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Abstract
Intelligence is a highly polygenic trait and genome-wide association studies (GWAS) have identified thousands of DNA 
variants contributing with small effects. Polygenic scores (PGS) can aggregate those effects for trait prediction in independ-
ent samples. As large-scale light-phenotyping GWAS operationalized intelligence as performance in rather superficial tests, 
the question arises which intelligence facets are actually captured. We used deep-phenotyping to investigate the molecular 
determinants of individual differences in cognitive ability. We, therefore, studied the association between PGS of intelligence 
(IQ-PGS), cognitive performance (CP-PGS), and educational attainment (EA-PGS) with a wide range of intelligence facets in 
a sample of 557 healthy adults. IQ-PGS, CP-PGS, and EA-PGS had the highest incremental R2s for general (2.71%; 4.27%; 
2.06%), verbal (3.30%; 4.64%; 1.61%), and numerical intelligence (3.06%; 3.24%; 1.26%) and the weakest for non-verbal 
intelligence (0.89%; 1.47%; 0.70%) and memory (0.80%; 1.06%; 0.67%). These results indicate that PGS derived from light-
phenotyping GWAS do not reflect different facets of intelligence equally well, and thus should not be interpreted as genetic 
indicators of intelligence per se. The findings refine our understanding of how PGS are related to other traits or life outcomes.

Keywords Polygenic scores · Intelligence · Cognitive performance · Educational attainment · Deep-phenotyping · 
Cognitive abilities

Introduction

Gaining insight into the molecular determinants of differ-
ences in cognitive abilities is one of the core aims of neuro-
biological intelligence research. Our ability to “understand 
complex ideas, to adapt effectively to the environment, to 
learn from experience, to engage in various forms of rea-
soning [and] to overcome obstacles by taking thought” has 
usually been described as general intelligence [1]. Various 
tests have been designed to measure the cognitive abilities 
of a person by assessing different aspects of general intel-
ligence, like inductive and deductive reasoning abilities or 
the amount of acquired declarative knowledge [2]. Whereas 
most test procedures cover different aspects of general intel-
ligence, there are also tests that focus on specific cognitive 
abilities. Matrix reasoning tests, for instance, are typically 
used to assess non-verbal abstract reasoning [3, 4], while 
other tests measure stored long-term memory of static infor-
mation like rules, relationships, abstract concepts, and of 
course, general knowledge [2, 5].
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Decades of intelligence research have shown that general 
intelligence is one of the best predictors of important life 
outcomes, including educational and occupational success 
[6, 7] as well as mental and physical health [8–10]. Thus, 
considerable research efforts have been put into place to 
explore the mechanisms behind interindividual differences 
in general intelligence. Behavioral genetics has been par-
ticularly fruitful for intelligence research. Twin and family 
studies have demonstrated that general intelligence is one 
of the most heritable behavioral traits, with heritability esti-
mates ranging from 60 to 80% in adulthood [for an overview 
see 11, 12]. However, these traditional quantitative genetics 
studies cannot be used to estimate which and how many 
genetic variants contribute to heritability. Although as early 
as 1918, Fisher’s infinitesimal model postulated that com-
plex traits are affected by a large number of genes, it was not 
until the advent of genome-wide association studies (GWAS) 
that effect sizes of single nucleotide polymorphisms (SNPs) 
could be systematically assessed over the genome. In sup-
port of Fisher’s infinitesimal model [13], large GWAS on 
intelligence have shown that even the most strongly associ-
ated SNPs explain less than 1% of the variance, and that 
heritability of intelligence is caused by a very large number 
of DNA variants of small effect (not taking into account rare 
mutations with potentially large effects on individuals, but 
small effects on the population) [14].

Given that GWAS of sufficient sample size can reli-
ably detect very small effects of single common variants, 
and given that SNPs contribute cumulatively to heritabil-
ity, a fruitful approach forward has been the use of so-
called polygenic scores (PGS). These are genetic indices 
of a trait, defined as the sum of trait-associated alleles 
across many genetic loci, weighted by effect sizes esti-
mated by GWAS. Such scores can be calculated for indi-
viduals in target samples (independent from the initial 
discovery GWAS) and be used to predict traits of inter-
est [15]. For instance, PGS for intelligence (IQ-PGS) 
[16, 17] and cognitive performance (CP-PGS), as well 
as educational attainment (EA-PGS) [18–20], a second-
ary measure of intelligence, have been associated with a 
wide variety of traits, including life-course development, 
educational achievement, body mass index, or emotional 
and behavioral problems in children [21–23]. Although 
IQ-PGS, CP-PGS, and EA-PGS explain a considerable 
amount of variance in intelligence (which is thought to 
increase even further with larger GWAS) [14], and robust 
and sometimes unexpected associations between genetic 
indices of cognitive abilities and other traits have been 
uncovered, it is important to understand that the predic-
tive power of these PGS depends on the cognitive measure 
that is being used. To reliably identify genetic variants 
associated with a complex continuous behavioral trait, 
such as intelligence, in a GWAS, large sample sizes in the 

100,000 s to millions are required. This has been success-
fully achieved using a light-phenotyping approach, that is, 
performing GWAS on the performance in rather superficial 
tests of general cognitive abilities [24, 25], or even more 
crudely, years of education [25]. The question thus arises, 
which of the various aspects of general intelligence [1, 2] 
are mainly reflected in those GWAS. The study at hand 
aimed to tackle this issue by pursuing a deep phenotyping 
approach. Using an extensive test battery comprised of 
tests for memory performance, processing speed, reason-
ing, and general knowledge, we investigated the predictive 
power of IQ-PGS [24], CP-PGS, and EA-PGS [25] with 
regard to each of the aforementioned cognitive abilities.

