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Abstract
The current pandemic of the new human coronavirus (CoV), i.e., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), has created an urgent global condition. The disease, termed coronavirus disease 2019 (COVID-19), is primarily known as a
respiratory tract infection. Although SARS-CoV-2 directly invades the lungs, COVID-19 is a complex multi-system disease with
varying degrees of severity and affects several human systems including the cardiovascular, respiratory, gastrointestinal, neuro-
logical, hematopoietic, and immune systems. From the existing data, most COVID-19 cases develop a mild disease typically
presented with fever and respiratory illness. However, in some patients, clinical evidence suggests that COVID-19 might
progress to acute respiratory distress syndrome (ARDS), multi-organ dysfunction, and septic shock resulting in a critical
condition. Likewise, specific organ dysfunction seems to be related to the disease complication, worsens the condition, and
increases the lethality of COVID-19. The neurological manifestations in association with disease severity and mortality have
been reported in COVID-19 patients. Despite the continuously increasing reports of the neurological symptoms of SARS-CoV-2,
our knowledge about the possible routes of nervous system involvement associated with COVID-19 is limited. Herein, we will
primarily describe the critical aspects and clinical features of SARS-CoV-2 related to nervous system impairment and then
discuss possible routes of SARS-CoV-2 nervous system involvement based on the current evidence.
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Introduction

Coronavirus disease 2019 (COVID-19), a consequence of the
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection, emerged in Wuhan, China, in December
2019 and spread globally with a massive impact on the health
system, community relations, and economics [1]. According
to the World Health Organization (WHO), there are
25,327,098 confirmed cases of COVID-19 and 848,255

confirmed deaths in 216 countries, areas, and territories until
September 1, 2020. The SARS-CoV-2 is most closely related
to the beta-coronaviruses (beta-CoVs) genus, which mainly
infects the human respiratory system. Human beta-CoVs in-
clude the Middle East respiratory syndrome (MERS-CoV),
severe acute respiratory syndrome (SARS-CoV), and SARS-
CoV-2. They contain a single-stranded (positive-sense) RNA
genome surrounded by a membrane envelope and use their
spike (S) proteins to infect the host cells [2, 3]. The S protein
in SARS-CoV-2 predominantly exploits human protein recep-
tors, named angiotensin-converting enzyme 2 (ACE2), in the
cell surface to invade the human cells. Considering the geno-
mic analysis, SARS-CoV-2 has high homological sequence
similarity with SARS-CoV; however, the tendency of SARS-
CoV-2 to ACE2 is 10- to 20-fold higher compared to SARS-
CoV [4, 5]. SARS-CoV-2 primarily invades the lungs and
creates COVID-19, which is a complex multi-system disease
that affects several human organs, including the respiratory,
cardiovascular, gastrointestinal, and hematopoietic, as well as
immune and nervous systems [6–10]. In a considerable por-
tion of infected patients, COVID-19 presents a moderate ill-
ness. On the other hand, respiratory failure and pneumonia, as
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well as multi-organ dysfunction and septic shocks, character-
ize patients with severe disease [10–13]. According to clinical
observation, in addition to common respiratory symptoms,
neurological manifestations have been reported particularly
among COVID-19-hospitalized patients with severe or critical
illnesses [14–17]. Concordant with other CoVs, neurological
complications associated with SARS-CoV-2 have been re-
ported. These complications generally are related to both cen-
tral and peripheral nervous systems (CNS and PNS, respec-
tively) with no distinguished underlying mechanism [16, 17].
Indeed, due to the specific immunity, including a multilayer
blood-brain barrier (BBB), and effective immune responses,
the nervous system is highly protected from the invasion of
pathogenic agents [18, 19]. While the nervous system inva-
sion is not a selective advantage for viruses, it has been dem-
onstrated that some zoonotic RNA viruses, including CoVs,
introduce adverse effects on the nervous system [18, 20, 21].
Neurological complications of COVID-19 may include either
a rare direct infection of nerve ends or through the secondary
or systemic effects of immune system malfunction and vascu-
lar system dysregulation [17, 18]. Several studies have de-
scribed COVs, particularly SARS-CoV-2, as neurotropic vi-
ruses with neuroinvasive capabilities that directly invade the
CNS through neuronal retrograde routes and result in neuro-
logical pathologies such as encephalomyelitis [14, 22–26].
Detection of SARS-CoV-2 and other CoVs, particularly
SARS-CoV in the cerebrospinal fluid (CSF) of infected pa-
tients, provides additional support to the potential
neuroinvasive contribution of SARS-CoV-2 [25–31].

