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Abstract
The coronavirus disease that presumably began in 2019 (COVID-19) is a highly infectious disease caused by the severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in a pandemic. Initially, COVID-19 was thought 
to only affect respiration. However, accumulating evidence shows a wide range of neurological symptoms are also associ-
ated with COVID-19, such as anosmia/ageusia, headaches, seizures, demyelination, mental confusion, delirium, and coma. 
Neurological symptoms in COVID-19 patients may arise due to a cytokine storm and a heighten state of inflammation. The 
nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) is a central pathway involved with inflammation 
and is shown to be elevated in a dose-dependent matter in response to coronaviruses. NF-κB has a role in cytokine storm 
syndrome, which is associated with greater severity in COVID-19-related symptoms. Therefore, therapeutics that reduce the 
NF-κB pathway should be considered in the treatment of COVID-19. Neuro-COVID-19 units have been established across 
the world to examine the neurological symptoms associated with COVID-19. Neuro-COVID-19 is increasingly becoming 
an accepted term among scientists and clinicians, and interdisciplinary teams should be created to implement strategies for 
treating the wide range of neurological symptoms observed in COVID-19 patients.
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Introduction

The coronavirus disease 2019 (COVID-19) is caused by the 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). The World Health Organization termed the disease 
COVID-19 and the virus causing the disease SARS-CoV-2. 
In December 2019, the Wuhan Municipal Health Com-
mission, China, reported a cluster of cases of pneumonia 
in the Wuhan, Hubei Province. The novel coronavirus was 
identified from these patients in January 2020. Full genomic 
sequencing and phylogenetic analysis revealed the beta-cor-
onavirus is in the same subgenus as the severe acute respira-
tory syndrome (SARS) virus that caused the SARS-CoV 

epidemic in 2003 [1]. The structure of the receptor is very 
similar to the SARS coronavirus. SARS-CoV-2 uses the 
same receptor as SARS for cell entry, the angiotensin-1-con-
verting enzyme 2 (ACE2) [2]. Based on information from 
the Johns Hopkins University Coronavirus Resource Center, 
as of April 2021, there are over 129,000,000 global cases 
with over 2,800,000 deaths. Unfortunately, these numbers 
are continuing to grow.

Our knowledge of COVID-19 is limited, but new find-
ings are quickly accumulating. Approximately 5% of patients 
suffer critical disease including, respiratory failure, septic 
shock, multi-organ failure, and death [3]. These critically 
ill patients tend to have higher levels of pro-inflammatory 
mediators and cytokines, which is indicative of a “cytokine 
storm syndrome” [4]. Over activation of the nuclear factor 
kappa-light-chain enhancer of activated B cells (NF-κB) 
pathway is implicated in the severe/critical pathogenesis 
of the COVID-19 phenotype [5]. The NF-κB complex is 
expressed in both neurons and glia, and NF-κB is implicated 
in neurodegenerative diseases [6, 7]. During SARS-CoV and 
Middle East Respiratory syndrome coronavirus (MERS-
CoV) outbreaks, viral proteins caused excessive NF-κB 
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activation, possibly resulting in the high levels of disease 
severity and high fatality rates [8–10]. COVID-19 was first 
thought strictly to be a respiratory disease. However, as more 
studies emerged, COVID-19 was seen to have an impact 
in the brain [11]. In this review article, we summarize the 
accumulating evidence on the effect of COVID-19 on NF-κB 
and neurological functions.

Cellular Mechanisms of COVID‑19 Infection

The spike glycoproteins SARS-CoV-2 has a high affinity to 
ACE2 receptors, which are present in bronchial epithelial 
cells, endothelial cells, and neurons. ACE2 receptors are 
expressed in various anatomical locations, such as the nasal 
cavity, lungs, heart, kidneys, intestines, and brain. SARS-
CoV-2 attaches itself to ACE2 via its spike glycoprotein, 
allowing RNA to enter the cell and replicate the virus [12, 
13]. The wide range of ACE2 expression in multiple organs 
may be the reason for the heterogeneity of COVID-19 symp-
toms. SARS-CoV-2’s regional binding domain results in a 
strong affinity for ACE2 receptors [14, 15].