Methods

Sample Size Estimation

A statistical power analysis was performed for sample size 
estimation based on data reported by Savage et al. [24] and 
Lee et al. [25]. Both meta-analyses reported effect sizes 
[26] of R2 = 0.052 (IQ-PSG) [24], and R2 = 0.097 (EA-
PGS) [25], respectively. G-power [27] was used to deter-
mine the sample size required to detect a small to medium 
effect size (f2 = 0.08) in a multiple linear regression 
analysis, using an α error of 0.05 and statistical power of 
1-β = 0.90. Sample size estimation predicted that N = 236 
participants were needed to obtain the desired statistical 
power. With a final sample size of N = 518 (see below), our 
sample was thus adequately powered for the main objec-
tive of this study.

Participants

We investigated 557 neurologically and psychologi-
cally healthy participants with a mean age of 27.33 years 
(SD = 9.43; range 18–75 years), including 283 males (mean 
age: 27.71 years, SD = 9.86 years) and 274 females (mean 
age: 26.94 years, SD = 8.96 years). The sample was mainly 
comprised of university students of different majors (mean 
years of education: 17.14 years, SD = 3.12 years), who either 
received a financial reward or course credits for their partici-
pation. Health status was self-reported by the participants 
as part of the demographic questionnaire. Individuals who 
reported current or past neurological or psychological prob-
lems were not admitted to the study. The study protocol was 
approved by the local ethics committee of the Faculty of 
Psychology at Ruhr University Bochum (vote Nr. 165). All 
participants gave written informed consent and were treated 
following the Declaration of Helsinki.
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Acquisition and Analysis of Behavioral Data

Behavioral data was acquired during four individual test 
sessions. Each session was designed as a group setting of 
up to six participants, seated at individual tables, in a quiet 
and well-lit room. The tests were administered accord-
ing to their respective manuals. The following is a brief 
description of each test procedure used in our study. Please 
refer to the Supplementary Material for descriptive sta-
tistics (Supplementary Material S1) and intercorrelations 
(Supplementary Material S2) of all cognitive tests.

I‑S‑T 2000 R The Intelligenz-Struktur-Test 2000 R (I-S-T 
2000 R) is a well-established German intelligence test bat-
tery measuring multiple facets of general intelligence [28, 
29]. The test consists of a basic and an extension module. 
The basic module measures different aspects of intelligence 
and contains 180 items assessing verbal, numerical, and 
figural abilities as well as 23 items assessing verbal and 
figural memory. Verbal, numeric, and figural abilities are 
measured by three reasoning tasks that comprise 20 items 
each. For instance, verbal intelligence is assed via items 
on sentences completion, where the participant is asked to 
complete a sentence with the correct word, or on analogies 
and commonalities. Numerical intelligence on the con-
trary comprises items on arithmetic problems, digit spans, 
and arithmetic operators assessing the mathematical abili-
ties of the participant. Figural intelligence is assessed via 
items testing for the participant’s ability to assemble figures 
mentally, to mentally rotate and match dices, and to solve 
matrix-reasoning tasks. The processing time for this section 
is about 90 min. Subsequently, the participants complete 
two memory tasks, one verbal (10 items) and one figural 
(13 items), where they must memorize a series of words, 
or pairs of figures, respectively. This takes about 10 min. 
The extension module measures general knowledge cover-
ing a total number of 84 items. The knowledge test covers 
verbal (26 questions), numerical (25 questions), and figural 
knowledge (22 questions) and takes about 40 min. Here, 
the participant’s knowledge on various facets is assessed: 
art/literature, geography/history, mathematics, science, and 
daily life. Most of the items of both modules are designed in 
multiple-choice form. The only exception is two sub-tests on 
numerical reasoning (calculations and number series). Here, 
the participant has to directly fill in the answer. The com-
plete testing session takes about 2 h 30 min. The reliability 
estimates (Cronbach’s α) for the sub-factettes of the basic 
module fall between 0.88 and 0.95, as well as 0.93 for the 
memory tasks and 0.96 for general mental ability. The exten-
sion module has a reliability of 0.93 (Cronbach’s α). The 
recent norming sample consists of about 5800 individuals 
for the basic module and 661 individuals for the extension 

module. The age range in the norming sample is between 15 
and 60 years and both sexes are represented equally.

