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Abstract
Traumatic brain injury (TBI) is a damage to the brain from an external force that results in temporary or permanent impairment in
brain functions. Unfortunately, not many treatment options are available to TBI patients. Therefore, knowledge of the complex
interplay between gut microbiome (GM) and brain health may shed novel insights as it is a rapidly expanding field of research
around the world. Recent studies show that GM plays important roles in shaping neurogenerative processes such as blood-brain-
barrier (BBB), myelination, neurogenesis, andmicroglial maturation. In addition, GM is also known tomodulate many aspects of
neurological behavior and cognition; however, not much is known about the role of GM in brain injuries. Since GM has been
shown to improve cellular and molecular functions via mitigating TBI-induced pathologies such as BBB permeability, neuro-
inflammation, astroglia activation, and mitochondrial dysfunction, herein we discuss how a dysbiotic gut environment, which in
fact, contributes to central nervous system (CNS) disorders during brain injury and how to potentially ward off these harmful
effects. We further opine that a better understanding of GM-brain (GMB) axis could help assist in designing better treatment and
management strategies in future for the patients who are faced with limited options.
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Introduction

Traumatic brain injury (TBI) occurs due to an external force
causing skull damage which could invariably affect the brain
[1]. The trauma leading to brain injury can be broadly catego-
rized as an impact or a non-impact event depending upon
whether the external object had a direct contact with the head
(impact) or was it a non-impact force like the blast waves or a
rapid acceleration, and deceleration (non-impact) with the
head [2]. In the USA, frequency of TBI occurs every 15 s
(roughly about 1.7 million new TBI cases/year) and costs

more than US $77 billion/year [3]. In brief, TBI events are
responsible for 50,000 deaths together with 80,000 individ-
uals that are left with permanent disabilities each year [4–7]. It
is believed that the frequency of brain injury is estimated to be
higher than any other type of diseases such as Parkinson’s
disease, multiple sclerosis, AIDS, and breast carcinoma [3].
For example, motor-vehicle or traffic-related accidents consti-
tute 17% cases while walking-falls are responsible for 35% of
cases in USA [4–7]. As per one estimate 130,000 children in
the age between 5 and 18 years suffered from sport-related
concussions [8]. Besides, blast injury was the most common
cause of TBI-related event that was observed among the mil-
itary personnel [9]. In recent years, several experimental ani-
mal models have been developed to replicate human TBI
pathophysiological aspects employing the pre-clinical settings
[10] including fluid percussion, weight-drop injury, and con-
trolled cortical impact (CCI). These animal models are rou-
tinely used in simulating TBI-related events in small animals
with characteristics of mild or severe TBI. In fact, these
models remain the workhorses for studying characteristic fea-
tures of the primary, as well as secondary brain injuries in
humans [11].

An acquired insult during TBI could potentially change
various structural components of the brain resulting in
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temporary or even permanent brain impairment [12, 13].
Interestingly, GM and its role(s) in various system disorders
has recently been the major focus area of research worldwide.
For example, previous work reveals that GM plays important
roles in neurogenerative processes such as formation of BBB,
myelination, neurogenesis, and microglial maturation [14]. It
has been shown that microbiome alsomodulates many aspects
of our behavior since GM is involved in the modulation of
cellular and molecular processes by balancing microbial
eubiosis and dysbiosis condition and also involved in the pro-
gression of TBI-induced pathologies including BBB perme-
ability, immune response to neuroinflammation, astroglial ac-
tivation, and mitochondrial dysfunction (Fig. 1) [14].
Currently, efficacious treatments for TBI patients are acutely
lacking [15–17]. Additionally, gut dysbiosis is known to
exacerbate behavioral impairment as shown in studies that
employed animal models of TBI and the spinal cord injury
[18–21]. Furthermore, the dysbiotic milieu negatively affects
the post stroke recovery [22–25]. Treatments for TBI and
related disorders are severely limited, but recent research
shows that microbiome transplants could mitigate CNS
damage and functional impairments in spinal cord injury and
stroke in animals [18]. In addition, probiotics were shown to
reduce the rate of infections and time spent in intensive care
units of hospitalized patients suffering from the brain trauma
[18, 26, 27]. Thus, establishment of a protective, that is,
eubiotic GM, is a promising therapeutic avenue since the
brain injuries induce dysbiosis (Fig. 2). Reiner and
colleagues 2014 reported that Novel CB2 Inverse Agonist
SMM-189 reduce motor, visual, and emotional deficits after
closed-head mild traumatic brain injury mouse model via mit-
igation of microglial inflammatory action [28]. ER stress was