One of the most widely accepted neurological complica-
tions of SARS-CoV-2 is related to immune system malfunc-
tion. Dysregulation of adaptive and innate immune system
responses has been extensively reported in CoV-related infec-
tions including SARS-CoV, MERS-CoV, and severe cases of
SARS-CoV-2 [11, 13, 21, 32, 33]. Accumulating evidence
indicates that overreacting of the innate immune system re-
sults in the uncontrolled release of cytokines and chemokines
in patients with severe COVID-19. As a result, it leads to
vascular system dysfunction and consequent BBB disruption,
which may provide a path for inflammatory mediators, im-
mune cells, and virus particles to access the CNS [34–40].
Moreover, it is proposed that the overproduction of inflamma-
tory cytokines in SARS-CoV-2 infection may lead to inflam-
matory damage in the brain tissue. So, it may present non-
specific complications, including headache, dizziness, taste,
and smell dysfunctions, or impaired consciousness [21, 37,
41]. This aberrant immune response may lead to complicated
chronic CNS features including long- and short-term effects,
depending on different factors related to disease severity [42].
Furthermore, acute cerebrovascular disease (CVD) is com-
monly reported in middle-aged and elderly patients with se-
vere or critical COVID-19 disease. Consequently, it can in-
crease the risk of other neurological complications, including

coagulation and ischemic strokes, among COVID-19 patients,
which may be associated with the inflammatory response and
disease severity [1, 15, 16, 41–48].

Neurological manifestations, in line with evidence about
SARS-CoV and MERS-CoV cerebral involvement, support
the association of COVID-19 with the nervous system mani-
festations during the pandemic [21]. The presence of neuro-
logical complications in COVID-19 cases may increase the
likelihood of misdiagnosis among patients with neurological
symptoms [15, 32]. Moreover, it is proposed that the recur-
rence possibility of SARS-CoV-2 may be related to virus la-
tency in the CNS [49]. These reported neurological complica-
tions highlight the importance of understanding the correla-
tion of the SARS-CoV-2 infection with neurological damages
and its association with disease severity and mortality. This
review study is aimed to describe the clinical neurological
complications following SARS-CoV-2 infection and the pos-
sible routes of nervous system involvement associated with
COVID-19.

SARS-CoV-2 Structure and ACE2 Tissue
Distribution

Coronaviruses genetically are classified into four genera, includ-
ing alpha, beta, gamma, and delta. They have a diverse genome
size of 26 to 32 kb and contain a changeable number of open
reading frames (ORFs). The SARS-CoV-2 genome (29,903 bp)
encodes 27 proteins through 14 ORFs. ORFa/b and ORF1a are
located at the 5′-terminal of the genome to generate 15 non-
structural proteins (nsps). Structural and accessory proteins are
furthermore encoded by remainingORFs. The structural proteins
include the membrane (M), the envelope (E), nucleocapsid (N),
and S surface glycoprotein. The accessory genes distributed
within the structural genes encode 8 proteins namely, 3a, 3b,
p6, 7a, 7b, 8b, 9b, and orf14 [50, 51].