ACE2 is expressed in the nasal cavity epithelia, and has 
been hypothesized that the olfactory epithelium is a common 
early infection site of SARS-CoV-2. After infection of the 
olfactory epithelium, SARS-CoV-2 enters the brain via the 
olfactory nerve and olfactory bulb, according to this hypoth-
esis [16]. ACE2 is expressed in multiple brain structures 
including brainstem, cortex, striatum, hypothalamus, and 
hippocampus [17–20]. Since ACE2 is expressed in neurons 
and glial cells throughout the brain, it makes both types of 
cells vulnerable to SARS-CoV-2 [19]. ACE2 may influence 
GABA (gamma-aminobutyric acid) neurotransmission in the 
amygdala and potentially other structures in the brain, sug-
gesting that SARS-CoV-2 may alter the excitatory/inhibitory 
balance of networks in the brain [21]. The expression level 
of ACE2 in the brain is lower than in other organs, and other 
receptors may play a role in SARS-CoV-2 infection of the 
brain [22]. CD147 (basigin) is an extracellular matrix metal-
loproteinase inducer and is implicated as another receptor 
to which the SAR-CoV-2 spike protein is able to bind [23]. 
CD147 is highly expressed in mouse brain tissue compared 
to lung tissue, suggesting that SARS-CoV-2 may bind to 
CD147 in the brain [24].

NF‑κB and Inflammation

NF-κB is a transcription factor that regulates multiple aspects 
of immune function and mediates inflammatory responses. 
NF-κB induces the expression of pro-inflammatory genes 
such as those encoding cytokines and chemokines. NF-κB 
regulates the survival, activation, and differentiation of 

innate immune cells and inflammatory T cells. The NF-κB 
transcription factor consists of five proteins, p65 (RelA), 
RelB, c-Rel, p105/p50 (NF-κB1), and p100/52 (NF-κB2). 
In the inactive form, NF-κB is in the cytosol and interacts 
with the IκB proteins. The phosphorylation of IκBs by IκB 
kinase (IKK) leads to nuclear translocation of NF-κB, bind-
ing to their cognate DNA and activates transcription of dif-
ferent genes involved with inflammation, cell proliferation, 
and apoptosis [9]. NF-κB activators are diverse and include 
lipopolysaccharides, ionizing radiation, reactive oxygen spe-
cies (ROS), cytokines such as tumour necrosis factor alpha 
(TNF-α) and interleukin 1-beta (IL-1β), and viral DNA and 
RNA [25]. NF-κB transcription factors promote the gene 
expression of many cytokines including IL-1, IL-2, IL-6, 
IL-12, TNF-α, LT-α, LT-β, and GM-CSF; chemokines such 
as IL-8, MIP-1, MCP1, RANTES, and eotaxin; and adhe-
sion molecules including ICAM, VCAM, and E-selectin, 
acute phase proteins serum amyloid A, and inducible effec-
tor enzymes, such as inducible nitric oxide synthase; iNOS 
and cyclooxygenase-2; COX-2 [26]. Therefore, NF-κB is 
the primary transcription factor that regulates many cellular 
responses including early innate immunity, chronic inflam-
matory states, viral infections, septic shock syndrome, and 
multi-organ failure [25, 27]. There is accumulating evidence 
suggesting that sustained activation of NF-κB pathways is 
observed in neurodegenerative disorders, such as multiple 
sclerosis (MS) and Alzheimer’s disease [28, 29].

NF‑κB and Coronavirus

The NF-κB signaling pathway is considered a proinflam-
matory pathway, largely due to its effect of the transcrip-
tion of many different genes involved with inflammation 
[30]. The severe acute respiratory syndrome-associated 
coronavirus (SARS-CoV) was responsible for the world-
wide outbreak of SARS in 2003. The nucleocapsid pro-
tein of SARS-CoV activates NF-κB in a dose-dependent 
manner. SARS-CoV lacking the Envelope (E) gene had 
reduced expression of proinflammatory cytokines, dimin-
ished neutrophil infiltration, and reduced lung pathology 
that resulted in increased survival of mice [8, 31]. Inhi-
bition of the NF-κB pathway increased survival rates in 
mice infected with SARS-CoV suggesting that the activa-
tion of the NF-κB signaling pathway represents a major 
contribution to the inflammation induced after SARS-CoV 
infection [8]. The SARS-CoV spike (S) protein induces 
a cytokine response in infected mononuclear cells in the 
NF-κB pathway. The cytokine response initiated via Toll-
like receptor (TLR) activation through a protein kinase 
C-dependent pathway of NF-κB was inhibited by NF-κB 
blockade (see Fig. 1) [32]. Therefore, understanding how 
the NF-κB pathway modulates inflammatory responses 
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may aid in the development of novel therapeutics that 
block the NF-κB pathway to mitigate the cytokine storm 
and reduce the severity of disease and/or the mortality 
associated with COVID-19.