found to be increased early in juvenile rats exposed to TBI and
that these rats developed tau oligomers over the course of 30
days and had significant short-term and spatial memory defi-
cits following injury [29]. Treangen and colleagues suggested
that acute bacterial dysbiosis within the gut microbiome was
observed after TBI post-injury in mice [30]. The overall
researched layout is represented in Fig. 2. However, post-
TBI associated ocular and brain dysfunction via direct regula-
tion of altered gut microbiome homeostasis is still needed to
be demonstrated. This review discusses how GM alterations
during post TBI contribute to CNS dysfunction and how to
potentially target GM for therapeutic benefits in patients.

An Overview of Traumatic Brain Injury (TBI)

TBI is defined as an alteration in brain functions that is pro-
voked often by an external force. Unfortunately, it remains the
main cause of injury-related death, disability, and mental dis-
orders, thus representing a major public health issue globally
[31–34]. In the year 2013 alone, a total of approximately 2.8
million TBI-related emergency department visits, hospitaliza-
tions, and deaths were registered in the USA [35].
Unfortunately, it is also one of the most prevalent injury types
in many industrialized countries [36]. Although there has been
an overall decline in TBI mortality because of an improved
treatment modality over the years; however, there is substan-
tial increase in the number of individuals living with disabil-
ities as a direct result of TBI [37–41]. At cellular levels, TBI
pathophysiology is characterized by acute necrotic or delayed
apoptotic neuronal death, cytokine and chemokine produc-
tion, infiltration of peripheral immune cells, and activation

Fig. 1. TBI induced dysbiosis via
the gut microbiome brain (GMB)
axis. The GMB-axis could poten-
tially contribute, and further
worsen the injury profile by pro-
moting dysbiosis over eubiosis
wherein harmful microbes in the
gut can lead to an increase in
neuroinflammation, mitochondri-
al dysfunction, oxidative stress,
microglial activation, behavioral,
and cognitive impairment, and
intestinal wall permeability.
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of astrocytes and microglia that lead to a variety of brain, and
visual problems [42–45]. The survivors often suffer from de-
bilitating secondary injury conditions including cognitive def-
icits pertaining to their memory, attention, executive function,
speed of information processing, and personality changes that
are best characterized as dysexecutive syndromes involving
social comportment, cognition, and motivated behavior and
increased relative rates of psychiatric disorders, particularly
depression and anxiety along with ocular dysfunction
[15–17, 46, 47]. Despite past research accomplishments in
TBI pathophysiology, much remains to be discovered regard-
ing mechanistic understanding into the heterogeneous nature
of brain injury-related neuropathologies, behavioral, and cog-
nitive impairments. Again, as discussed earlier efficacious
therapeutics for TBI-induced maladies are lacking [48–50].
Therefore, it is vital to consider novel treatment strategies to
combat TBI-related disabilities, and in this context manipula-
tion of GM by gut eubiotic therapeutic modalities could serve
as means of captivating this expanding avenue, against the
TBI-induced medical condition [51] (Figures 1 and 2).

Homocysteine, its Metabolism, and TBI
Complications

Homocysteine (Hcy) is a sulfur containing non-proteinogenic
amino acid derived from the essential amino acid methionine
(Met) (Fig. 3). The catabolism of Met can be disrupted by
factors like lifestyle, stress, aging, or genetic abnormalities lead-
ing to hyperhomocysteinemia (HHcy). Dietary Met is first con-
verted to S-adenosyl methionine (SAM), which is changed to
S-adenosyl Hcy (SAH). Then SAH leads to the production of
Hcy, which is further re-methylated back to Met wherein

