to organ damage by hyperin-
flammation and T cell-mediated cytotoxicity. Post mortem 
analyses of COVID-19 patients with ARDS complications 
showed hyperactivated cytotoxic T cells with concentrated 
cytotoxic granules [7]. A recent meta-analysis reported 
that mean IL-6 concentrations raised to nearly threefold 
higher in complicated versus uncomplicated COVID-19 
patients and 9 out of 10 studies examined showed elevated 
IL-6 levels associated with worse prognosis [116].

Furthermore, observational and retrospective studies in 
COVID-19 patients have suggested the clinical efficacy 
of IL-6 blockade with therapeutic antibodies including 
tocilizumab [117], sarilumab, and siltuximab [118]. As 
such, RCTs are being conducted to examine the efficacy 
of IL-6 blockade in COVID-19 patients. In a press release 
on 29 July 2020, it was reported that the phase III COV-
ACTA study (NCT04320615) involving 450 COVID-19 
patients with severe pneumonia failed to meet its primary 
endpoint where tocilizumab administration did not confer 
improved clinical status compared with placebo. None-
theless, tocilizumab-treated patients showed better trends 
in the duration of hospital stay and ventilator-free days. 
Moreover, COVACTA’s broad patient selection crite-
ria and without apparently stratifying patients based on 
symptoms of hyperinflammation may have masked the 
potential benefits of tocilizumab [119], and the full trial 
data are eagerly awaited. The efficacy of tocilizumab is 
also being assessed in the RECOVERY late stage RCT of 
tocilizumab versus standard of care (NCT04381936) in 
over 850 COVID-19 patients.

It has been established that systemic inflammation confers 
debilitating effects on the brain, and the likely impact on the 
pathophysiology of CVD. Systemic inflammation induced 
by conserved pathogen-associated molecular patterns such 
as lipopolysaccharide and double stranded RNA in concert 
with pro-inflammatory cytokines could trigger inflammatory 
response from endothelium (i.e., endotheliitis) and cellular 
activation for a wider CNS inflammation [120]. Systemic 
TNF-α increase could induce the levels of IL-1β in the blood 
and brain, and that hypothermia and locomotor activity can 
be induced by IL-1β and IL-6 [121]. Recently, it has been 
shown that systemic inflammation is associated with CSVD. 
The severity and progression of CSVD are strongly associ-
ated with systemic inflammation characterized by increased 
circulating IL-6 and its production by monocytes [122]. Fur-
thermore, higher serum levels of IL-1α and IL-6 were sig-
nificantly associated with the primary outcomes of CSVD 
in both univariable and multivariable analysis adjusted for 
age, sex, and CSVD radiological markers, and both ILs lev-
els had the strongest association with recurrent stroke in the 
disease [123].

In COVID-19 patients, the prolonged exposure to physi-
ological stress and hyperinflammation during CRS may 
contribute to various neurological symptoms (i.e., neuro-
cognitive, and neuropsychiatric) [124]. Hence, alongside the 
systemic inflammation is heightened oxidative stress, and 
both responses have been associated with the pathogenesis of 
CSVD as in arteriosclerosis [125]. Oxidative stress-related 
species such as reactive oxygen species (ROS) and reac-
tive nitrogen species (RNS) contributed to cerebral vascular 
oxidative stress by elevating the inflammatory response that 
influence the progression of clots or thrombus, increase pro-
inflammatory cytokines (i.e., IL-6, IL-8, TNF-α, monocytes 
chemoattractant proteins-1 [MCP-1]), endothelial function, 
and increased expression of vascular endothelial adhesion 
molecules (VCAM-1) and intracellular adhesion molecules 
(ICAM-1) [126]. Subsequently, elevated levels of RNS and 
ROS have been associated with oxidative stress-mediated 
cell migration and proliferation, DNA damage, necrosis and 
apoptosis, cellular autophagy, endothelial dysfunction, and 
endoplasmic reticulum stress [127]. Furthermore, following 
overproduction of pro-inflammatory cytokines is the acti-
vation of transcription factors (i.e., nuclear factor kappa B 
[NF-κβ] and/or nuclear factor (erythroid-derived 2)-like 2 
[Nrf2]) and signal transduction cascades [128] that elevate 
the release of cytokines and chemokines that further enhance 
inflammation [129]. However, nitric oxide (NO) release by 
ECs inhibits the expression of NF-κβ and adhesion mole-
cules; hence, NO serves as a crucial anti-inflammatory factor 
and important for vascular vasodilation. However, this abil-
ity is diminished following ECs damage with the systemic 
inflammation [130].

Additionally, ROS may act on the ECs-induced inflam-
mation through the disruption of inter-endothelial junc-
tion, gap formation, actomyosin contraction, and altered 
phosphorylation or expression of junctional adhesion 
molecules [131, 132], leading to endotheliitis. Therefore, 
COVID-19 endotheliitis has been proposed to cause com-
promised microvascular structure and function in various 
vascular beds, resulting in the clinical sequelae in COVID-
19 patients [43]. Moreover, the released cytokines from the 
induced inflammation of ECs through extracellular matrix 
(ECM) degradation is followed by BBB breakdown [133]. 
Besides endothelium, there exists crosstalk among cellular 
components of the BBB such as pericytes, astrocytes, and 
oligodendrocyte precursor cells (OPCs) that are likely to be 
involved in the microvascular damage as precursors for the 
onset and progression of CSVD [134, 135]. In fact, mice 
infected with coronavirus had developed acute demyelina-
tion with the involvement of microglia, ECs, and astrocytes 
[136]. In relation to this, reduced white matter integrity 
due to changes in oligodendrocytes has been shown in 
CSVD, whereby the ECs-OPC signaling was compromised 
that altered the ECs’ ability to secrete the releasing factor 
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crucial for the growth and survival of OPCs, which in turn 
caused oligodendrocytes damage [137]. An increased BBB 
damage and permeability further induced the degradation 
of basement membrane of ECs and accumulation of ECM 
components leading to stiffening of vessel walls [138]. 
Furthermore, the BBB damage will further intensify as the 
deposition of blood components such as platelets, micropar-
ticles, and fibrin increased after BBB breakdown. Several 
studies supported that changes in walls of small vessels in 
the brain due to BBB breakdown would lead to ischemic 
events classified as WMHs, lacunar infarcts, and CMBs, 
with and without COVID-19 infections [87, 139–141].