ZVT The Zahlenverbindungstest (ZVT) is a trail-making test 
used to assess processing speed in both children and adults 
[30]. After editing two sample matrices, the participant has 
to process a total of four matrices. Here, the individual has 
to connect circled numbers from 1 to 90 in ascending order. 
The numbers were positioned more or less randomly within 
the matrix. The instructor measures the processing time for 
each matrix. The total test value, reflecting the participant’s 
processing speed, is then calculated as the arithmetic mean 
of all four matrices. The test takes about 10 min in total. The 
reliability between the individual matrices is above 0.86 and 
0.95 for adults and 6-month retest-reliability is between 0.84 
and 0.90. The recent norming sample consists of about 2109 
individuals with an age range between 8 and 60 years and 
equal sex representation.

BOMAT‑Advanced Short The Bochumer Matrizentest 
(BOMAT) is a non-verbal intelligence test which is widely 
used in neuroscientific research [3, 31–33]. Its structure is 
similar to the well-established Raven’s advanced progressive 
matrices [4]. Within the framework of our study, we carried 
out the advanced short version of the BOMAT, which is 
known to have high discriminatory power in samples with 
generally high intellectual abilities, thus avoiding possible 
ceiling effects [32, 33]. The test comprises two parallel 
forms with 29 matrix-reasoning items each. Participants 
were assigned to one of the two forms, which they had to 
complete. The participants have a total of 45 min to process 
as many matrices as possible. The split-half reliability of 
the BOMAT is 0.89, Cronbach’s α is 0.92, and reliability 
between the parallel forms is 0.86. The recent norming sam-
ple consists of about 2100 individuals with an age range 
between 18 and 60 years and equal sex representation.

BOWIT The Bochumer Wissenstest (BOWIT) is a German 
inventory to assess the subject’s degree of general knowl-
edge [5]. The inventory comprises two parallel forms with 
154 items each. Both forms include eleven different facets 
of general knowledge: arts/architecture, language/literature, 
geography/logistics, philosophy/religion, history/archeology, 
economics/law, civics/politics, biology/chemistry, nutrition/
health, mathematics/physics, and technology/electronics. 
Within one test form, each knowledge facet is represented 
by 14 multiple-choice items. In our study, all participants 
had to complete both test forms resulting in a total number 
of 308 items. The processing time for each test form is about 
45 min. The knowledge facets assessed by the BOWIT are 
very similar to general knowledge inventories used in other 
studies [34–36]. The inventory fulfills all important qual-
ity criteria regarding different measures of reliability and 
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validity. The inventory’s manual specifies that split-half reli-
ability is 0.96, Cronbach’s α is 0.95, test–retest reliability is 
0.96, and parallel-form reliability is 0.91. Convergent and 
discriminant validity are given for both test forms. The nor-
ming sample consists of about 2300 individuals (age range: 
18–66 years) and has an equal sex representation.

DNA Sampling and Genotyping

For non-invasive sampling, exfoliated cells were brushed 
from the oral mucosa of the participants. DNA isola-
tion was performed with QIAamp DNA mini Kit (Qiagen 
GmbH, Hilden, Germany). Genotyping was carried out 
using the Illumina Infinium Global Screening Array 1.0 
with MDD and Psych content (Illumina, San Diego, CA, 
USA) at the Life & Brain facilities, Bonn, Germany. Fil-
tering was performed with PLINK 1.9 [37, 38] removing 
SNPs with a minor allele frequency of < 0.01, deviating from 
Hardy–Weinberg equilibrium with a p value of < 1*10–6, and 
missing data > 0.02. Participants were excluded with > 0.02 
missingness, sex-mismatch, and heterozygosity rate >|0.2|. 
Filtering for relatedness and population structure was carried 
out on a SNP set of filtered for high quality (HWE p > 0.02, 
MAF > 0.2, missingness = 0), and LD pruning (r2 = 0.1). In 
pairs of cryptically related subjects, pi hat > 0.2 was applied 
to excluded subjects at random. Principal components to 
control for population stratification were generated, and 
outliers >|6SD| on one of the first 20 PC were excluded. 
The final data set consisted of 518 participants and 494,740 
SNPs.

Polygenic Scores

We created genome-wide polygenic scores for each partici-
pant using publicly available summary statistics for intelli-
gence (N = 269,867), cognitive performance (N = 257,828), 
and educational attainment (excl. 23andMe; N = 766,345) 
[24, 25]. Polygenic scores were constructed as the weighted 
sums of each participant’s trait-associated alleles across all 
SNPs using PRSice 2.1.6 [39]. In regard to the highly poly-
genic nature identified for EA and IQ and the observed range 
of highest prediction of the PGS in the original manuscripts 
[24, 25], we applied a p value threshold (PT) of 0.05 for 
the inclusion of SNPs in the calculation of IQ-PGS, CP-
PGS, and EA-PGS. Additionally, we report the results for 
the PGS with the strongest association with the respective 
cognitive tests (and subtests) in our sample (best-fit PGS). 
That is, the p value threshold (PT) for inclusion of SNPs was 
chosen empirically (for the range of PT 5*10–8 − 0.5 in steps 
of 5*10–5), so the resulting PGS explained the maximum 
amount of test score variance for the respective measure 
in our sample. Finally, we also investigated the predictive 
power of PGS including all available SNPs (non-fit PGS), 