CoV protein, which belongs to the typical class I viral
fusion proteins, requires protease cleavage for activation. It
contains two subunits S1 and S2 that contribute to attachment
and membrane fusion, respectively [52]. Like SARS-CoV,
SARS-CoV-2 exploits the receptor-binding domain (RBD),
the most variable part of the CoVs genomes [53] in the S
protein, to attach to the ACE2 receptor on the host cells.
Nevertheless, the affinity rate of SARS-CoV-2 to ACE2 is
higher than that of SARS-CoV [2, 5]. It has been proposed
that two consecutive steps, including cleavage at “S1 and S2
junction” and “S2 cleavage site,” promote activation of S pro-
tein in SARS-CoV and MERS-CoV [54, 55]. Similar to
SARS-CoV, SARS-CoV-2 S protein undergoes cleavage pro-
cessing on S1-S2 junction via transmembrane serine protease
2 (TMPRSS2) and cathepsin L host proteases [56]. A func-
tional polybasic (furin) cleavage site is located at the S1-S2
boundary of the SARS-CoV-2 S protein. Although the
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functional consequence of this cleavage is unknown, it may
increase the infectivity of SARS-CoV-2 [57].

ACE2 is a single-peptide component of the renin-
angiotensin system (RAS) and plays a pivotal role in vascular,
renal, and myocardial physiology [58]. Information from da-
tabases including Protein Atlas (https://www.proteinatlas.org)
and UniProt (https://www.uniprot.org), as well as published
studies, has indicated that ACE2 receptor is abundantly
expressed in the epithelia of the lung and small intestine [59,
60]. ACE2 receptor is also expressed in vascular endothelium
and arterial smooth muscle cells of different human organs
like the stomach, colon, skin, liver, kidney, and brain [59].
Furthermore, the expression of ACE2 has been detected in
CNS areas including the striatum, cortex, medulla,
hypothalamus, and brainstem [21, 31, 49]. Interestingly, it
has been reported that both neurons and glial cells express
the ACE2 receptor in the brain [29, 61].

Clinical Manifestations

COVID-19 primarily targets the human respiratory tract and
thus results in a critical clinical care condition in some patients
[8, 9]. The incubation period of COVID-19 varies between 3
and 14 days, leading to various ranges of clinical symptoms.
However, the clinical manifestations have been remained to
be elucidated completely [6, 15]. The median day at which
symptoms trigger is 14, which is reduced in patients who are
70 years of age or older. The median age of death is 75, with a
higher rate of infection in men [62, 63]. The spectrum of
clinical presentations is complicated among COVID-19 pa-
tients and contains asymptomatic and mild cases; however,
for a few, the illness can progress to severe respiratory failure,
multi-organ dysfunction, and death [6, 7, 11]. In clinical eval-
uation, fever, cough, dyspnea, myalgia, and fatigue are the
most common symptoms following the SARS-CoV-2 infec-
tion. Further uncommon symptoms, including headache, spu-
tum production, hemoptysis, and diarrhea, have been reported
as well [8, 10, 11].

To better clarify the severity of the disease, COVID-19
patients are classified into mild, severe, and critical cases [9,
10, 12]. Following fever and pneumonia, acute respiratory
distress syndrome (ARDS) manifests in up to 20% of
COVID-19 patients, which are considered severe cases.
Progressive respiratory failure and multiple organ dysfunction
besides septic shock are considerable conditions in critical
cases [11, 64, 65]. Regarding laboratory findings, leucopenia
and lymphopenia are the fundamental characteristics of
COVID-19 infections. Most patients show elevated levels of
lactate dehydrogenase (LDH), creatinine kinase (CK), C-
reactive protein (CRP), and erythrocyte sedimentation rate
(ESR) [8, 11].

The new coronavirus is highly contagious, and older peo-
ple with underlying diseases are at higher risk of severe man-
ifestation and mortality. The most prevalent underlying co-
morbidities are diabetes, hypertension, cardiovascular, and
CVD [10, 63, 66, 67]. In some patients, the disease progresses
to pneumonia, ARDS, and death due to extreme elevation in
inflammatory cytokines, including interleukin-2 (IL2), IL7,
IL10, granulocyte colony-stimulating factor (GCSF),
interferon-inducible protein 10 (IP10), monocyte
chemoattractant protein 1 (MCP1), macrophage inflammatory
protein 1 A (MIP1A), and tumor necrosis factor-alpha
(TNFα), especially in critical cases [11, 35].