In addition, obesity as part of the metabolic syndrome 
is thought to elicit low-grade inflammation in relation to 
ARDS [142] and is associated with an elevated cytokine 
IL-33 level that mediated the stimulation of pro-coagulant 
tissue factor (TF) release by ECs [143]. Hence, in relation to 
COVID-19, these factors increased the likelihood of obese 
patients to develop a more severe COVID-19 while at risk 
of stroke [144]. Collectively, these data indicate that pro-
inflammatory cytokines and oxidative stress are involved in 
the pathogenesis and severity of CSVD. As CRS is one of 
the hallmarks of critically ill COVID-19 patients, it is plau-
sible that administration of immune-suppressive medications 
such as IL-1 or IL-6 blockade with therapeutic antibodies 
and antioxidative agents may also mitigate the risk of CSVD 
in COVID-19 patients.

Hypercoagulation and Cerebral Microthrombosis

In the later stage of COVID-19 infection (i.e., pneumonic 
and/or hyperinflammatory stage), SARS-CoV-2 is reported 
to further heighten the activation of uncontrolled cytokines 
release leading to hyperinflammation, elevation of CRP, 
ferritin, and D-dimer levels [104] (Fig. 2). Systemic pro-
inflammatory factors such as ILs, TNF-α, and CRP are 
responsible for the primary molecular events elicited by 
abnormal coagulation or hypercoagulable state [104, 145, 
146], and SARS-CoV-2 is thought to foster a pro-inflamma-
tory microenvironment and induce prothrombotic state lead-
ing to thrombogenesis, formation of blood clots, and small 
or large vessel occlusion [76, 147]. Besides, the elevated 
immune response may also lead to vasculitis in nerves and 
muscles, alongside with immune-mediated peripheral, cra-
nial nerves and/or muscle injury [104].

In general, the coagulation process or pathway serves to 
maintain hemostasis or to control bleeding, promote heal-
ing, and prevent spontaneous bleed [148]. The coagulation 
pathway is controlled by certain naturally occurring inhibi-
tory elements or anticoagulants such as protein S, protein 
C, antithrombin, and tissue factor pathway inhibitor (TFPI) 
that control and limit the formation of clot to prevent propa-
gation of thrombus/microthrombus or further thrombosis/

microthrombosis [148]. Altered pro-coagulant properties 
of such coagulation factors would stir imbalance in the 
pathway, either with increased or decreased activities of a 
given factor [149]. Generally, the thrombogenic elements of 
coagulation factors are produced from two sites: the vessel 
wall (i.e., TF, exposed endothelium, and collagen) and the 
circulating elements (i.e., platelets, platelet activating fac-
tor, prothrombin [factor II], fibrinogen [factor I], von Wille-
brand factor [vWF], and numerous clotting factors). Certain 
events such as physiological disturbance, blood abnormali-
ties, infection, elevated pro-inflammatory cytokines activi-
ties, and disturbance in the primary hemostasis (i.e., platelet 
plug formation at the insulted site of exposed ECs of the 
vessel wall) would result in the imbalance of the coagulation 
system, hence termed as coagulopathy [150, 151]. Thus, in 
relation to COVID-19 infections, an altered systemic coagu-
lation cascade in microcirculation can be activated at early 
disease process, and platelet activations are the main player 
in microthrombi/clots formation and its plausible impact on 
the pathomechanism of CSVD (Fig. 1).

COVID-19-associated coagulopathy reported among 
COVID-19 patients warrant further investigation as SARS-
CoV-2 has no known direct intrinsic pro-coagulant effect 
[152]. Moreover, emerging evidence has shown that SARS-
CoV-2 can cause microvascular, arterial, and venous throm-
bosis through ACE2 receptor on the ECs and smooth muscle 
cells (SMCs) hence potentiate organ injury [153]. In addi-
tion, SARS-CoV-2 may also invade ECs of the cerebral 
arterioles eliciting direct and/or immune-mediated injury 
without compromising systemic response and hence partly 
explains why COVID-19 patients with no systemic symp-
toms are at risk of cerebral vascular injury and cryptogenic 
stroke [85]. In addition, hypercoagulability in COVID-19 
patients has been reported to be associated with elevated 
acute-phase reactant levels including CRP and fibrinogen, 
thus being used as biomarkers with prognostic values [154, 
155]. Abnormalities in coagulation system are frequent 
among fatal cases of COVID-19 including shortened aPTT 
and prolonged PT in coagulation cascade [64, 156]. Moreo-
ver, FDPs such as D-dimer and other FDPs are the most 
widely used and direct prognostic biomarkers for COVID-
19 severity and often in fatal cases compared to non-severe 
patients with a higher plasma D-dimer [45, 155, 157–159] 
and, thus, posed an increased risk towards CSVD-associated 
microthrombosis [93].

As elaborated previously, the viral infection may potenti-
ate the innate immune response such as systemic inflamma-
tory activation. The response can activate the coagulation 
cascade followed by the generation of thrombin or generally 
referred as thrombo-inflammation or immuno-thrombosis 
as part of crucial communication components among cel-
lular and humoral amplification pathways [160, 161]. Fur-
thermore, infection-based inflammatory response mediates 
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coagulation cascade through multiple pro-coagulant path-
ways. In this case, virus-derived polyphosphates may induce 
the activation of platelets and factor XII in coagulation 
pathway, thus amplifying the downstream pro-coagulant 
response especially the intrinsic pathway of coagulation 
cascade [162]. Additionally, elevated levels of viral infec-
tion-based inflammatory biomarkers such as pro-inflam-
matory cytokines instigate the activation of vascular ECs 
and endothelial injury/dysfunction that further promote the 
thrombo-inflammation [163]. Another important component 
that activates and enhances the contact and prothrombotic 
pathway respectively is the cell-free DNA and histones neu-
trophil extracellular traps (NETs) that present and propagate 
as part of the intravascular thrombi, hence triggering the 
generation of thrombin [163, 164].