that is, the p value threshold for SNP inclusion equaled 
PT = 1.00. The predictive power of the PGS derived from the 
GWAS was measured by the “incremental R2” statistic [25]. 
The incremental R2 reflects the increase in the determination 
coefficient (R2) when the PGS is added to a regression model 
predicting the behavioral phenotype alongside a number of 
control variables (here: sex, age, and the first four principal 
components of population stratification). For all statistical 
analyses in PRSice, linear parametric methods were used. 
Testing was two-tailed with an α-level of p < 0.05. As we 
report a total of 81 regression analyses, our results were 
FDR corrected for multiple comparisons and the corrected 
α-levels were in the range between 0.05/81 = 0.000617 and 
0.05 as defined by the Benjamini–Hochberg method [40]. 
Since the sexes differed significantly for some of the pheno-
types (see results), we also calculated the abovementioned 
analyses in an exploratory fashion separately for the sexes. 
Control variables were age, and the first four principal 
components of population stratification. For PT = 0.05 and 
PT = 1, we applied the same procedure as above. For the 
best-fit approach, we chose the full sample best-fit PT of 
the respective phenotype and applied it to the subsamples. 
Finally, we test whether the predictive power of PGS dif-
ferentiates between females and males by comparing the 
incremental R2 between the two groups correcting for mul-
tiple comparisons using the Benjamini–Hochberg method 
as described above.

Results

In the following section, we report incremental determina-
tion coefficients (incremental R2) for the PGS with a PT of 
0.05 and respective test scores. Additionally, we investigated 
the association between our cognitive test scores and, so-
called best-fit IQ-PGS, CP-PGS, and EA-PGS. These best-fit 
PGS were estimated by using a function, which empirically 
determines a p value threshold for SNP inclusion to maxi-
mally predict the performance in the respective cognitive 
test (see Supplementary Material S3, S4, and S5 for inter-
correlations between best-fit PGS). Finally, we explored the 
predictive power of non-fit PGS including all available SNPs 
(PT = 1.00) and cognitive test scores.

For PT of 0.05, IQ-PGS was especially predictive of 
individual differences in verbal (incremental R2 = 3.29%, 
p < 0.001) and numerical intelligence (incremental 
R2 = 3.05%, p < 0.001) measured with the IST-2000-R. 
The predictive power for differences in general intelli-
gence was only slightly lower (Fig. 1). Here, IQ-PGS had 
an incremental R2 of 2.71% (p < 0.001). Regarding meas-
ures of general knowledge, IQ-PGS had an incremental 
R2 of 1.85% for ability differences in the IST-2000-R gen-
eral knowledge test (p < 0.001) and 1.34% for differences 
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assessed with the BOWIT (p = 0.001). Differences in non-
verbal aspects of intelligence were weaker predicted. Our 
multiple regression analyses resulted in predictive values 
of R2 = 1.04% for processing speed (p = 0.017), R2 = 0.89% 
for matrices (p = 0.029), and R2 = 0.13% for figural intel-
ligence (p = 0.406). Also, the predictive power of IQ-PGS 
for memory was weak (incremental R2 = 0.80%, p = 0.033).

Individual differences in CP-PGS were especially pre-
dictive of individual differences in verbal (incremental 
R2 = 4.64%, p < 0.001) and general intelligence (incremen-
tal R2 = 4.27%, p < 0.0021) measured with the IST-2000-R. 

The predictive power for differences in numerical intelli-
gence was only slightly lower (Fig. 1). Here, CP-PGS had an 
incremental R2 of 3.24% (p < 0.001). Regarding measures of 
general knowledge, CP-PGS had an incremental R2 of 2.22% 
for ability differences in the IST-2000-R general knowledge 
test (p < 0.001) and 1.60% for differences assessed with 
the BOWIT (p < 0.001). Differences in language-free com-
ponents of general intelligence, measured as figural intel-
ligence (incremental R2 = 1.15%, p = 0.014) and matrices 
(incremental R2 = 1.47%, p = 005), were slightly weaker 
explained by CP-PGS (Fig. 1). Interestingly, CP-PGS had 

Fig. 1  Incremental R2 of the p value threshold (PT) = 0.05 polygenic 
scores of intelligence (IQ-PGS), cognitive performance (CP-PGS), 
and educational attainment (EA-PGS) in percent. The incremental 
R2 reflects the increase in the determination coefficient (R2) when 
the IQ-PGS or CP-PGS or EA-PGS is added to a regression model 

predicting individual differences in the respective cognitive test. The 
association between PGS and phenotype was controlled for the effects 
of sex, age, population stratification, and multiple comparisons [40]. 
*Adjusted p ≤ 0.05, **adjusted p ≤ 0.01, ***adjusted p ≤ 0.001
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a high predictive power for processing speed (incremen-
tal R2 = 2.66%, p = 0.001). The least predictive power was 
detected for individual differences in memory performance 
(incremental R2 = 1.07%, p = 0.014).