An in vitro human model that simulates the initial infec-
tion in alveolar epithelium type 2 cells using induced 
pluripotent stem cells showed inflammatory signaling that 
responded to SARS-CoV-2 infection within 24 h and the 
NF-κB signaling pathway predominated this response [33]. 
When damage occurs to alveolar epithelial type 2 cells, 
NF-κB pathway increased activation [34]. Additionally, 
macrophage pro-inflammatory polarization and cytokines 
release contribute to the enhanced inflammatory state [34]. 
This dysregulated inflammatory state in the lungs may lead 
to acute respiratory distress syndrome and may cause mul-
tiple organ failure, one of the most frequent causes of death 
in patients with COVID-19. Therefore, future therapeutic 

efforts may be directed at targeting alveolar epithelial type 
2 cells to prevent acute respiratory distress syndrome.

NF‑κB Activation

NF-κB transcription factors translocate into the nucleus and 
bind to κB-sites, which initiates transcription and production 
of proinflammatory mediators [35]. This is the “canonical 
pathway” of NF-κB since the essential modulator (NEMO), 
a regulatory subunit of the IKK complex is involved. The 
“non-canonical pathway” of NF-κB involves protein kinase 
R (PKR), which also mediates TNF-α. Activation of a subset 
of the tumour necrosis factor superfamily receptors occurs 
through B-cell activating factor receptor lymphotoxin β [26]. 
Activation of NF-κB via the “non-canonical pathway” is slow 
but long lasting with proinflammatory mediator production 

Fig. 1   COVID infection and NF-κB signaling. This putative pathway 
suggests that coronaviruses are able to cause inflammation in human 
brain through nuclear factor kappa B (NF-κB)-dependent signaling. 
Binding of viral SARS-CoV to its receptors, such as CD147, angio-
tensin-converting enzyme 2 (ACE2), and the help of the transmem-
brane serine protease 2 (TMPRSS2), allows SARS-CoV to enter into 
host cells through cleaving/activating of viral envelope glycoproteins. 
Within the endosomes, viral single-stranded RNA virus activates the 
Toll-like receptors (TLRs), such as TLR3, TLR4, and TLR7/8. These 
receptors activate IKK which results in phosphorylation of the cyto-
plasmic inhibitor factor IκBα, which in turn leads to phosphorylation 
of IκBα, and subsequent degradation. As a result, NF-κB p50 and 

p65 are released from IκBα and translocate from the cytoplasm into 
the nucleus to induce transcription of various genes coding for pro-
inflammatory proteins such as cytokines and chemokines. Activated 
NF-κB is associated with a variety of cytokine receptor- and TLR-
mediated signal cascades, including binding of TNFα or IL-1 to their 
receptors. Excessive NF-κB activation triggers production of pro-
inflammatory cytokines and a chemokine storm. T cells such as CD4 
and CD8 are then activated at the site of infection by cytokines and 
a chemokine storm and promote further inflammation. Additionally, 
dendritic cells trigger adaptive immunity. This figure was developed 
using the BioRender online software tool
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[36]. Beta coronavirus can cause hyperactivation of the NF-κB 
pathway via the myeloid differentiation primary response 88 
(MyD88) pathway through pattern-recognition receptors 
(PPRs) [35, 37]. This results in the induction of many differ-
ent cytokines and chemokines [5].

ACE2

ACE2 was identified on the binding protein for SARS-
CoV-2. ACE2 converts angiotensin I (AngI) and angioten-
sin II (AngII) into the lung-protective Ang-(1–9) and Ang-
(1–7), respectively. Increased levels of AngII are associated 
with decreased levels of ACE2 and are implicated in the 
propagation of severe inflammation from renin-angiotensin 
pathway dysregulation [38]. AngII can act as a proinflam-
matory cytokine via angiotensin-1-receptor (AT1R), which 
activates the NF-κB pathway [39]. This leads to the produc-
tion of epidermal growth factor receptor (EGFR) ligands and 
TNF-α, which results in the further activation of NF-κB and 
the propagation of a “cytokine storm” [4, 5].