SARS-CoV-2 infection also can directly cause cellular 
activation (e.g., ECs, neutrophils, monocytes, macrophages, 
T cells) that provoke further pro-inflammatory cytokines 
release and hence increase the disruption of endothelial 
function and integrity, followed by the release of vWF, DIC, 
and upregulation of extracellular particles formation (i.e., 
P-selectin, and intercellular adhesion molecules, ICAM-1) 
[155, 165, 166]. In addition, NETs have also been identified 
in early phase of COVID-19, suggesting that activated neu-
trophils may also play a significant role in the formation of 
microthrombi [167, 168]. NETs contribute to initiating the 
extrinsic and common pathway through elevating the activa-
tion of TF, factor XII, and platelets [169]. Therefore, CRS, 
elevated level of activated neutrophil, formation of NETs, 
and cellular activation products collectively serve as poten-
tial microthrombogenic markers of SARS-CoV-2 infection 
and circulating cells aggregation, resulting in generation of 
intra-arterial thrombus or microthrombus which is likely to 
contribute to the pathogenesis of arterio-micro-thrombotic 
diseases such as CSVD.

Of note, severe complications of COVID-19 are charac-
terized by ARDS and pneumonia that rapidly progress to 
MODS. COVID-19-associated ARDS is related to endothe-
lial dysfunction-associated vascular micro-thrombotic dis-
ease, which also involves MODS that hastens mortality 
in COVID-19 patients [170]. It has been proposed that 
these complications are secondary to COVID-19-induced 
endothelial dysfunction that cause the imbalance between 
limited vWF-cleaving protease and elevated exocytosis of 
vWF from ECs [171, 172]. Moreover, ECs-derived ultra 
large vWF (ULVWF) multimers enable the recruitment of 
platelets and mediate microthrombogenesis within micro-
vasculature and eventually initiate the production of large 
microthrombi [172, 173]. Furthermore, the microthrombi 
formed can be rapidly activated and further elevates the 
aggregation of platelets and platelets-derived micropar-
ticles (i.e., P-selectin) inducing leukocytes aggregations. 
These aggregates or microclots will then dislodge from ECs 

luminal surface into the circulation and may occlude smaller 
vessel distally [172].

In the case of COVID-19, several studies had reported the 
presence of blood clots in COVID-19 patients with cerebral 
ischemia in both cerebral arteries and veins [57, 62]. Xiong 
and colleague supported that CRS may trigger hypercoagu-
lation cascades that lead to formation of large and small 
blood clots [174]. In SVD, the activated platelets and micro-
thrombi formation would in general initiate the narrowing of 
the arterial wall and upregulate the proliferative arterial wall 
changes [175]. Platelet aggregation is also known to result 
in the release of vasoactive substance resulting in SMCs 
constrictions, hence narrowing the arterial wall [176, 177]. 
Moreover, microthrombi consist of white thrombi of aggre-
gated fibrin and platelets that narrowed the arterial lumen 
as evident by the intraparenchymal small vessel microclot/
microthrombosis found in cerebral ischemia or infarcts [178, 
179]. Microthrombosis-mediated cerebral microcirculatory 
dysfunction has been suggested as an outcome of intraparen-
chymal small vessel dilation that compensated the reduction 
in perfusion from peripheral pressure of larger arteries. This 
occurred as a small vessel trying to optimize the dilation 
process to maintain the CBF following the arterial lumen 
narrowing [180].

Therefore, it is plausible to deduce that COVID-19 elic-
its a micro-thrombotic disease manifestation, consisting 
of large amounts of circulating complexes of ECs derived 
microthrombi, filtered or embolized in microvascular bed 
with a potential micro-thrombotic occlusive impact, serv-
ing plausible roles in the onset and progression of CSVD if 
left untreated.

SARS‑CoV‑2 Proliferation Mediated Hypoxia Injury

It is well known that initial SARS-CoV-2 infection infiltrates 
the pneumocytes resulting in hypoxia that in turn increases 
the risk of CVD among COVID-19 patients [52]. This is 
because once the virus proliferates in the lung tissues, sub-
sequent insults are worsened by acidic interstitial inflamma-
tory exudation and diffuse alveolar damage [52, 181]. The 
latter is characterized by accumulations of hyaline along the 
wall of alveoli (membrane made from dead cells, proteins, 
and surfactant) which disrupts the alveolar gaseous exchange 
[181]. Consequently, these trigger the elevation of mito-
chondrial anaerobic metabolisms in the brain cells causing 
CNS hypoxia [181]. Besides, the accumulation of acids also 
eventually leads to altered CBF, cerebral vasodilation, and 
ischemia, whereby further unabated hypoxia will cause cer-
ebral microcirculation disturbance in the brain parenchyma 
structure and function [181]. Inevitably, this hypoxia poten-
tially triggers the onset of cerebral ischemia (i.e., ischemic 
stroke) especially in individuals with concomitant CVD risk 
factors. In COVID-19 patients, this hypoxic drive is likely to 
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inflict further brain damage with an increased risk of fatal-
ity [182].

Others: Myocardial Injury and Cerebral 
Hypoperfusion

Another potential indirect infection is through cardio-embo-
lism from SARS-CoV-2 associated with a myocardial injury. 
SARS-CoV-2 proliferation-associated CRS and subsequent 
immune responses may lead to myocardial injury by reduc-
ing the coronary blood flow, oxygen supply, and destabilized 
coronary plaques and elevating microthrombogenesis [182]. 
Furthermore, single or combination of systemic factors such 
as pro-inflammatory cytokines release, hypercoagulability, 
and complement-mediated microvascular thrombosis may 
also lead to endothelial dysfunction as seen with marked 
increases in the levels of pro-inflammatory markers and 
D-dimer [49, 76, 183]. The endothelial dysfunction can be 
further aggravated by COVID-19-mediated RAS disruption 
that may result in a secondary CBF dys-autoregulation [75], 
leading to cerebral hypoperfusion. This has been shown in 
CADASIL patients with COVID-19 where CSVD lesion 
manifested at the cerebral internal border zone, a region that 
is prone to hypoperfusion [184]. Locatelli and colleagues 
posited that CADASIL patients may suffer from a chronic 
cerebral hypoperfusion mainly from the disruption in the 
myogenic component of CBF autoregulation where SMCs 
become constricted or dilated in response to changes of 
transmural pressure [184].