Individual differences in EA-PGS were especially predic-
tive of individual differences in general intelligence (incre-
mental R2 = 2.06%, p < 0.001). IST-2000-R verbal intelli-
gence (incremental R2 = 1.61%, p = 0.004) and numerical 
intelligence (incremental R2 = 1.27%, p = 0.007), as well 
as aspects of general knowledge assessed by IST-2000-R 
(incremental R2 = 1.39%, p = 0.002) and BOWIT (incremen-
tal R2 = 1.25%, p = 0.002), were moderately predicted by 
EA-PGS. (Fig. 1). Differences in language-free components 
of general intelligence, measured as figural intelligence 
(incremental R2 = 1.17%, p = 0.013) matrices (incremental 
R2 = 0.70%, p = 0.054) and processing speed (incremental 
R2 = 0.67%, p = 0.057), were partially only weakly explained 
by EA-PGS (Fig. 1). Again, the predictive power of EA-PGS 
in individual differences in memory performance was weak 
(incremental R2 = 0.67%, p = 0.051) (Fig. 1).

Apart from the p value threshold (PT) of 0.05, we also 
investigated the predictive power of PGS with the strongest 
association with the respective cognitive tests (and subtests) 
in our sample, so-called best-fit PGS.

Here, best-fit IQ-PGS were especially predictive of indi-
vidual differences in general intelligence measured with 
the IST-2000-R (incremental R2 = 4.95%, p < 0.001). The 
predictive power for numerical intelligence and verbal 
intelligence was only slightly lower (Fig. 2). Here, IQ-PGS 
had an incremental R2 of 4.41% for numerical intelligence 
(p < 0.001) and 4.20% for differences in verbal intelli-
gence (p < 0.001). Regarding measures of general knowl-
edge, IQ-PGS had an incremental R2 of 2.38% for ability 
differences assessed with the IST-2000-R general knowl-
edge test (p < 0.001) and 1.65% for differences in BOWIT 
(p < 0.001). Moreover, 2.00% of the difference in figural 
intelligence (p = 0.001), 2.04% of the performance differ-
ence in the BOMAT (p < 0.001), and 1.99% in processing 
speed (p < 0.001) were additionally explained by including 
IQ-PGS into the respective regression model. As depicted 
in Fig. 2, IQ-PGS had a low predictive power for memory 
(incremental R2 = 1.08%, p = 0.013).

Individual differences in CP-PGS were especially pre-
dictive of individual differences in verbal intelligence 
(incremental R2 = 5.63%, p < 0.001), general intelligence 
(incremental R2 = 5.47%, p < 0.001), and numerical intel-
ligence (incremental R2 = 3.91%, p < 0.001) measured 
with the IST-2000-R (Fig. 2). Aspects of general knowl-
edge assessed by IST-2000-R (incremental R2 = 3.00%, 
p < 0.001) and BOWIT (incremental R2 = 1.96%, p < 0.001) 
were moderately predicted by CP-PGS. Differences in lan-
guage-free components of general intelligence, measured 
as figural intelligence (incremental R2 = 2.49%, p < 0.001) 

and matrices (incremental R2 = 2.47%, p < 0.001), were 
also moderately explained by CP-PSG (Fig. 2). Interest-
ingly, CP-PGS had a higher predictive power for process-
ing speed (incremental R2 = 3.02%, p < 0.001). The least 
predictive power was detected for individual differences in 
memory performance (incremental R2 = 1.57%, p = 0.003).

For EA-PGS, we especially found a high predictive power 
for individual differences in general intelligence (incremen-
tal R2 = 3.12%, p < 0.001) and general knowledge assessed 
by the IST-2000-R (incremental R2 = 3.05%, p < 0.001). 
Verbal intelligence (incremental R2 = 2.61%, p < 0.001) 
and numerical intelligence (incremental R2 = 2.48%, p < . 
001), measured with the IST-2000-R (Fig. 2) and general 
knowledge assessed by BOWIT (incremental R2 = 2.33%, 
p < 0.001), were moderately predicted by EA-PGS. Differ-
ences in non-verbal aspects of intelligence were weaker pre-
dicted. Our multiple regression analyses resulted in predic-
tive values of R2 = 1.76% for processing speed (p = 0.002), 
R2 = 1.66% for matrices (p = 0.003), and R2 = 1.64% for 
figural intelligence (p = 0.003). Again, the lowest predictive 
power was detected for individual differences in memory 
performance (incremental R2 = 1.38%, p = 0.005).

Next, we investigated the predictive power of PGS sum-
marizing the effects of all SNPs (PT = 1.00, non-fit PGS, 
Fig. 3). Here, again, the increment in the determination coef-
ficient caused by IQ-PGS was especially high for numeri-
cal (incremental R2 = 3.00%, p < 0.001), verbal (incremental 
R2 = 2.31%, p < 0.001), and general intelligence (incremental 
R2 = 1.94%, p = 0.001) measured with the IST-2000-R. More-
over, IQ-PGS increases the determination of the differences 
in general knowledge measured via IST-2000-R by 1.50% 
(p = 0.001) and by 1.21% (p = 0.002) for knowledge differ-
ences assessed by BOWIT. While differences in process-
ing speed were predicted with an incremental R2 of 1.17% 
(p = 0.012), IQ-PGS had the lowest incremental effect on 
predicting differences in matrices (incremental R2 = 0.60%, 
p = 0.074), memory (incremental R2 = 0.71%, p = 0.045), and 
figural intelligence (incremental R2 = 0.00%, p = 0.982).