vitamin B12 serves as a co-factor, and the cycle continues
[52]. Under the condition of either low cysteine or saturation
of Hcy back to re-methylation, then Hcy can be further catab-
olized via the trans-sulfuration pathway into cysteine. In this
rate-limiting step, Hcy is first converted to cystathionine with
the help of cystathionine β-synthase (CBS) where vitamin B6
is an essential co-factor. Subsequently, cystathionine is convert-
ed to cysteine by cystathionine γ-lyase (CSE). Cysteine is then
broken down to taurine, glutathione, and hydrogen sulfide
(H2S) (Ref-9 (Fig. 3). In its excess amount when it starts accu-
mulating, Hcy is highly neurotoxic to astrocytes and neurons
[53, 54]. Normally, it is continuously eliminated either via its
re-methylation back to Met or via trans-sulfuration to cystathi-
onine production. However, Hcy can accumulate under certain
circumstances such as during folate deficiency, aging, occur-
rence of a mutation in methylenetetrahydrofolate reductase
(MTHFR) gene, or under physical or emotional stress condi-
tions [55–60]. When Hcy builds up (also known as HHcy), it
invariably leads to BBB dysfunction and microvascular disor-
ders [61]. It also increases NAD(P)H oxidase activity which in
turn triggers microglia activation thus stimulating the secretion
of pro-inflammatory molecules [61–64].

A recent study demonstrated that Met-treated HHcy in a TBI
mouse model exhibited increased oxidative stress and BBB
dysfunction. The phenotype promoted infiltration of inflamma-
tory cells into the cortex as also emphasized here in Figs. 1 and 2
[63–65]. The study also suggested that HHcy was implicated in
visual dysfunction. The previous study has clearly indicated that
HHcy is a potent risk factor for retinal arteriosclerosis [51, 66],
exudative age-related macular degeneration (AMD) [67], and
macular and optic atrophy due to retinal vascular occlusion or
non-arteritic ischemic optic neuropathy [68] and glaucoma [69].
In fact, cross-sectional studies have demonstrated that there is a

Fig. 2. Resolution of the gut
dysbiotic environment. Treatment
with probiotics may help break
the vicious dysbiotic cycle thus
reducing the impact of brain
injury, and hence improve
substantially the TBI-related bio-
chemical, pathological, and be-
havioral markers.
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strong association between HHcy and exudative neovascular
AMD [70]. Thus, HHcy appears to exacerbate TBI outcome
suggesting that Hcy dysregulation may be a significant biolog-
ical variable that could contribute to TBI pathophysiology and
ocular disease conditions (Fig. 3). In addition, Zinno and
colleagues suggested that dietary supplementation of dairy
matrices containing natural folic acid could mitigate the
plasma homocysteine (Hcy) and SAM levels and found to re-
s to r e the feca l mic rob io t a compos i t i on in the
hyperhomocysteinemic (HHcy) mouse model (Fig. 3) [71].
However, the direct connection between HHcy, associated
post-TBI outcomes such as neuroinflammation, BBB dysfunc-
tion, and cognitive deficits via modulation of gut microbiota
homeostasis needs to be explored. Therefore, further research
is warranted to understand the mechanism(s) of HHcy-
associated multifactorial post-TBI linked outcomes.

Gut Microbiome Brain (GMB) Axis

The human intestine consists of more than 1000 types of mi-
crobes from at least 4000 different species [72–75]. Hence,
alterations in their relative composition have been known to

play definitive roles in the pathogenesis of many system disor-
ders like diabetes, obesity, inflammatory bowel disease,
Crohn’s disease, Alzheimer’s disease, anxiety, and depression
[76–83]. In recent years, there has been an increasing interest in
studying interactions between the brain, gastrointestinal (GI)
tract, and its microbiome and the bidirectional relationship be-
tween these systems [84] (Fig. 1). A deeper insight into the
brain-gut crosstalk revealed the existence of a complex com-
munication channel that not only ensures proper wellbeing of
the gastrointestinal homeostasis but also likely to have multiple
effects on the overall brain functioning such as higher cognitive
function and motivation. The complexity of these interactions
between the brain and gut is presumably through “gut-brain
axis” ([85]. By realizing the importance of microbiome in mod-
ulating health, the gut-brain axis has been renamed as the GMB
axis, which represents a complex network of communication
between the gut, intestinal microbiome, and brain that seem to
modulate immune system, gastro-intestinal tract, behavior,
stress response, and CNS functions [15–17, 85–94] (Fig. 2).
This bidirectional communication includes the enteric nervous
system, autonomic nervous system, central nervous system,
and the hypothalamic-pituitary-adrenal axis; however, the hy-
pothalamic pituitary adrenal axis is considered as the core stress