SARS‑CoV‑2 as Potential Risk for Circulating 
Microparticles Release

The mechanism that causes the cerebral ischemia or the 
onset and progression of CSVD in patients with COVID-
19 remains elusive at present, although clues are linked to 
hyperinflammation and hypercoagulability [50]. A recent 
review on COVID-19 and neurovascular complication 
described that SARS-CoV-2 can remain in the human sys-
temic circulation or in neurons without toxicities [59]. The 
abnormal proteins misfolding and aggregations caused by 
SARS-CoV-2 may trigger future NDD among COVID-19 
patients who have recovered and discharged from intensive 
care [185]. The initial trigger is associated with cytokine 
storm, cellular activation, and hypercoagulability that inflict 
damages to cerebral vascular (small/large) and BBB, which 
in turn may result in long-term neurological sequelae. There-
fore, in this section, we put forward the proposition that 
COVID-19 infection may also potentially mediate another 
detrimental pathomechanism for COVID-19-related CSVD, 
i.e., the extracellular circulating microparticles (MPs).

Overview of Extracellular Circulating MPs

Recently, there is an increasing interest in the identification 
and quantification of cellular debris such as extracellular 
vesicles (EVs) as biomarkers to study the natural history of 
development and progression of several diseases including 
cardio-cerebrovascular disease, cancer, metabolic disease, 
and blood disease (i.e., sepsis). EVs, also known as cell-
derived particles or extracellular particles (EPs), are anu-
cleate phospholipid bilayer membrane released from cells 
with encapsulated particles such as proteins, lipids, nucleic 
acids, and metabolites. Flow cytometry is the most widely 
used method and has major advantages over the other tech-
niques in that each EVs (and its subtypes) is interrogated 
individually for the identifications and quantification based 
on antigen expression [186]. To date, there is no consensus 
in the nomenclature of EVs of different sizes, composition, 
and origin [187]. In general, EVs can be classified into three 
standard categories that include exosome (the smallest EVs: 
30–100 nm in diameter), microparticles (MPs) or ectosome 
(100 nm–1 µm in diameter), and apoptotic bodies (large 
membrane blebs: ≤ 5 µm in diameter) [188, 189].

MPs are anucleate, small, and membrane-enclosed EPs 
[190–192]. Ranging from 0.1 to 1 μm in diameter, MPs are 
derived from direct deformation of cell plasma membrane 
and cell membrane phospholipids exocytic blebs that are 
released from the cell surface by proteolytic breakdown 
of the cytoskeleton due to various triggered mechanisms 
such as virus infection, cellular activation, oxidative stress, 
inflammation, injury, or apoptosis. In this context, factors 
such as different agonists, thrombin, serine proteases, col-
lagen, pro-inflammatory cytokines, and physiological shear 
stress contribute to cellular activation and further promote 
the secretion and aggregation of MPs [191, 193–195]. In 
addition, during apoptosis, the apoptosis-induced MPs 
release is stimulated by the caspase-mediated Rho effector 
protein, the “Rho-associated” coiled-coil-containing pro-
tein kinase 1 (ROCK-1), as well as by thrombin and TNF-α 
[196]. General mechanism of MPs formation and its mode 
of action is described in Fig. 4.

Moreover, MPs are heterogeneous and can be produced 
from multiple sources (or parental cells) within the blood 
circulation such as platelets, erythrocytes (red blood cells, 
RBCs), leukocytes (white blood cells, WBCs), monocytes, 
ECs, and SMCs [197]. Also, MPs can be found in various 
body fluids such as saliva, urine, bile, CSF, and synovial 
fluid [198]. MPs are identified by the presence of pro-
coagulant cell surface marker phosphatidylserine positive 
(PS+), although recent evidence had suggested instances of 
PS negative (PS−) [199]. Moreover, in the blood circula-
tion of healthy individuals, MPs are present in low levels, 
while 70–90% of MPs are represented by platelets-derived 
MPs (PDMPs) that could play a role in various disease 
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pathologies [200]. MPs composed mainly of cytosol, 
enclosed by globose phospholipids bilayer, whereby their 
cytosol may include RNAs (i.e., non-coding small interfer-
ing ribonucleic acid [siRNAs], messenger RNA [mRNA], 
and micro-RNA [miRNAs]) [201, 202], enzymes, and 
cytoskeletal proteins of their parental cells, but are anucle-
ate and lack synthetic capacity. However, to date, there is no 
evidence of deoxy-ribonucleic acid (DNA) presence in MPs 
luminal space, although a trace of DNA has been found in 
exosomes and apoptotic bodies [203].

MPs carry their own parental membrane proteins or 
markers which are used to identify their cell of origin or 

subpopulations. For examples, cluster differentiation 41 
(CD41) is used to identify PDMPs, CD235/ CD235a for 
RBCs-derived MPs (RDMPs), CD31/CD146 for ECs-
derived MPs (EDMPs), and CD45 for leukocytes-derived 
MPs (LDMPs) [204]. Interestingly, PDMPs transport over 
40 membrane integral protein or glycoprotein characteristic 
of platelets, such as integrin β1 (CD29), αIIbβ3 (CD41), and 
P-selectin (CD62P). PDMPs and EDMPs also contain pro-
invasive/pro-inflammatory matrix metalloproteinase pro-
teins (MMPs-2/9). Most of these proteins serve as adhesion 
molecules that stimulate the EVs internalization by these 
cells [200], Meanwhile, RDMPs are the smallest (~ 0.15 μm) 