A similar picture emerges for the predictive power of CP-
PGS. The highest predictive power occurred for measures 
of verbal intelligence (incremental R2 = 3.64%, p < 0.001), 
general intelligence (incremental R2 = 2.59%, p < 0.001), and 
numerical intelligence (incremental R2 = 2.06%, p < 0.001). 
The predictive power for differences in general knowledge 
assessed by IST-2000-R (incremental R2 = 1.99%, p < 0.001) 
and BOWIT (incremental R2 = 1.41%, p < 0.001) but also 
processing speed (incremental R2 = 1.93%, p = 0.001) was 
only slightly lower (Fig. 3). Measures of non-verbal intel-
ligence and memory were only poorly predicted by CP-
PGS (matrices: R2 = 0.99%, p = 0.022; figural intelligence: 
R2 = 0.38%, p = 0.158; memory: R2 = 0.65%, p = 0.054).

Individual differences in EA-PGS were espe-
cially predictive of individual differences in general 
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intelligence (incremental R2 = 3.12%, p < 0.001), gen-
eral knowledge assessed by IST-2000-R (incremental 
R2 = 3.05%, p < 0.001). General knowledge defined by 
BOWIT (incremental R2 = 2.33%, p < 0.001) and ver-
bal (incremental R2 = 2.61%, p < 0.001) and numerical 
intelligence (incremental R2 = 2.48%, p < 0.001) were 
moderately predicted by EA-PGS. As shown in Fig. 3, 
measures of non-verbal intelligence and memory were 
only poorly predicted by IQ-PGS (processing speed: 
R2 = 1.36%, p = 0.006; matrices: R2 = 1.65%, p = 0.004; 

figural intelligence: R2 = 1.09%, p = 0.017; memory: 
R2 = 1.38%, p = 0.005).

Overall, for the associations between cognitive meas-
ures and PT = 0.05, PT = 1.00 or best-fit PGS, a compa-
rable pattern emerged, albeit the magnitude of explained 
variance deviated. Here, in general, the predictive power 
of the PT = 0.05 and PT = 1.00 was somewhat lower than 
for the best-fit PGS. Moreover, the amount of explained 
variance was, in most cases, higher for IQ-PGS and CP-
PGS than for EA-PGS (Figs. 1, 2, and 3).

Fig. 2  Incremental R2 of the best-fit polygenic scores of intelligence 
(IQ-PGS), cognitive performance (CP-PGS), and educational attain-
ment (EA-PGS) in percent. The p value thresholds (PT) that deter-
mined the inclusion of SNPs into the respective PGS are displayed 
in the respective bar. The incremental R2 reflects the increase in the 
determination coefficient (R2) when the IQ-PGS or CP-PGS or EA-

PGS is added to a regression model predicting individual differ-
ences in the respective cognitive test. The association between PGS 
and phenotype was controlled for the effects of sex, age, population 
stratification, and multiple comparisons [40]. *Adjusted p ≤ 0.05, 
**adjusted p ≤ 0.01, ***adjusted p ≤ 0.001
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Finally, we tested whether there are sex-differences 
in the cognitive test scores and the predictive power of 
respective PGS. We did not observe a significant sex dif-
ference with regard to age (t(555) = 0.96, p = 0.304) and 
verbal intelligence (t(555) = 1.49, p = 0.14), processing 
speed (t(555) = 0.85, p = 0.39), and figural intelligence 
(t(555) = 1.32, p = 0.19). However, we found that females 
scored significantly higher on memory performance 
(t(555) =  − 4.87, p < 0.001), while males achieved signifi-
cantly higher scores for general intelligence (t(555) = 5.01, 
p < 0.001), matrices (t(555) = 2.21, p = 0.03), numerical 

intelligence (t(555) = 7.65, p < 0.001), and general knowl-
edge assessed by IST-2000-R (t(555) = 10.42, p < 0.001) 
and BOWIT (t(555) = 9.63, p < 0.001). Given the substan-
tial sex differences for most of the cognitive test scores, we 
decided to compute the aforementioned predictive power 
of the respective PGS for both sexes separately (Fig. S1 to 
S3). Although the pattern of results seems to be different for 
females and males, 78 out of 81 incremental R2 comparisons 
between the sexes were not significant (p > . 05). Statistical 
analysis indicated a significant sex-difference in incremental 
R2 of EA-PGS for matrices (p < 0.05) (PT = 0.05 EA-PGS; 

Fig. 3  Incremental R2 of the non-fit polygenic scores of intelligence 
(IQ-PGS), cognitive performance (CP-PGS), and educational attain-
ment (EA-PGS) in percent. p value threshold (PT) = 1. The incremen-
tal R2 reflects the increase in the determination coefficient (R2) when 
the IQ-PGS or CP-PGS or EA-PGS is added to a regression model 

predicting individual differences in the respective cognitive test. The 
association between PGS and phenotype was controlled for the effects 
of age, sex, population stratification, and multiple comparisons [40]. 
*Adjusted p ≤ 0.05, **adjusted p ≤ 0.01, ***adjusted p ≤ 0.001
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p = 0.04, best-fit EA-PGS; p = 0.0037, EA-PGS PT = 1.00; 
p = 0.0039) in the first place; however, none of the p values 
survived the control for multiple comparisons as defined by 
the Benjamini–Hochberg method.