Fig. 3. Hcy metabolic pathways. Hcy resides at the intersections of re-
methylation and trans-sulfuration pathways. In the re-methylation
pathway, tetrahydrofolate (THF) is converted to methyl (CH3) THF by
methylenetetrahydrofolate reductase (MTHFR). The methyl group is
donated to Hcy, and in the presence of methionine synthase (MS), and
B12, it is converted to Met. Met is used further in many methyl transfer
reactions. When the diet is replete with Met, Hcy is converted via trans-
sulfuration pathway to cystathionine by cystathionine β synthase (CBS),

and then again to cysteine via the action of cystathionase (CSE) in the
presence of B6. Finally, cysteine is converted to several beneficial
downstream products such as glutathione (GSH), and taurine which are
essential for brain, and retinal functions. Abbreviations: SAHH; S-
adenosyl homocysteine hydrolase, SAH; S-adenosyl homocysteine, R;
represents a carbon-based group, DNA; deoxyribonucleic acid, RNA;
deoxyribonucleic acid.
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efferent axis [85, 95–97]. It was previously shown that GM
regulates intestinal function and health but later accumulating
evidence indicated that it could also influence the immune and
nervous systems and vice versa [98].

Elderly individuals with lower diversity of microorganisms
have strong connection with various system disorders [99].
Although quite a literature has already been published, it is
still an evolving area of great significance where important
links between diet, microbes, and cognition should be empha-
sized in detail as we make further progress. The influence of
the microbiome on obesity and metabolic syndrome is also
being increasingly recognized. It has been proven in the mean-
time that gut and brain do communicate with each other via
several routes including the vagus nerve, immune system,
enteric nervous system, and or by way of various microbial
metabolic processes [100–102]. These microbiome-
dependent processes have also been shown to include
myelination, adult hippocampal neurogenesis, and microglia
activation [103–105]. Reports show that animals featuring
normal intestinal microbiome that are subject to no external
influences develop inflammation in their brain [101, 102].
There are, in fact, already reports of the link between an in-
testinal dysbiosis and the non-infectious uveitis. Furthermore,
the microbiome alteration with either germ-free rearing or
treatment with oral metronidazole and ciprofloxacin resulted
in reduced uveitis [106–110]. Another study showed that fecal
microbial transplantation from Behcet’s disease patients into
an autoimmune uveitis-prone mouse model worsened intraoc-
ular inflammation [111, 112].

Interestingly, obesity has been called a psychiatric disease
and is highly linked with depression and other neuropsychiat-
ric disorders [113–115]. Similarly, schizophrenia has been
linked to intestinal inflammation and gastro-jejunal ulcers
[115, 116]. Furthermore, deregulation in the GM that is asso-
ciated with age-related decline in sensory, motor, and higher
cognitive functions leads to age-related neurodegenerative
disorders [117–121]. In recent years, researchers have pro-
posed a potential role for pathogenic microbes, including
those derived from gut in the development or exacerbation
of Alzheimer’s disease [122–125]. There are many studies
depicting alterations in the GM that are associated with neu-
rological disorders, multiple sclerosis, and the Parkinson’s
disease [126–133]. Similarly, unhealthy microbiome has been
associated with the disruption of the ocular tissues, exacerba-
tion of diabetic retinopathy, age-related macular degeneration,
choroidal neovascularization, uveitis, glaucoma, and
Sjogren’s syndrome [134, 135]. On the other hand,
Treangen and colleagues in 2018 suggested the overall impact
of TBI on bacterial dysbiosis, and they went on to show that
microbial changes occur 24 h after TBI in mice, indicating that
CCI causes a rapid shift in relative abundance of many species
including Lactobacillus gasseri, Ruminococcus flavefaciens,
and Eubacterium ventriosum that are commonly seen in the

human GM [30]. These results suggested that probiotics ad-
ministration could be a therapeutic strategy for individuals
with post-traumatic stress disorders such as TBI.