The Janus Kinase (JAK) signal transduction and activator 
of transcription factor 3 (STAT3) pathway can activate the 
NF-κB pathway. IL-6 activates the JAK-STAT pathway and 
phosphorylated STAT3, which translocates into the nucleus 
and results in IFN-γ reduction. This induces cytokine release 
syndrome. NF-κB activation produces IL-6. During COVID-
19, the NF-κB and JAK-STAT pathways are activated and 
can hyperactivate the IL-6 amplifier response, which results 
in hyperactivation of NF-κB via STAT3 [5, 40, 41]. The 
MAPKs are serine-threonine kinases that regulate cellular 
responses during pathophysiological states. P38 mitogen-
activated protein kinases (MAPKs) also increases NF-κB 
recruitment to chromatin targets [42]. MAPKs pathways are 
involved with the viral pathogenesis of coronaviruses. Inhi-
bition of the P38 MAPK pathway ameliorated AngII organ 
damage [43]. The P38 MAPK pathway mediates TNF-α 
and IL-1β that can activate the NF-κB pathway [40, 44]. 
Therefore, hyperactivation of 38 MAPK and its cross-talk 
with NF-κB may result in inflammation, thrombosis, and 
vasoconstriction, which is associated with severe COVID-
19 cases [45]. Stimulator of interferon genes (STING) is an 
adaptor molecule that links sensing of cytosolic DNA to 
the production of IFNs and NF-κB. COVID-19 can cause 
damage to self-DNA and hyperactive STING resulting in 
IFN-beta release and a cytokine storm following IRF-3 and 
NF-κB activation [46].

COVID‑19 in the Brain

The effects of COVID-19 on the brain can be divided into 
two main forms, direct infection and secondary mechanisms, 
such as immune response or respiratory-induced hypoxia 

[11]. The SARS-CoV-2 RNA was detected in the cerebrospi-
nal fluid of patients with COVID-19 [47]. The direct infec-
tion of the CNS by SARS-CoV-2 may occur via two routes, 
blood circulation into the brain and axonal transport through 
cranial nerves, such as the olfactory nerve [48]. The OC43 
strain of coronavirus was shown to enter the CNS from the 
nasal cavity to the olfactory nerve. The OC43 strain was 
found in distant connections of the olfactory bulb, pyriform 
cortex, and brainstem [49, 50]. The brainstem has neural 
networks that are necessary for the generation of respiratory 
rhythms and disruption within the brainstem can result in 
lethality from respiration failure [51, 52]. SARS-CoV-2 may 
disrupt the brainstem, which may result in the respiratory 
impairments in COVID-19 patients. This may have signifi-
cant implications for the management of COVID-19 patients 
with respiratory impairment [53]. SARS-CoV-2 can result in 
white matter demyelination in the brain and spinal cord [54]. 
In COVID-19-infected patients with neurological symptoms, 
44% had abnormal MRI results with a cortical FLAIR sig-
nal abnormality present in 37% of the patients [55]. Accu-
mulating evidence suggests that neurological symptoms in 
patients with COVID-19 are associated with higher disease 
severity and potential mortality [56].

Emerging data suggests that SARS-CoV-2 has various 
unexpected effects on neurological function. Reports from 
Wuhan, China, the suspected center of the COVID out-
break, described the occurrence of neurological symptoms 
in patients with SARS-CoV-2 [57–59]. For example, reports 
from China included symptoms such as headache, impaired 
consciousness, anosmia, dysgeusia, stroke, encephalopathy, 
myelitis, neuritic pain, myalgia, and rhabdomyolysis [60]. 
As the infection spread to many countries, evidence for the 
neurological symptoms accumulated across multiple coun-
tries. For instance, encephalopathy, agitation with confu-
sion, and corticospinal signs were associated with severe 
COVID-19 in a case study from France [61]. A report from 
the UK observed impaired consciousness, acute cerebro-
vascular events, and muscle disease in COVID-19-infected 
patients [62]. These neurological impairments were seen in 
up to 50% of the most severe cases of COVID-19. Other 
reports include seizures, anosmia, ageusia, encephalitis, and 
Guillain-Barré Syndrome (GBS) associated with COVID-19 
[59, 63, 64]. Also, reports have indicated that increased time 
in the ICU is associated with long-term cognitive deficits. 
It is unclear if the neurological symptoms in patients with 
COVID-19 are simply concurrent or if they are induced by 
the infection. However, given the accumulating reports of 
neurological effects in patients with COVID-19, we believe 
that it is critical to examine the impact of SARS-CoV-2 on 
the CNS. Similar to other viral infections such as MERS, 
herpes, varicella and cytomegalovirus that can activate the 
NF-κB pathway, COVID-19 has a similar neuro-pathogen-
esis profile.
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Coronaviruses and Demyelination