Discussion

Polygenic scores for intelligence, cognitive performance, 
and educational attainment are increasingly used to investi-
gate associations between genetic disposition for cognitive 
abilities and different life outcomes [21–25]. It is, however, 
currently not known which aspects of general intelligence 
are reflected to what extent by available PGS, derived from 
large GWAS. Here, we show that IQ-PGS, CP-PGS, and EA-
PGS do not predict every form of cognitive ability equally 
well (Figs. 1, 2, and 3). Specifically, we found for all three 
PGS for the whole group and separated for the sexes the 
pattern that all PGS had a high predictive power for interin-
dividual differences in general, verbal, and numerical intelli-
gence. In contrast, memory was only weakly associated. The 
pattern for matrices was not consistent. For the whole group, 
as well as for males, we found a poor association for matrices, 
whereas for females, we found a higher predictive power.

Previous findings investigated the predictive power of sin-
gle PGS in cognitive abilities. Liu et al. [41] used EA-PGS 
to predict verbal and matrix reasoning, and a recent preprint 
by Loughnan et al. [42] investigated the predictive power of 
IQ-PGS on different cognitive facets in children. Although 
a direct comparison between these studies and our results is 
not straightforward since we report incremental R2 for the 
predictive power and these studies used the standardized 
regression coefficient beta, by and large, our findings are in 
accordance with the results reported in these studies. More 
specifically, PGS estimated from cognitive ability approxi-
mations, like intelligence, cognitive performance, and edu-
cational attainment, are more strongly associated with crys-
tallized cognitive abilities compared to fluid abilities. This 
finding is counterintuitive at the first glance, since previous 
classical models [43] assumed that crystallized abilities 
would be less influenced by genetics but more impacted by 
environmental factors, like education. Nevertheless, recent 
evidence from a meta-analytic twin study showed higher 
heritability estimates for crystallized compared to fluid abili-
ties [44]. Here, Kan et al. [44] speculated that these find-
ings could be explained in terms of genotype-environment 
covariance. Because the acquisition of crystallized abilities 
(e.g., knowledge) depends on fluid abilities (e.g., cognitive 
processing) as described by the investment hypothesis [43], 
individuals who develop relatively high levels of cognitive-
processing abilities tend to achieve relatively high levels of 
knowledge. More specifically, high achievers are more likely 
to end up in cognitively demanding environments which 

facilitate the initial genetic predisposition and thus the fur-
ther development of a wide range of knowledge and skills. If, 
in addition, stimulating environments foster societally val-
ued knowledge and skills more than cognitive processing 
per se, data simulations with dynamical models indicate that 
heritability coefficients of crystallized abilities could exceed 
those of fluid abilities [44]. Although this assumption seems 
plausible, we assume an alternative and more parsimonious 
explanation for these findings. We suggest that the predic-
tive power of PGS in target samples could be influenced 
by the design of the GWAS that were used to discover the 
PGS in the first place. In typical GWAS, sample sizes tend 
to be very large, which usually comes at the cost of light 
phenotyping. It follows that PGS, which summarize trait-
associated effect sizes of single SNPs, will reflect the genetic 
basis of the measured phenotype. In the case of educational 
attainment, this was defined as the years of schooling an 
individual completed [25]. Because verbal and numerical 
intelligence reflect culturally acquired abilities [2], it is not 
surprising that PGS based on individual differences in years 
of education are primarily associated with individual dif-
ferences in these aspects of intelligence, and less so with 
differences in non-verbal intelligence and memory. Of note, 
a recent analysis indicates that non-cognitive genetic factors, 
i.e., genetic variation in educational outcomes not explained 
by genetic variation in cognitive ability, accounted for more 
than half of the genetic variance in EA, and that heritable 
non-cognitive skills influence personality characteristics, 
and downstream health outcomes [45].