GMB-Axis in CNS Injuries

TBI-related pathophysiological effects have been increasingly
studied that are directly associated with intestinal dysfunction
and these effects represent an important consequence to the
host because the GMB-axis supposedly ensures major bidi-
rectional communication pathway between the brain and gas-
trointestinal tract incorporating both afferent and efferent sig-
nals which involve neuronal, hormonal, and immunologic
cross-talk. Such bidirectional interactions can result in sequel-
ae such as chronic fatigue of the gastrointestinal system in-
cluding its disability to function properly [136–139] [140,
141] (Fig. 1). In the mouse model of brain, and spinal cord
injury, CNS injury does upset the intestinal wall motility, and
its permeability along with changes in the GM composition
which ultimately led to gut dysbiosis [136, 137, 142–144].

Conversely, it is also reported that gut dysbiosis influences
the traumatic CNS injury and its pathophysiology [145, 146].
In a traumatic spinal injury model, a study showed that gut
microbiota composition was altered wherein there was a de-
crease in the population of Bacteroidetes but an increase in
Firmicutes amount, and it was associated with an impairment
in locomotor function [147]. Further, in a CCI rodent model of
moderate TBI, gut microbiota composition (decrease in
Firmicutes and increase in Bacteroidetes and Proteobacteria)
was altered following 2 h of injury along with increased post-
injury lesion volume [148]. On the other hand, the study ex-
plains that gut eubiosis controlled reversible DNA methyla-
tion through activating DNA methyltransferase (DNMT) and
phosphatidylethanolamine methyltransferase (PEMT) and
that allows normal gene regulation. But the irreversible
DNA methylation causes HHcy during dysbiosis condition
and disrupts the normal gene regulation which could be re-
sponsible for cardiovascular metabolic syndrome (141) (Fig.
4). However, understanding the relationship between TBI-
induced gut dysbiosis and altered gene regulation needs to
be studied. Howard and colleagues suggested that severely
injured patients with polytrauma established the relation be-
tween gut dysbiosis and post-injury in human patients. They
have shown that 72 h of post-injury was associated with a
decrease in Bacteroidales , Fusobacte r ia les , and
Verrucomicrobiales but an increase in Clostridiales and
Enterococcus populations [149]. These findings provide the
complex relation between and multiple disease outcomes, re-
vealing the notion that bacterial populations indeed influence
the post-injury mediated neuro-pathophysiology and func-
tional impairment via dysbiosis-dependent mechanisms
[150–156].
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Interplay of Transforming Growth
Factor/Bone Morphogenetic Protein
Signaling During TBI and Its Possible Link
with the GM

Transforming growth factor (TGF) superfamily members are
altered following TBI in the rodent species [157–163]. It has
been reported that an increased TGF-β1 and TGF-β2 protein
levels were described in human spinal cord injuries and BMP7
mRNA and protein levels in rat spinal cord injury [164–166].
Despite accumulated evidence, the precise role of this signal-
ing system, and the interplay between the TGFβ, and BMP
branches in the context of TBI pathophysiology are still not
fully understood.

An early expression of BMP-6 in neurons of the hippocam-
pus and cortex in normal adult rat brains that were subjected to
TBI was demonstrated which was followed by pronounced
expression in astroglia located to the lesion became obvious
48 h post-injury. The glia cells were found to be distributed
around lesion, thus demarcating the injured tissue from the
normal brain area. Further, double labeling by immunohisto-
chemistry revealed that the major glial sources for BMP-6
were reactive astrocytes together with a few ED1(+) or W3/
13(+) cells that also co-expressed BMP-6 protein.
Subsequently, it was noticed that BMP-6 expression in neu-
rons located to hippocampus and cortex of the lesioned hemi-
sphere was upregulated 3 days post-injury suggesting that
BMP-6 might be involved in astrogliosis following TBI
[167]. Similarly, it was shown by others the distribution of
TGF-β1 and BMP-6 in the brain of rats subjected to a mild
and reversible ischemic damage produced by a 20-min occlu-
sion of both carotid arteries without occlusion of the vertebral
arteries. The researchers selected this model to study how the
expression of trophic factor of the TGF-β superfamily chang-
es in neurons that recover from a transient insult.
Immunocytochemical analysis showed a loss of TGF-β1 in