Fig. 4   Microparticles (MPs) formation and mechanism of action. A 
Active translocase transporting phosphatidylserine (PS) from outside 
to inside layer through adenosine triphosphate (ATP)-dependent man-
ner. B Cellular activation due to infection or other cellular stressor 
such as increase cytokines and apoptotic stimuli. C The activation 
causes an increase in intracellular cytosolic calcium release by stress 
endoplasmic reticulum (ER) and acquired from extracellular space 
and hence activates enzymes calpain and gelsolin that cleave cell 
membrane cytoskeleton. D The cleaved cytoskeleton causes inactiva-
tion of translocase and, hence, induces phospholipid “flip-flopping.” 
E Externalization of PS produces MPs that bring their parent surface 

molecules and protein antigens. F MPs production can trigger series 
of micro-thrombotic cascades. For example, leukocytes-derived MPs 
(PDMPs) contain P-selectin glycoprotein ligand-1 (PSGL-1) on its 
surface that enables leukocytes-endothelial cell (ECs) adhesion. Most 
MPs contain tissue factor (TF) associated with an increase in the 
extrinsic coagulation cascade and production of microthrombus. In 
fact, PDMPs and endothelial cell-derived MPs (EDMPs) may bring 
pro-inflammatory antigens such as matrix metalloproteinase (MMP) 
that can cause endotheliitis. EDMPs also possess ultra-large von 
Willebrand factor (ULVWF) that further assists in the recruitment 
and aggregation of platelets on endothelium
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compared to other cell-derived MPs whereby their surface 
consists of residual hemoglobin (20% from parent RBC) 
[205, 206].

MPs Roles in Coagulation and Microthrombosis

MPs’ pro-coagulant and prothrombotic properties are partly 
due to their abilities to bind to sub-endothelial matrix (and 
its components), adhesion with soluble/non-mobile fibrino-
gen, as well as co-aggregation with platelet aided by a com-
plex process involving glycoprotein (GP-IIb/ GP-IIIa) [207]. 
As mentioned, PS presence on MPs surface acts as pro-coag-
ulation factors for assembly and binding agent or proteins in 
coagulation cascade that may lead to a prothrombotic state 
[193]. PS binds to hematopoietic-derived clotting factors 
through electrostatic interactions between phosphate groups 
in phospholipids and Ca2+ in gamma-carboxyglutamic 
(GLA) domain of clotting factors [208]. Factors VII, IX, 
and X and prothrombin are the clotting factors that contain 
GLA domain. Therefore, the recruitment of PS-bearing MPs 
and clotting factors promotes the aggregation of platelet and 
synthesis of fibrin which confer the propensity for the forma-
tion of microthrombus [209] that could play a plausible role 
in CSVD pathogenesis.

In fact, in vitro study had shown that even low levels 
of MPs (i.e., PDMPs and EDMPs) could induce the gen-
eration of microthrombus [210]. If compared to activated 
platelets (i.e., parental cells), PDMPs surfaces possess up to 
100 times higher pro-coagulant properties and higher affin-
ity binding sites for activated coagulation cascade [211]. It 
appears that PDMPs serve as a precursor for microthrombus 
formation by providing catalytic surfaces for the prothrombi-
nase enzyme complex (i.e., involving factors IXa, Va, VIII, 
and Xa) [209].

Moreover, MPs also transport pro-coagulant surface TF, 
where MDMPs had been shown to bring an active TF that 
potentially elevated the extrinsic pathway involving factors 
VII, VIIa, IX, and X in coagulation cascade [212, 213]. As 
for LDMPs that express P-selectin glycoprotein ligand-1 
(PSGL-1) and platelet P-selectin on their surfaces, these ele-
ments further aid the aggregation of TF bearing leukocytes 
at the site of vascular or microvascular injury [214]. In fact, 
the formation EDMPs had also been associated with ele-
vated levels of endothelial dysfunction markers such as plas-
minogen activator inhibitor-1 (PAI-1) and elevated the pro-
coagulant activity and prothrombotic state. This was due to 
EDMPs that contained the expression of ULVWF multimer 
that enabled EDMPs to induce strong platelet aggregations 
[215]. Thus, TF-bearing MPs may play an important role 
in micro- and macro-thrombus formation. In a different but 
related context, a study had shown that tumor cells-derived 
MPs bearing both PS+ and TF can be utilized as reliable 

biomarkers to determine the risk of venous thrombosis in 
cancer patients [194] (Fig. 4).

MPs and Inflammation

The release of MPs into the circulation that ensued cell/
tissue inflammation can further aggravate the inflammatory 
activity [216]. MPs can affect microcirculation by poten-
tiating the production and expression of pro-inflammatory 
cytokines, chemokines, and ICAM-1 [217] (Fig. 4). In vitro 
study had shown that ECs and monocytes interaction with 
PDMPs able to elicit the de novo expression and produc-
tion of inflammatory molecule/agent such as cyclooxyge-
nase (COX-2) and prostacyclin (PG12), respectively [218]. 
Another in vitro study had also shown that EDMPs are 
involved in the up-regulation of E-selectin, ICAM-1 and 
VCAM-1, and induction and release of pro-inflammatory 
cytokines (i.e., IL-6 and IL-8) [219].

MPs and Cell Signaling

Alongside with MPs pro-coagulant and pro-inflammatory 
abilities, they also serve as mediators for cell–cell interac-
tions and signal delivery between cells. Since MPs bring 
along specific parental membrane receptors, cytosolic pro-
teins, and RNAs, they can stimulate certain target cells to 
transform and communicate with microcirculation, in ways 
programmed by these surface markers [220]. For example, 
PDMPs can stimulate B cells to synthesize specific antibod-
ies such as IgG by delivering CD154 IgG [221]. In addition, 
PDMPs assisted in monocytes to ECs interaction through 
ICAM-1 and hence elevated chemotaxis of monocytoid cells 
[218]. Furthermore, it has been shown that once PDMPs 
form a close contact with neutrophil, it can bind and increase 
neutrophil aggregations and elevate neutrophil phagocytic 
activity [222]. Moreover, MPs can be phagocytosed by 
certain cancer cells and hence stimulate the cell to induce 
the expression of mRNA for the pro-invasive MMP-9 and 
upregulate the adhesion to ECs in order to activate the ECs 
leading to the endothelium dysfunction. The EDMPs that 
expressed proteases proteins such as MMP-9 and MMP-2 
enabled the invasion towards vasculature through disruption 
of basement membrane [223, 224] (Fig. 4).