Chest computed tomography (CT) findings showed bilat-
eral ground-glass opacity manifestation in the middle and out-
er zone of the lung in severe patients [9, 68, 69]. Other CT
features have reported symptoms related to lung injury such as
crazy paving pattern, airway changes, and reversed halo sign
[70]. Furthermore, septic shock, alongside multi-organ failure,
occurs in a considerable number of patients with critical con-
dition and high fatality risk [9, 69, 70]. Indeed, systemic in-
flammatory response syndrome (SIRS) may result in multiple
organ dysfunction syndrome (MODS), which is observed in
patients with severe infection [71]. Accordingly, cardiovascu-
lar complications have been reported in a significant propor-
tion of patients with COVID-19 [67]. Moreover, serious liver
damage related to the increased level of LDH, alanine amino-
transferase (ALT), and aspartate aminotransferase (AST) has
been observed. Elsewhere, increased blood urea nitrogen and
creatinine levels indicated acute kidney injury presented in a
significant proportion of patients with COVID-19 [15, 71].

Neurological manifestations have been reported from
COVID-19 patients as a critical aspect of the disease [14,
16, 72–77]. These manifestations include specific neurologi-
cal symptoms due to the direct effects of the virus on the
nervous system and non-specific neurological complications
that are just systemic features of the SARS-CoV-2 infection
[24, 41, 73, 78, 79]. Skeletal muscle damage in association
with increased CK levels and neurological manifestations are
common among patients with severe infection. Neurological
symptoms indicating CNS, PNS, and skeletal muscle involve-
ments have been reported in a considerable portion of severe
cases [15, 16]. Acute CVD, including ischemic stroke, intra-
cerebral hemorrhage, and deep cerebral venous thrombosis,
was reported in 0.5–5.9% of COVID-19 patients [80, 81].
Moreover, ischemic stroke is the most prevalent acute CVD
and its risk of development is higher among severe or critical
COVID-19 patients ranging from 0.8 to 9.8% [16, 80, 81].
There are multiple reports of Guillain-Barre syndrome
(GBS), an acute disease of the peripheral nerves induced by
inappropriate immune system response in patients with con-
firmed COVID-19 disease [82–88]. However, the aberrant
function of peripheral nerve ends is evident because of the
observed taste, smell, vision impairment, and nerve pain.
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Likewise, other neurological symptoms, including dizziness,
headache, impaired consciousness, acute CVD, ataxia, and
seizure, indicate the central nervous system involvement in
the severe COVID-19 [16, 45, 84]. Although the reports of
the nervous system manifestations are increasing, our knowl-
edge about this aspect of COVID-19 disease is still limited.
Therefore, it is crucial to perform an extensive autopsy and
biopsy investigations to accurately explain COVID-19 accu-
rate clinical symptoms.

Nervous System Involvement in CoVs Infection

As observed in numerous other zoonotic viruses [18], and
regarding the neurological manifestations of COVID-19
[12–16, 73–78, 89, 90], nervous system is likely involved in
SARS-CoV-2 infection (Fig. 1). These neurological manifes-
tations have been demonstrated in other CoV infections such
as SARS-CoV and MERS-CoV, which have provided strong
evidence for CoV neuroinvasive capacity [21, 91]. SARS-
CoV respiratory infection was determined to represent many
neurological abnormalities, including encephalitis, aortic is-
chemic stroke, and polyneuropathy [91]. Interestingly, several
reports have documented CSF samples that were positive for

SARS-CoV RNA. Also, they have evidenced monocyte and
lymphocyte infiltrations in the brain, ischemic changes of neu-
rons, and demyelinating abnormalities [92]. Autopsy studies
have reliably detected SARS-CoV in brain tissue specimens
of patients manifesting with neuronal edema and meningeal
vasodilation [22, 30, 93, 94]. The cerebrovascular complica-
tion and neuropathological manifestations, including ischemic
stroke and GBS, respectively, have been reported in patients
affected with SARS-CoV, as well [91, 95].