neurons of all hippocampal subfields immediately after the
ischemic period, followed by a recovery of immunoreactivity
in CA1 and CA3 neurons after reperfusion. BMP-6 immuno-
reactivity was also lost in most of the hippocampal neurons,
but immunostaining became particularly intense in the inter-
stitial space after both ischemia and reperfusion. An interstitial
localization of BMP-6 was also observed in the cerebral cor-
tex, particularly after reperfusion. Interestingly, mild ischemia
also induced substantial changes in the expression of TGF-β1
and BMP-6 within the cerebellar cortex. In control animals,
these factors appeared to be localized in granule cells and
Purkinje cells, whereas the molecular layer was not immune-
positive. Both TGF-β1 and BMP-6 were highly expressed in
the interstitial spaces of the cerebellar cortex either 20 min
after ischemia or 20 min after reperfusion. Taken together,
these results suggest that a mild and reversible ischemia stim-
ulates the release of BMP-6 from neurons into the interstitial
space [168].

Disruption of TGF-β/BMP signaling cascade alters GM
size, and its composition via ligand binding, and activation
of heterodimer receptors, downstream Sma and Mothers
against decapentaplegic (SMAD) homologs transcriptional
regulators and co-activators [169]. The above signaling regu-
lates intestinal immunity and also manages control of the in-
testinal bacterial proliferation that is important for the regula-
tion of lifespan in Caenorhabditis elegans since it is involved
in the shaping of the GM [169–182]. In corroboration with
previous findings, in the present review, we thus hypothesize
that targeting TGF-β/BMP signaling cascade could prove as a
milestone for effective future treatment strategy in the mouse
model of TBI. In short, we believe that through modulation of
GM via probiotics administration in the injured mouse model
could counteract the downstream cellular and molecular
events (neuronal death, inflammation, and BBB damage) of
TGF-β/BMP signaling, and thereby it might be able to restore
the brain and ocular damaging events (Fig. 5).

Fig. 4. Eubiosis versus dysbiosis: Epigenetic mechanisms favor
reversible and irreversible DNA methylation pattern in a given cell.
During eubiosis condition, DNMT- and –mediated reversible DNAmeth-
ylation allows normal gene regulation. However, irreversible DNAmeth-
ylation causes HHcy due to dysbiotic condition and disrupts normal gene

expression. Abbreviations: PE phosphatidylethanolamine, PC phospha-
tidylcholine, PEMT phosphatidylethanolamine methyltransferase, SAM
S-adenosyl methionine, SAH S-adenosyl homocysteine, SAHH S-
adenosyl homocysteine hydrolase, mDNA methylated DNA, and DNMT
DNA methyltransferase
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Gut Microbiome (GM) as Potential Diagnostic
and Therapeutic Target for TBI

Understanding the gut microbiota composition and its alter-
ation during dysbiosis may help in designing therapeutics
having more efficacy and the relevant diagnostic tools for
treating post-TBI complications and outcomes in affected
TBI patients. Houlden and colleagues in 2016 found a positive
correlation between the degree of gut dysbiosis and post-TBI
injury in the “closed-head-impact” pre-clinical mouse model.
In this regard, manipulation of the GM via microbiota trans-
plants and pre- or probiotics consumption could, in fact, pro-
vide an exciting treatment against brain injuries (Fig. 2). As
previous studies suggested that GMwas substantially changed
during the 24–72 h window period post-TBI injury; therefore,
eubiotic therapeutic strategies could fundamentally shift the
altered GM to a beneficial one and thus mitigate post TBI-
associated secondary injury and the exaggerated damage re-
sponse. [147–149].

As mentioned above, pre-clinical studies support the con-
cept that microbiota transplants could be a valuable therapeu-
tic tool to reduce brain lesion size and can help improve health
outcomes in animal models such as shown in a mouse model
of ischemic stroke to restore the microglial function [183,
184]. Probiotic and the microbial-derived metabolites and
short-chain fatty acid (SCFA) products like butyrate, propio-
nate, and acetate may also help modulate mitochondrial