MPs and Related Clinical Syndrome

It is well accepted that the elevated levels of MPs in blood 
circulation are reflective of their multi-faceted roles; for 
example, higher level of MPs was found in hypertensive 
patients [225], abdominal obesity [226], myocardial infarc-
tion [227], tumor progression and metastasis [228], ath-
erosclerosis [229], and cardiopulmonary bypass patients 
[211]. Previous in vitro studies also showed that elevated T 
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lymphocytes-derived MPs induced arterial endothelial dys-
function (i.e., reduce expression of NOS) in immune-com-
promised states [230, 231]. Moreover, MPs can also con-
tribute to acute lung injury and inflammatory airway disease 
[232], with an elevated level of MDMPs being associated 
with upregulated pro-inflammatory IL-8, ICAM-1, MCP-1, 
and superoxide anion production and activation of NF-κβ 
in monocytes [232, 233]. Besides, elevated EDMPs level 
has been reported to correlate with severity of endothelial 
dysfunction in heart diseases, i.e., coronary artery disease 
and acute coronary syndromes with worst clinical outcomes 
[192, 234, 235].

In the case of nervous system disorders, MPs had been 
shown to contribute to both pro- and anti- inflammatory 
responses in inflammation-mediated NDD including Par-
kinson’s disease (PD), AD, amyotrophic lateral sclerosis 
(ALS), and dementia [236]. CNS-derived MPs had been 
shown to circulate in peripheral circulation and proposed to 
influence the cerebral immune status by transferring periph-
eral pro-inflammatory molecules to CNS [92, 237, 238]. 
Recent evidence also suggested that MPs-mediated release 
of pro-inflammatory cytokines, miRNAs, and microbial 
by-products are associated with the onset, progression, and 
resolution of inflammation-based cerebral injury and NDD 
[239, 240]. Therefore, these associations confer circulating 
MPs as pertinent clinical targets and potential biomarkers of 
disease onset and/or progression, including that for CSVD.

COVID‑19 and MPs

Viral infections are known to give rise to pathologic con-
sequences such as thrombotic and hemorrhagic complica-
tions as seen with CVD [241, 242]. However, reports on the 
involvement of MPs related to COVID-19 remain scarce. 
Thus, bodies of evidence that may implicate MPs in the set-
ting of COVID-19 infection are highlighted in this section.

As one of the main activators for coagulation, TF is pre-
sent on the surface of certain circulating cells such as mono-
cytes and ECs. It can also be expressed by the pathogens 
and inflammatory cells [243]. Moreover, the activation of 
ECs in viral infections may interfere in normal coagula-
tion and fibrinolytic system, both directly and/or indirectly 
[244]. Viral infection initiates pro-inflammatory CRS and 
hence inflammation that causes imbalance in coagulation 
systems, resulting in coagulopathy such as thrombosis and/
or hemorrhage [245]. Furthermore, with this imbalance, fur-
ther microvascular thrombosis may occur that could lead to 
MODS and DIC [246] as seen in an infectious disease such 
as malaria previously reported with a higher level of MPs 
[247].

A higher risk of arterial thrombosis has been documented 
in critically ill patients with COVID-19-based hypercoagu-
lation, where patients developed thrombi in the lungs [50, 

248]. However, it is suggested that thrombosis may well 
occur from the early phase of COVID-19 infection and wors-
ened as the disease progressed [50]. Moreover, the formation 
and stimulation of pulmonary clots and NETs respectively 
halt the viral infection and further inflammation at vascular 
endothelium of the lungs alveolus even at an early stage 
[249]. These microthrombi may disseminate into the periph-
eral circulation and eventually aggregate to become larger 
thrombi within the background of untreated inflammation or 
CRS. Furthermore, it is known that COVID-19-based hyper-
coagulability are not limited to the lungs only but has been 
observed in the gastrointestinal tract (GIT), cerebrovascular 
and coronary ischemia, and even in lower limb [43, 248, 
250], hence suggesting that the initial microthrombi pro-
duced in the lung can potentially embolize in microcircula-
tion to settle and accumulate in distant organs.

Following viral invasion, the vascular endothelium 
served as the main trigger site as the general interface 
between immune and hemostatic systems [43]. ECs dam-
age or activation is initiated when viruses bind to ACE2 
receptor in type II pneumocyte of human lung epithelium 
(i.e., AT2) and myocardium, where these receptors are also 
highly expressed in arterial ECs [21] (Fig. 1). Once ECs 
are activated, they can promote an acute inflammation fol-
lowed by hypercoagulation, and hence thrombosis. How-
ever, under a pulsatile shear stress condition, the increment 
in the ACE2 expression could promote the production of 
NO and, thus, reduce the inflammation and proliferation in 
vascular ECs [251]. Consequently, COVID-19 patients with 
heart failure or myocardial disease become more vulner-
able to further infections [102]. One of the main targets of 
SARS-CoV-2 infection is the pericytes that surround the 
outer layer of ECs of capillaries and venules, reflecting the 
likelihood of capillary ECs dysfunction and microcirculation 
disturbance [102]. It has been proposed that during CRS, 
plasma membrane remodeling resulted in the exposure of 
the pro-coagulant PS, hence implicating MPs shedding in 
the general pathomechanism of ECs dysfunction. Moreover, 
pro-inflammatory factor such as TNF-α may also induce the 
production of ACE2-harbored EDMP in microvascular ECs 
[252]. Hence, it is plausible to posit that EDMPs-bearing 
ACE2 may systemically embolize from the site of formation 
(i.e., lung) to the distant target (i.e., brain), depositing the 
virus and further aggravating disease complications.