Several clinical studies have confirmed the presence of
neurological complications in humans upon MERS-CoV in-
fection along with other respiratory symptoms [96]. MERS-
CoV is a potentially neuroinvasive virus according to clinical
reports of neurological symptoms, including loss of con-
sciousness, ischemic strokes, seizure attacks, paralysis, and
other neuropathological manifestations [97–100]. MERS-
CoV infection is accompanied by severe neurological diseases
like encephalitis and neuromuscular disease such as GBS.
Nevertheless, there is no report on MERS-CoV detection in
the CNS of humans [96–98]. Likewise, the symptoms of
CoVs infection in kids with encephalitis, the presence of
CoVs nucleic acid in the human brain, and the ability of
CoVs to infect CNS cell cultures have demonstrated the

Neuronal retrograde routes

a)

Nervous system

Neuron

Myelin

SARS-CoV-2

Monocyte

Neutrophil

Lymphocyte

Cytokine storm

b)

Pro-inflammatory cytokines and chemokines

Immune cells

SARS-CoV-2

Immune system activation

c)

Hematogenous pathway

Blood-Brain Barrier

(BBB)

BBB

Endothelial cells

Fig. 1 Nervous system involvements in COVID-19 disease. CoVs can
attack the nervous system through neuronal retrograde routes. PNS may
provide an accessible route for SARS-CoV-2 to gain access to the ner-
vous system and neurological symptoms may manifest due to a direct
SARS-CoV-2 attack on the myelin or axon of PNS neuron (a). The
activation of the immune system following the SARS-CoV-2 infection
can be detrimental to the nervous system. The overexpression of pro-

inflammatory cytokines and chemokines called cytokine storm may have
negative effects on peripheral nerve roots and the BBB integrity (b).
Hematogenous pathways may provide another route for SARS-CoV-2
toward CNS. Impaired BBB provides a path for inflammatory cytokines
and immune cells to access the CNS. In the hematogenous pathways, the
endothelial cells of BBB act as a bed for SARS-CoV-2 accession to CNS
(c)
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neurotropic properties of CoVs. Furthermore, the induced en-
cephalitis in newborn mice has illustrated the neuroinvasive
potential of CoVs [101].

The newly emerged CoV (i.e., SARS-CoV-2) involves
neurological manifestations, especially in severely affected
individuals [16, 17, 102, 103]. SARS-CoV-2 neurological
manifestations are reported to include symptoms related to
the CNS (e.g., impaired consciousness, acute CVD,
corticospinal tract signs, ataxia, and seizure), PNS (e.g., taste
impairment, smell impairment, vision impairment, and nerve
pain), and skeletal muscle damages [104–106]. Headache,
myalgia, fatigue, confusion, anorexia, dizziness, malaise,
and dyspnea are the most frequently reported neurological
symptoms, which approximately affects one-third of patients
with COVID-19 [72, 78]. Skeletal muscle damage in associ-
ation with increased CK levels and neurological manifesta-
tions are common among patients with severe COVID-19
infection [15, 16]. Another most common reported neurolog-
ical complication is smell and taste impairments. This problem
shows the varying geographical frequency with high inci-
dence in the studies from Europe and a lower frequency in
the studies from Asian countries [16, 107]. It has been dem-
onstrated that neurological complications commonly affect
patients with severe COVID-19 infection, suggesting that
neurological manifestations may be related to disease severity
[73].