Interestingly, the same applies to the IQ-PGS and CP-
PGS. These scores were based on a GWAS meta-analysis 
that was mainly driven by the UK Biobank subsample. 
With almost 200,000 participants, the UK Biobank sample 
contributed at least above two-thirds of the meta-analysis 
sample [25]. In the UK Biobank, cognitive abilities were 
measured as the number of correct answers to a total of 13 
questions assessing both verbal and mathematical intelli-
gence. Although the respective questions are considered 
to measure intelligence in the form of verbal and numeri-
cal abilities, the number of correct answers seems to be 
dependent on culturally acquired knowledge rather than on 
deductive and inductive reasoning [46]. This becomes clear 
when taking a closer look at individual items. For example, 
arithmetic capability is measured with the following item: 
“If David is twenty-one and Owen is nineteen and Daniel is 
nine years younger than David, what is half their age com-
bined?” [46]. As this is a classic word problem, it is not 
language-free and, therefore, clearly affected by cultural 
expertise. Again, the selection of test procedures used to 
determine individual differences in cognitive ability in the 
discovery sample appears to have a distorting influence on 
the predictive power of the PGS in other target samples. 
This is particularly important when one wants to investigate 
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the functional pathways between genotype and phenotype. 
Researchers who aim to bridge the gap between genetic and 
neuronal correlates of cognitive abilities should be aware 
of this issue as previous studies have shown that distinct 
aspects of intelligence have distinct neural correlates [33]. 
Although our study provides important insights into the 
predictive power of commonly used PGS, the following 
limitations need to be considered. First, it has to be noted 
that with the present design, we cannot distinguish between 
direct genetic effects on cognitive performance and indirect, 
environmentally mediated parental genetic effects in form of 
genotype-environment correlations (e.g., cognitively enrich-
ing environments provided by parents [47]). Study designs 
combining family data with genotypic data will be needed 
to further dissect those contributions [48]. Second, in the 
present study, the training data was primarily of European 
ancestry, and the target sample was a homogenous sample 
largely consisting of German university students. While 
polygenic prediction has been demonstrated to work best 
for discovery and target samples of matching ethnic back-
ground [42, 49], as in the present study, the availability of 
large-scale discovery samples for other ancestries, e.g., of 
African or Asian populations, would be indispensable for the 
comparative analysis of polygenic contribution to cognition 
in different ancestries and cultures. Third, our sample was 
mainly composed of university students with a restricted age 
range. Previous studies show that our results are in accord-
ance to associations patterns for various cognitive domains 
in children [42]. However, independent replication of our 
results in diverse samples with similar age ranges but differ-
ent educational backgrounds is highly desirable [50].

Forth, the distinctive feature of our study is that we 
report the predictive power of various PGS separately for 
the sexes. Our results show that for both sexes, all three 
PGSs have higher predictive power for general, verbal, and 
numerical intelligence lower for memory. The pattern for 
matrices was not consistent. For the whole group, as well for 
males, we found a poor association, whereas for females, we 
found a very high predictive power especially for EA-PGS. 
However, one has to be careful with these interpretations, 
because the patterns of both sexes and the comparison do 
not differ significantly from each other when controlling for 
multiple comparisons. Since the analyses for both sexes are 
based on an exploratory analysis and were performed with 
significantly smaller sample sizes, it is not surprising that 
they suffer from reduced statistical power compared to the 
whole group analyses. Therefore, we encourage future stud-
ies to systematically investigate sex differences in terms of 
the predictive power of various PGS in their cohorts.

Fifth, for the selection of a suitable p value threshold 
for SNP inclusion, we were guided by the original publi-
cations of Savage et al. [24] and Lee et al. [25]. However, 
there is no clear specification as to which p value threshold 

achieves the best overall predictive power regarding cogni-
tive ability differences. Therefore, we additionally used a 
best-fit approach, which yielded different p value thresholds 
for SNP inclusion for the different cognitive tests (Fig. 2). 
Here, p value thresholds for the various PGS ranged from 
PT = 0.0001 to PT = 1 but were highly intercorrelated (see 
Supplementary Material S3, S4, S5) so that the different 
best-fit scores are highly comparable regarding their SNP 
composition. As using a best-fit approach can lead to an 
overestimation of the observed explained variance [39], we 
also report the associations of non-fit PGS with a p value 
threshold of PT = 1.00 (Fig. 3). With this approach, PGS that 
take all available SNPs for either intelligence, cognitive per-
formance, or educational attainment into account were tested 
for associations with the different cognitive tests. Although 
PT = 0.05 and PT = 1.00 have a consistently lower predictive 
power than the best-fit PGS, they exhibit a comparable pat-
tern of results. This confirms that polygenic scores of intel-
ligence, cognitive performance, and educational attainment 
derived from large GWAS [24, 25] reflect some aspects of 
intelligence, e.g., verbal and numerical intelligence, more 
accurately than others, like memory. In conclusion, our study 
is the first which systematically investigates the association 
between polygenic scores of intelligence [24], cognitive per-
formance, and educational attainment [25] and a wide range 
of general intelligence aspects in healthy adults. The study 
shows how large-scale light-phenotyping GWAS studies 
with a strong statistical power to identify associated variants, 
and smaller comprehensive deep-phenotyping approaches 
with a fine-grained assessment of the phenotype of interest 
can complement each other. We demonstrate that the dis-
covery GWAS for intelligence, cognitive performance, and 
educational attainment do not reflect every form of cognitive 
ability equally well. Realizing that the way of phenotyping 
in large GWAS affects the predictive power of the resulting 
PGS [see also 51] is essential for all future studies planning 
to use PGS to unravel the genetic correlates of cognitive 
abilities in their samples.
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