SARS-CoV-2 infection involving ECs could lead to 
endothelial dysfunction or endotheliitis. Therefore, measur-
ing and enumeration of specific markers such as the selectins 
and MPs could prove to be beneficial to study the disease 
onset and progression for future prevention and therapeutic 
measures [50, 253]. Furthermore, MPs produced by ECs 
damages as a result of viral infection can further stimulate 
the elevation of pro-inflammatory cytokines (i.e., IL-1, IL-6, 
IL-8, and TNF-α) [254]. Consequently, elevated levels of 
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MPs can serve as a positive feedback to disease manifesta-
tion. Recently, it had also been shown that the expression 
of pro-inflammatory cytokines such as IL-6 and IL-8 fol-
lowing MPs formation can exasperate COVID-19 and been 
proposed to MPs (and its subpopulation) to serve as panel 
of markers for COVID-19 onset, progression, and severity 
[250].

Proposition and Potential Implications 
for COVID‑19 related MPs and Risk for CSVD

To date, limited studies are available to implicate the role 
of MPs in micro-thrombosis [194] and CSVD. However, 
there are evidence that MPs levels are increased in patients 
with cardiovascular diseases and related risk factors, includ-
ing acute coronary syndromes, diabetes, hypertension, and 
hypertriglyceridemia and the spectrum of CSVD [193, 
255–257]. Table 1 summarizes the potential associations of 
CSVD with MPs subpopulation from published literature 
to date.

MPs can be formed locally or distally, and then aggre-
gated to initiate microthrombi cascade in cerebral microvas-
culature (i.e., end arteries). As the microthrombogenic MPs 
embolized and settled at the lumen of cerebral microvascu-
lature, they may increase the vascular tone, impair vascular 
relaxation, stimulate angiogenesis, and stimulate cells to 
produce cytokines and other inflammatory mediators as well 
as mediate intercellular interactions. They may also activate 
the formation of free radicals [261, 271]. MPs are capable 
of these pro-coagulant effects due to the fact that they bear 
functionally bioactive phospholipids and cyto-adhesion 
molecules, such as PS and pro-coagulant TF known to play 
major roles as cellular activators of the coagulation cascade 
[194]. Moreover, the formation of MPs might contribute 
to the disorganization of the proper function of endothelial 
structural layers. For example, Martinez et al. (2011) [272] 
showed that endothelial dysfunction caused by MPs lowered 
the production of NO and thus induced vascular inflamma-
tion that potentially contributed to the prothrombotic state 
within the arterial wall and propagated atherosclerosis a hall-
mark of endothelial dysfunction. Besides, this dysfunction 
had been demonstrated to involve shedding of EDMPs that 
expressed platelet-ECs adhesion molecule-1 (i.e., CD31) and 
implicated in ischemic stroke subtypes [273]. Thus, we pro-
posed that a targeted enumeration of MPs through periph-
eral venous blood in clinical setting may serve as supportive 
biomarker for early detection and/or prevention of CSVD, 
particularly among at-risk, asymptomatic individuals.

Hypercoagulability, hyperinflammation, and endothelii-
tis are the three prominent features of COVID-19 infection, 
markedly so in severe cases which affect prognosis by pro-
thrombotic events including CSVD. Schreiber et al. (2013) 

[274] also proposed another common pathomechanism of 
CSVD related to the disorganization of arterial segmental 
walls and luminal narrowing. These arose due to accumu-
lations of MPs alongside cholesterol crystals that caused 
arteriolosclerosis, which may result in hypoperfusion that 
accompanied infarcts and WMHs [274, 275]. Besides, these 
features also pose added risks to the well-known features for 
critically ill patients (as in severe COVID-19 cases) with 
respiratory failure, mechanical ventilation, central venous 
catheter, and prolonged immobilization. Notwithstanding, 
the precise underlying pathomechanisms for significant 
cases with thrombosis associated with COVID-19, despite 
prophylactic and therapeutic measures, remain elusive. 
Hence, evidences presented here on circulating MPs offer 
potential implications as prognostic markers particularly in 
severe COVID-19 cases who are likely to be more vulner-
able to MPs-mediated hypercoagulation. Moreover, in less 
severe or early stages of COVID-19 cases, MPs could serve 
as monitoring biomarkers in setting of low-grade inflam-
mation especially those related to asymptomatic CSVD and 
cryptogenic stroke subtype. Essentially, such a monitoring 
could help mitigating the risk of such patients to develop or 
progress to a more severe condition.

Furthermore, there is growing body of evidence indicat-
ing the higher prevalence of COVID-19-associated small 
vessel stroke (i.e., cryptogenic stoke) to implicate COVID-
19 infection in novel small vessel stroke mechanism. For 
example, a recent meta-analysis study reported a fivefold 
increment in in-hospital mortality among a patient with 
COVID-19-associated stroke compared to non-COVID-19 
associated [258]. In fact, to reduce the risk of mortality and 
progression of cryptogenic stroke, a study by the Society 
of Vascular and Interventional Neurology (SVIN) COVID-
19 multinational registry had deduced a practical approach 
for clinicians in dealing with COVID19-associated small or 
large vessel stroke (i.e., with higher CRP, white blood cell 
count, and D-dimer levels) to consider that the presence of 
5 risk criteria such as older age, male sex, diabetes, National 
Institutes of Health–Stroke Scale (NIHSS) 10 + , and crypto-
genic stroke would imply an 80% chance of in-hospital mor-
tality, with the risk of death with minimum of 3 criteria met 
[259]. Although this SVIN criteria warrant further external 
validation, it is useful in clinical management.