Neurological symptoms, including CNS, PNS, and skeletal
muscle involvements, have been reported in a considerable
po r t i o n o f COVID-19 s ev e r e c a s e s [ 15 , 16 ] .
Meningoencephalitis and encephalopathy are reported in mul-
tiple studies as other neurological presentations of COVID-19.
Besides, CFS analyses have demonstrated elevated levels of
inflammatory cytokines related to acute encephalopathy [25,
36, 77, 108, 109].While the incidence of encephalitis has been
reported to be lower than 1% in two retrospective studies of
COVID-19 [110, 111], the CSF RT-PCR test has shown the
presence of SARS-CoV-2 RNA in the CSF of four COVID-
19 patients [78]. The typical neurological manifestations as-
sociated with encephalitis include irritability, confusion, and
reduced consciousness, and may represent seizures, headache,
and neck stiffness [46, 112, 113]. Few retrospective studies
have demonstrated that seizures are common in SARS-CoV-2
infection with a frequency ranging from 0.5 to 1.4% [16, 111,
114–116]. All types of seizures, including febrile, focal, and
generalized tonic-clonic seizures [114, 117–120], as well as
status epilepticus myoclonic, status epilepticus, and non-
convulsive status epilepticus [121–123] have been reported
among the symptoms of COVID-19.

Acute CVD, including ischemic stroke, intracerebral hem-
orrhage, and thrombotic vascular events, has been reported in
middle-aged and elderly cases of COVID-19 [1, 16, 43, 44,
110]. Cerebrovascular events related to COVID-19 are likely
to share similar risk factors for stroke, e.g., older age,

hypertension, hyperlipidemia, diabetes mellitus, smoking,
and prior strokes [80, 124–126]. However, accumulating re-
ports have been reported about the large vessel strokes among
COVID-19 patients without significant vascular risk factors,
suggesting additional etiologies specific to SARS-CoV-2 [14,
72, 127–130]. Acute CVD involves the brain parenchyma or
subarachnoid space in COVID-19 patients. Furthermore, hy-
percoagulable states (increased prothrombin time and elevated
levels of a fibrin degradation product called D-dimer) have
been reported in some COVID-19-related strokes [14, 124].

Another neurological disease reported in COVID-19 is
GBS and its variants. GBS is an acute disease that affects
peripheral nerves. This health problem is characterized by
rapidly progressive symmetrical limb weakness and sensory
symptoms in SARS-CoV-2 infection. GBS is associated with
inappropriate immune system response and all the variants of
GBS like acute inflammatory demyelinating polyneuropathy
(AIDP), acute motor axonal neuropathy (AMAN), and acute
motor and sensory axonal neuropathy (AMSAN) have been
reported in COVID-19 patients [82–84, 131–135]. Other var-
iants like Miller Fisher syndrome and facial diplegic variants
have been also described [113, 136, 137]. Furthermore, GBS
with no respiratory symptoms of COVID-19 has been report-
ed in some individuals affected with SARS-CoV-2 [41, 78,
138]. Demyelinating disorders, including acute disseminated
encephalomyelitis (ADEM), exacerbation of multiple sclero-
sis (MS) plaque, and the clinically isolated syndrome, have
been reported in COVID-19 patients, as well [78, 139].
ADEM (a multifocal demyelination syndrome) and myelitis
(defined as inflammation of the spinal cord) have been con-
sidered post-infectious diseases reported in COVID-19 pa-
tients [120, 140, 141].

Although the neurological symptoms have been reported in
a considerable number of COVID-19 patients, the underlying
molecular mechanisms of the nervous system involvement
has not been well understood yet [15, 21]. In this regard,
understanding the SARS-CoV-2 correlation with the reported
neurological complication in COVID-19 patients is critical
from this diagnostic and therapeutic outlook. The following
section will dedicate the possible routes of nervous system
involvement.

Direct Infection of the Nervous System (the
Neuronal Retrograde Routes)