Coronaviruses are known to cause demyelination, and to 
this end, coronaviruses serve as a rodent model for MS 
[65]. There have been many reports of GBS in patients 
with COVID-19 [56, 64, 66]. GBS is an immune-medi-
ated peripheral neuropathy disorder characterized by 
muscle weakness and paresthesia, and is associated with 
auto immune system attacks on the myelin sheath of the 
peripheral nerves. The demyelination observed in patients 
with COVID-19 may be caused by multiple mechanisms. 
This includes direct invasion with the SARS-CoV-2 virus, 
hypoxia, pathological coagulation, and a pathological 
immune response. Whether COVID-19-related demyeli-
nation is a consequence of direct neuronal infection or an 
indirect route or a combination is not always clear, and a 
combination of many factors is possible [56].

The NF-κB pathway mediates inflammation in MS. MS 
is an inflammatory demyelinating disease characterized by 
repeated demyelination, which can result in disabling out-
comes for patients. Studies of patients with MS have found 
increased levels of NF-κB in total peripheral blood mon-
onuclear cells [67, 68]. The therapeutic mechanisms of 
many approved MS treatments block the NF-κB pathway 
immune response in the peripheral nervous system and 
CNS [69]. Patients with MS treated with dimethyl fuma-
rate, which blocks the NF-κB pathway, had a mild form of 
COVID-19 [70]. The dimethyl fumarate prescribed to treat 
MS may have resulted in mild symptoms associated with 
COVID-19. Therefore, further research should evaluate 
the efficacy of MS therapeutics to be repurposed for the 
treatment of COVID-19.

Neuro‑COVID‑19

The term Neuro-COVID-19 is becoming increasingly used 
and increasingly accepted in scientific and clinical circles 
[11]. A Neuro-COVID-19 unit at the University of Brescia 
Hospital in Italy treated COVID-19 patients for stroke, 
delirium, seizures, encephalitis, and other neurological 
complications [71]. The CoroNerve Studies Group was 
created to study the neurological features of COVID-19 
in the UK [72]. Other study groups have formed too. The 
Neuro-Covid-19 clinic of Northwestern Memorial Hospi-
tal in Chicago, IL, found that non-hospitalized COVID-19 
“long haulers” also known as people with chronic COVID-
19 syndrome had prominent brain fog and fatigue that 
affected their cognition and quality of life. People with 
chronic COVID-19 syndrome had clinical manifestations 
of COVID-19 and did not require hospitalization, but had 

neurological symptoms persisting at least 6 weeks from 
symptom onset [73]. Three months after COVID-19 onset 
and despite recovery from acute infection, neurological 
symptoms were prevalent including hyposmia/anosmia 
and cognitive deficits [74]. Cytokine activation appears 
to progress to a prolonged but less lethal and more inca-
pacitating clinical outcome [75]. One of the most insidi-
ous, but least understood effects of chronic COVID-19 
syndrome, is chronic fatigue, which is associated with 
shortness of breath, exhaustion, and general malaise [76]. 
These symptoms resemble chronic fatigue syndrome or 
myalgic encephalomyelitis with no known biomarker. 
COVID-19 does not have a well-defined treatment plan 
associated with the neurological symptoms observed in 
patients. Neuro-COVID-19 units should create interdisci-
plinary teams to implement strategies for treating COVID-
19 patients. NF‑κB modulation may provide a scientific 
and clinical strategy for treating the neurological dysfunc-
tion observed in COVID-19 patients.