homeostasis, and energy production [185]. Interestingly,
along with dietary ketones, these metabolites work as the al-
ternative energy sources for the injured brain towards improv-
ing mitochondrial bioenergetics in post-TBI and SCI injury
models [186]. The gut microbiota-derived SCFA, especially
the butyrate, acts as a potential histone deacetylation (HDAC)
inhibitor, thereby offering a robust neuroprotection following
post-TBI insults [187]. For example, probiotic Clostridium
butyricum-derived butyric acid in fact did improve neurolog-
ical deficits and attenuated neurodegeneration, BBB impair-
ment, and reduced brain edema through the GMB axis in
mouse model of weight-drop impact head injury and cerebral
ischemia [188]. Also, VSL#3, is the mixture of eight friendly
bacterial strains (4 strains of Lactobacillus viz. Lactobacillus
acidophilus, Lactobacillus plantarum, Lactobacillus casei,
and Lactobacillus delbrueckii subspecies bulgaricus, 3 strains
of Bi f idobac ter ium viz . Bif idobacter ium breve ,
Bifidobacterium longum, and Bifidobacterium infantis, and 1
strain of Streptococcus viz. Streptococcus salivarius subspe-
cies thermophilus. VSL#3 is considered as an advanced pro-
biotic medical food [189]. It mainly improves gut microbial
eubiosis and reduces intestinal barrier function, through im-
proving tight junction protein (TJP) expression, and modula-
tion of anti-inflammatory cytokine expression that is required
for the physiological function of the host [190]. When VSL#3
was provided to the spinal cord injury, mouse model on the
same day of injury was shown to improve the post-injury
neuropathology. Furthermore, this probiotic improved the lo-
comotor recovery and triggered an increase in the number of
Treg cells, thus offering a protective immune environment
[19].

In human preclinical trials, post-TBI injury patients when
supplemented with Lactobacilli-rich probiotics within the first
48 h of hospital admission, and it was demonstrated that pa-
tients had a substantial decrease in their gastrointestinal dys-
function along with less incidence of ventilator-associated
pneumonia, thus reducing the nosocomial infection rate [27,
191]. Till date we have not come across any study that has
been shown to provide positive effects in cognition and be-
havioral outcomes following post-TBI injury events.
Therefore, future study is warranted to understand the benefi-
cial effects of probiotic supplementation for patients with TBI
injury that could help reduce the mortality rate also.

Future Perspectives and Conclusion

The eubiotic gut is closely linked with good human health,
and an imbalance of the GM either because of HHcy-led dys-
function of the 1-carbon metabolism or any other reason is
associated with various system disorders (Figs. 1 and 2)

Fig. 5 Diagram illustrating TGF-β/BMP-6-mediated effects during TBI.
Activation of the NF-kB results in neuronal cell death, inflammation,
BBB break-down followed by vascular dysfunction. Many of these del-
eterious effects could be mitigated by timely probiotics treatment.
Abbreviations: TBI
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[150, 153–156, 192–194]. Because of the importance of bi-
directional relationship between the GM and TBI-associated
pathophysiology, management of gut dysbiosis could serve as
paradigm for a likely therapeutic target (Figs. 1 and 2).
Probiotics consisting of butyrate-producing gut bacteria ap-
pear to be the most beneficial as a mode of eubiotic therapy
that may enhance benefits of GMB axis and its health-
promoting functions through anti-inflammatory and the posi-
tive mitochondrial energetic properties (Figs. 3 and 4).
Advances in the next-generation sequencing, and bioinformat-
ics tools have revealed an expansive and diverse microbial
community that certainly offers a promising avenue for devel-
oping new class of therapeutics for a host of medical condi-
tions, including TBI.

It is becoming clear that perturbations in the GM can con-
tribute to neuro-physiological disorders. Thus, a further un-
derstanding of the role of GMB axis and its influence on brain
and ocular function and its links with neurologic and neuro-
degenerative disorders will provide not only better treatment
options but also superior managemental strategies in the com-
ing future (Figure 5). Coordinated research efforts to under-
stand the mechanism(s) involved in the dysbiosis could help
us on how the connectivity between CNS injury, and micro-
biota regulates the diseases and their outcomes. Insights into
these mechanisms could provide further options for early in-
tervention for TBI in patients of all ages. Identification of
therapeutic eubiotic microbes and their potential metabolites
would offer promise for devising the effective treatment mo-
dalities for the patients. Furthermore, pathogenic mutations
that cause genetically governed HHcy-related 1 carbon meta-
bolic disorders and the attendant TBI severity and their rela-
tionships with intestinal dysbiotic flora remain to be investi-
gated and thus warrant continued investigation.
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