The inherent and specific characteristic of the nervous system
immunity preserves the CNS from the invasion of pathogenic
agents [19]. Due to the devastating and lethal nature of CNS
infection, the capacity to invade the nervous system is a rather
poor evolutionary feature [20]. However, some zoonotic RNA
viruses like West Nile virus (WNV) and Nipah virus (NiV)
have the potential to infect fully differentiated neurons [18]. In
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the case of the COVID-19 pandemic with the increasing
trends in reporting of neurological manifestations, it is plausi-
ble that SARS-CoV-2 has the potential to infect the nervous
system [15, 16, 21, 49]. The evidence of cerebral involvement
in other CoVs (SARS-CoV and MERS-CoV) and the pres-
ence of SARS-CoV-2 genomic RNA in the CSF of COVID-
19 patients [25, 27, 30, 78] have reinforced the assumption of
CNS infection with the SARS-CoV-2 [31, 142]. Moreover, it
has been suggested that the abnormal function of the cardio-
respiratory center in the brain stem due to the neuroinvasive
potential of SARS-CoV-2 might be the cause of respiratory
failure in COVID-19 patients [4]. However, a recent report
claims that respiratory failure in patients with COVID-19 is
different from that caused by brain dysfunction [101]. This
suggests that SARS-CoV-2 introduction to the brain is possi-
ble; nevertheless, it is a rare phenomenon due to non-specific
symptoms observed in COVID-19 patients [101]. Overall,
like other CoVs, there is no adequate evidence to prove
CNS access by SARS-CoV-2, although it is proposed that
described routes for other pathogens may provide a path to
the brain for SARS-CoV-2 [4, 21, 31, 101].

Neuronal retrograde routes are one of the essential path-
ways for the respiratory neurotropic virus entry to the CNS
(Fig. 1a) [42]. Indeed, the PNS provides accessible routes for
this virus to gain access to the nervous system [18, 21].
Regarding this point, the transition of SARS-CoV-2 to the
brain through the olfactory nerve is plausible. The evidence
of alteration in the sense of smell (anosmia) supports this
theory [4, 15, 21, 31]. However, bioinformatics analysis on
bulk and single-cell RNA-Seq datasets for SARS-CoV2 re-
ceptor expression at the olfactory system showed that two
critical genes for SARS-CoV-2 invasion (i.e., ACE2 and
TMPRSS2) did not express at olfactory neurons. This study
also showed that SARS-CoV-2-related proteins are expressed
at non-neuronal olfactory system cells, probably leading to
anosmia following COVID-19 contamination [143].
Nevertheless, other PNS components such as neuromuscular
junctions might participate in the neurological complication of
COVID-19. Increased levels of CK and myalgia or fatigue,
which is observed among a significant portion of hospitalized
COVID-19 patients, support the assumption that SARS-CoV-
2 may aggress the myelin or axon of muscular neurons (Fig.
1a) [143, 144]. Another scenario in the nerve ends involve-
ment is proposed since GBS has been reported in several cases
associated with COVID-19 [82, 87, 132, 134, 144–146].
Although respiratory tract or gastrointestinal infection has
been reported in two-thirds of GBS patients before the neu-
ropathy manifestation, a pattern of the parainfectious profile
was reported in GBS associated with COVID-19. GBS mech-
anism, which mimics autoimmune diseases, is commonly re-
lated to campylobacteriosis and viral infections such as cyto-
megalovirus (CMV), Epstein-Barr virus (EBV), human im-
munodeficiency virus (HIV), and Zika virus [82, 84, 133].

While the underlying mechanism of the GBS manifestation
in COVID-19 patients has not been elucidated, the immune
system attack through inflammatory cytokine or antibodies
against specific gangliosides is proposed in this regard [84].
Further investigation of the association of GBS with the
COVID-19 infection can reveal neurological complications
of the disease [38, 147]

Immune Response Dysfunction

Immune responses caused by a viral infection can damage the
nervous system. Therefore, comprehensive knowledge about the
brain reaction against viral infections is critical to combat neuro-
logical viral conditions. The activation of the immune system
following the SARS-CoV2 infection (Fig. 1b) can be detrimental
to the nervous system [19, 21]. It has been suggested that both
viral and host factors participate in CoV pathogenicity. However,
it is the uncontrolled immune response that leads to immune
pathogenesis of the CoVs, including pulmonary tissue damage
and reduced lung capacity. Therefore, the innate immune re-
sponse can play a protective or destructive role in CoVs infection
[148]. Elevated levels of neutrophils, monocytes, and macro-
phages have been observed in severe SARS-CoV and MERS-
CoV infections [147].