Potential Therapeutics of NF‑κB Modulators 
in COVID‑19 Infection

The immunomodulation of NF-κB activation along with 
TNF-α inhibition may result in the reduction of a cytokine 
storm and decrease the severity of COVID-19. In mice 
infected with SARS-CoV, inhibition of NF-κB reduced 
inflammation and increased survival [8]. Cromolyn, an 
inhibitor of NF-κB, was shown to reduce inflammation and 
the cytokine storm in patients with COVID-19 [77]. Cro-
molyn may also reduce the activity of other cell types that 
produce inflammation [78]. The clinical effects of cromolyn 
have not been examined in detail for patients with COVID-
19. Kaletra is a combination of two antiviral drugs, lopinavir 
and ritonavir, which are HIV protease inhibitors that have 
been repurposed for the treatment of COVID-19 and induces 
suppression of the NF-κB pathway [79, 80]. Treatment with 
kaletra did not affect the time to clinical improvement in 
hospitalized patients with severe COVID-19 [81]. Others 
have suggested that kaletra has the potential to be effec-
tive as a clinical treatment of COVID-19 at specific reduced 
doses such as 400/100 mg daily to improve drug tolerabil-
ity [82]. Tocilizumab is used for the treatment of rheuma-
toid arthritis and has been repurposed for the treatment of 
COVID-19. Tocilizumab was shown to suppress the NF-κB 
pathway [83]. The survival of patients with severe COVID-
19 is higher with tocilizumab treatment than with stand-
ard treatment [84]. However, chloroquine which is another 
repurposed drug for the treatment of COVID-19 is an NF-κB 
activator that increases expression of pro-inflammatory 
cytokines [85]. Furthermore, hydroxychloroquine reduced 
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levels of TNF-α, TNF-1β, IgG, and IFN-γ, which in turn 
reduces the NF-κB pathway [86]. Many studies have shown 
positive effects of chloroquine and hydroxychloroquine such 
as decreased time to viral negativity, reduction in death, and 
shorten time to clinical recovery [87–89]. However, other 
clinical trials have not provided consistent evidence to sup-
port the therapeutic effects of chloroquine and hydroxychlo-
roquine in the treatment of COVID-19 [90]. Factors such 
as the dose, age of patients, and the severity of COVID-
19 should all be taken into account when treating patients 
with chloroquine and hydroxychloroquine. Interferon-β 
1a has been repurposed for the treatment of COVID-19 
and does not affect the NF-κB pathway [91]. The time to 
clinical improvement was decreased in patients receiving 
Interferon-β 1a treatment as compared to standard treatment 
[92]. Remdesivir and favipiravir inhibit viral replication and 
were repurposed for the treatment of COVID-19 and there is 
not any data on whether remdesivir and/or favipiravir affects 
the NF-κB pathway. Intravenous injection of remdesivir 
improved the clinical outcome of patients with COVID-19 
[93]. Another study showed that COVID-19 patients treated 
with remdesivir had clinical improvement in 36 (68%) out 
of 53 patients [94]. Favipiravir treatment in patients with 
COVID-19 was associated with improved clinical outcomes 
and decreased time of viral clearance [95].

Dexamethasone is a glucocorticoid that inhibits the 
NF-κB pathway via increased expression of IκB [35, 96]. 
The increased expression of IκB inhibits NF-κB transloca-
tion into the nucleus, and as a result, NF-κB remains in the 
cytoplasm. Glucocorticoids are also immunomodulators 
that reduce IL-6 production and activity, which results in 
decreased cytokine feedback on the NF-κB pathway [97]. 
In patients with COVID-19, dexamethasone reduced the 
incidence of death compared to patients receiving invasive 
mechanical ventilation, and patients receiving oxygen with-
out invasive mechanical ventilation [98]. Dexamethasone 
increased gene transcription of anti-inflammatory cytokines 
and decreased pro-inflammatory mediators [99]. Dexameth-
asone via its inhibition of the NF-κB pathway is an effective 
therapeutic in severe-critically ill COVID-19 patients.

Rescue therapies including inhaled nitric oxide in 
severe-critically ill COVID-19 patients resulted in differ-
ent effects on systemic and cerebral oxygenation. The use 
of inhaled nitric oxide increased systemic oxygenation and 
cerebral oxygenation [100]. There is accumulating evi-
dence that inhaled nitric oxide decreases the inflammatory 
cell-mediated lung injury by inhibiting neutrophil acti-
vation and subsequent pro-inflammatory cytokines [26]. 
Nitric oxide inhibits the NF-κB pathway by terminating 
the transcription process [101]. Given these results, the 
choice of rescue therapies that are adopted should take into 
account the lung and brain of patients. There are several 
ongoing clinical trials in progress measuring the effects 

of inhaled nitric oxide on clinical outcomes in patients 
with COVID-19 [102]. These clinical trials should provide 
information about the effectivity of inhaled nitric oxide for 
the treatment of COVID-19.