Additionally, the evidences on the use corticosteroids 
in the treatment for COVID-19 rest mainly on their high 
efficacy as an anti-inflammatory agent and therapy (i.e., 
in chronic inflammatory disease) [260]. Recent study 
also suggested the beneficial role of corticosteroids to 
reduce mortality in sepsis, alongside with the likely anti-
inflammatory actions to reduce the detrimental effects of 
MPs-mediated inflammation [276]. Hence, corticoster-
oids may indirectly aid in reducing the peripherals MPs 
level which in turn could prevent undesirable progression 
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and/or further adverse effect of the infection particularly 
towards the onset of CSVD. In this context, another study 
reported that COVID-19 patients with respiratory support 
administered with corticosteroid therapy (namely, dexa-
methasone, 6 mg per day for up to 10 days) had a reduced 
28-day mortality [262]. Corroboratively, in September 
2020, WHO published a guideline on the use corticos-
teroids for COVID-19 with a strong recommendation of 
systemic (i.e., intravenous, or oral) corticosteroid therapy 
(e.g., 6 mg of dexamethasone orally or intravenously daily 
or 50 mg of hydrocortisone intravenously every 8 h) for 
up to 10 days in patients with severe and critical COVID-
19, as well as a conditional recommendation not to use 
corticosteroid therapy in patients with non-severe COVID-
19 [263]. Nonetheless, a meta-analysis of over twenty 
thousand COVID-19 patients revealed a higher mortality 
among those who received corticosteroid therapy com-
pared to those who did not (over 3 to 12 days treatment 
course). This may be due to the prothrombotic effect of the 
steroids which was doubled by their adverse drug reactions 
[264], in which the role of microthrombogenic MPs may 
be pertinent, albeit speculative. Thus, a rationalize use 
of corticosteroid is recommended to be guided by their 
risk–benefit ratio, whereby short course, i.e., up to 10 days 
therapy among a selected COVID-19 patient, may be bene-
ficial, while an extended course may be detrimental [265].

Apart from hyperinflammation, cytokine storms mediated 
by hyper-coagulopathy and immunopathogenesis induced by 
SARS-CoV2 in vulnerable patients may lead to an increased 
mortality due to ARDS and MOD. Hence, the pragmatic 
approach such as decreasing the burden of aberrant coagu-
lation, cytokine storm and viral loads through plasmapher-
esis therapy (with or without therapeutic plasma exchange 
[TPE]) had been reported to be beneficial in the manage-
ment of COVID-19 [266]. Therapeutic plasmapheresis is 
the removal of abnormal accumulated substances (such as 
cytokines or autoantibodies) from the plasma [267]. In pre-
clinical and/or clinical setting, the plasmapheresis can be 
carried out through plasma filtration (restricted to pores size 
of the filter-hence removal of molecules is limited) or cen-
trifugation (unlimited removal of molecules) [268]. Besides, 
TPE (i.e., removal of toxins and pro-inflammatory cytokines 
that mediate CRS and ARDS) also has been suggested as 
a novel therapeutic approach for critically ill COVID-19 
patients [269], whereby Zhang et al. reported that COVID-
19 patients administered with TPE had a reduced 28-day of 
mortality and higher extubation rates [270]. In this regard, 
as discussed, higher concentrations of pro-inflammatory 
cytokines at the early stage of infection and inflammation 
may trigger the formation of MPs (with their detrimental 
roles) which in turn may lead to higher chances of future 
COVID-19 complications. Thus, an early consideration 
for therapeutic plasmapheresis (with or without TPE) may 

afford clinicians more effectively in disease prevention and/
or progression.

At best, we have evidence to implicate multi-factorial 
prothrombotic states observed in COVID-19 which include 
heightened immuno-inflammatory responses (through 
mechanisms such as CRS, complement activation, endothe-
lial injury), as well as possible contribution from systemic 
pressure dysregulation (RAS-related) [64, 248]. Some had 
suggested that SAR-CoV-2 itself can possibly activate the 
coagulation cascade through a mechanism that is yet to be 
uncovered [50, 248]. In this review, we highlight relevant 
evidence to relate SARS-CoV-2 infection with the risks 
of CSVD (both symptomatic and occult manifestations) 
through MPs-mediated micro- and macro-thrombosis, initi-
ated in the peripheral (chiefly, the lungs) and potentially 
embolized to harm distally (i.e., the brain), or even as an 
in situ micro-thrombosis involving vulnerable end-arteries 
in cerebral microcirculation linked to CSVD.

Conclusion

MPs are pro-inflammatory, pro-coagulant membrane vesi-
cles released by various cell types. In the setting of hemo-
static imbalance such as that of COVID-19 infection, MPs 
are likely to be involved, even from the early sepsis as a 
mean to compensate for the host’s systemic inflammatory 
response. Importantly, MPs also may induce deleterious 
changes in the expression of enzyme systems related to 
inflammation and oxidative stress which are plausible dur-
ing the different phases of COVID-19 infection. In fact, 
MPs (i.e., EDMPs) bearing ACE2 may systemically embo-
lize from the site of formation (i.e., lung) to the distant 
target (i.e., brain), hence depositing the virus and further 
aggravate disease complications. Given the three phases 
of the COVID-19 infection, it is probable that the imbal-
ance between coagulation, inflammation, and endotheliitis 
could progress from physiological body defenses (in early 
viremia phase) to pathological hyper-reaction (in pulmonary 
and hyperinflammation phases). Thus, it is plausible that the 
thrombosis initiated by the innate immune system that aims 
to limit SARS-CoV-2 dissemination ends with an anomalous 
functioning of this system that may have contributed to the 
endotheliitis, resulting in loss of thrombo-protective mecha-
nisms, excess thrombin generation, fibrinolysis dysregula-
tion, and thrombogenesis which attract various coagulation 
and inflammatory players as described in this review, with 
a particular emphasis on the role of MPs in CSVD patho-
mechanism, as illustrated in Fig. 5.

In conclusion, we hypothesize that MPs-mediated micro-
thrombogenesis may play an important role in CSVD mani-
festations of COVID-19 patients through the course of the 
infective process. Research employing comprehensive panels 
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of circulating MPs biomarkers for suspected and proven 
cases of COVID-19 may offer relevant clues to hyperco-
agulability and hyperinflammation states and extending this 
relationship to understand the manifestation of COVID-
19-associated CSVD as we await the world to declare an 
affirmative win against this unprecedented twenty-first-
century pandemic.
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