Camostat mesylate is a protease inhibitor used to treat 
pancreatitis and inflammatory diseases. Camostat mesylate 
inhibits TMPRSS2 to prevent SARS-CoV-2 fusion on cell 
surface and suppress SARS-CoV-2 replication in hamsters 
and SARS-CoV in mice [103]. There is one ongoing clinical 
trial examining the effect of camostat mesylate on the out-
comes of patients with COVID-19 [104]. Once results of this 
clinical trial are available, it may inform clinicians about the 
effectiveness of camostat mesylate. Camostat mesylate could 
be used to suppress the NF-κB signaling pathway [26]. The 
NF-κB pathway is a redox-sensitive pathway, which becomes 
activated by oxidative stress [105]. Blocking the NF-κB path-
way with antioxidants including vitamin A, vitamin C, glu-
tathione, vitamin E, and zinc could have both prophylactic 
protection and prevent the progression of illness [106].

Vitamin D exerts neuroprotective effects via the NF-κB 
pathway and can prevent memory impairment [107]. The 
neuroprotective action of vitamin D is also associated with 
modulation of neurotrophins, which are important for sur-
vival, differentiation, and maintenance of nerve cells in 
both the peripheral nervous system (PNS) and CNS [108]. 
Vitamin D has immunomodulating properties via its activity 
as an immunosuppressant to protect neurons [109]. Vita-
min D may prevent neurological symptoms associated with 
COVID-19 including loss of taste and smell, and headaches 
by stimulating the expression of neurotrophins such as nerve 
growth factor (NGF) [110]. The effect of COVID-19 was 
of a higher severity in people with vitamin D deficiency, 
and an increased risk for mortality in patients with vitamin 
D deficiency [111]. Therefore, COVID-19 patients should 
have vitamin D levels monitored and regulated to meet the 
targeted levels in medical guidelines.

N-acetylcysteine (NAC) is used to treat critically ill 
septic patients, and more recently for COVID-19 patients 
[112]. NAC is a precursor of the antioxidant glutathione, 
and boosts the immune system, suppresses viral replication, 
and reduces inflammation. NAC is an NF-κB inhibitor and 
works by downregulating the phosphorylation of IκB; it has 
an inhibitory effect against TNF-α mediated activation of 
the NF-κB pathway [26, 113]. As previously mentioned, 
NAC is a precursor of glutathione and the imbalance of the 
glutathione redox system is shown to be involved with many 
neurological disorders. Glutathione can regulate glutamate 
receptors including the N-methyl-D-aspartate (NMDA) 
receptor, which can contribute to glutamate excitotoxicity. 
Interactions between glutamate and glutathione can result in 
neuronal dysfunction and involve the NF-κB pathway [114]. 
Treatment with NAC was shown to have clinical improve-
ment in critically ill COVID-19 patients [115].
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Conclusions

The NF-κB pathway may play an important role in the pro-
gression of COVID-19 and the severe form of the illness. 
NF-κB inhibition may be a possible mechanism of action 
that the current drugs used to treat COVID-19 exert thera-
peutic effects. Although there is accumulating evidence 
that COVID-19 affects the brain, we are only beginning 
to understand the mechanisms by, and the extent to which, 
COVID-19 affects overall neurological functions. Neuro-
COVID-19 is increasingly becoming recognized as a useful 
clinical/scientific construct in the evolving discussion about 
the development of approaches to the diagnosis, manage-
ment, and treatment of neurological and neurocognitive 
effects of COVID-19. Given the large number of COVID-
19 cases with neurological symptoms and the complexity of 
such cases, an effort involving the development of an inter-
national registry/database that can be shared and utilized 
by multispecialty collaborative teams of health care profes-
sionals and scientists all over the world should be launched 
[60]. The heterogeneity of neurological symptoms may stem 
from the various routes that SARS-CoV-2 can enter and 
affect the brain. The time scale of neurological symptoms 
should be further investigated classifying early neurological 
symptoms when the virus is detectable in the patient’s body 
compared to people with chronic COVID-19 syndrome who 
do not have virus detectable in their system, but experience 
neurological symptoms related to COVID-19 infection. 
Novel or repurposed therapeutics should evaluate both the 
acute phase of COVID-19 and the chronic COVID-19 syn-
drome. NF-κB inhibition in the context of neuro-COVID-19 
should be further examined to develop novel strategies for 
targeting the NF-κB pathway in the brain of patients with 
COVID-19.
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