As expected, such an increase in the number of leukocytes
and neutrophils has been observed in patients with severe
COVID-19. Moreover, lymphopenia and pneumonia, the most
prevalent characteristics observed in patients with severe
COVID-19 infection, are related to innate immune system dys-
function [138, 147]. Therefore, the aberrant immune system
function, which is observed among severe cases of COVID-19,
might be caused by a decline in the number of T lymphocytes,
especially CD4+ T-cells. Furthermore, the elevated levels of
neutrophil-to-lymphocyte ratio (NLR), which is a reliablemarker
of systemic inflammation and infection, indicated the serious
immunologic condition in patients with severe COVID-19.
Moreover, consistent with SARS-CoV and MERS-CoV infec-
tions, the overactive inflammatory response in patients with se-
vere COVID-19 is plausible, regarding the elevated serum levels
of the pro-inflammatory cytokine and chemokines (TNF-α, IL-1,
IL-6, IL-7, IL-8, IL-9, IP10, GCSF, MCP1, and MIP1A) at their
blood samples. Since the immune system dysregulation causes
aberrant inflammation in COVID-19 patients, the correlation of
these conditions with neurological manifestation is plausible [62,
138].

Inflammation, the immune system reaction to tissue dam-
age, may have negative effects on the recovery process from
an injury. So, many protective efforts have been triggered to
overcome this detrimental condition [149]. All types of CNS
cells, including neurons, macroglia, and microglia, participate
in neuroinflammation responses [150]. Because of the para-
doxical effects of cytokines in cells, cytokine functions are
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critical to determining the protective or destructive function of
the immune system in the case of any pathogen exposure.
Indeed, it is the ultimate turnover of cytokines that determines
the invasion of leukocytes towered the brain parenchyma
[151]. However, infection-related biomarkers such as
procalcitonin, ESR, serum ferritin, CRP, and inflammatory
cytokines (i.e., TNF-α, IL-2R, IL-6, IL-8, and IL10) are in-
creased in blood samples of individuals with severe COVID-
19 compared to the patients in the mild group [13, 138]. These
findings suggest that lymphopenia and cytokine may play a
key role in the neurological pathogenesis of novel SARS-
CoV-2.

Infiltration of infected leukocytes through the “Trojan
horse” mechanism is an efficient approach for some viruses
to access the nervous system [18, 32]. The so-called Trojan
horse mechanism, which refers to the crossing of infected
leukocytes from the blood-brain barrier (BBB), is the main
mechanism used by some lentiviruses like simian immunode-
ficiency virus (SIV) and HIV to transfer across CNS vascular
barriers [152]. Previous studies have shown the ability of beta-
CoVs to infect monocytes, macrophages, and dendritic cells.
The SARS-CoVs can infect primary human monocytes [153],
whereas MERS-CoV infects both monocytes and T cells
[154]. Thus, dendritic cells could be infected by SARS-
CoV-2 [64]. However, the low amounts of ACE2 receptors
expressing on the cell surface of monocytes and macrophages
suggest that other mechanisms might involve in communica-
tions between SARS-CoV-2 and the host innate immune re-
sponse [147].

Accumulating evidence has indicated that overreacting of
the innate immune system and inflammatory responses in pa-
tients with severe COVID-19 correlate with respiratory fail-
ure, ARDS, and adverse clinical outcomes [34]. This condi-
tion, which has been considered a cytokine storm syndrome,
contributes to vascular permeability, leakage, and consequent-
ly devastating effects on pathological symptoms [32, 34, 64].
Cytokine storms cause BBB disruption, which protects the
CNS by controlling the spread of circulating molecules, im-
mune cells, or virus particles into the CNS. Indeed, impaired
BBB provides a path for inflammatory mediators and immune
cells to access the brain parenchyma (Fig. 1c). This offensive
entry may occur following the CoV infection, and thereby, the
brain inflammation is likely to exacerbate COVID-19-related
neurological manifestations [18, 21, 32].

Hematogenous Pathways

It seems that the impairment of general hemostasis due to the
pulmonary damage and MODS leads to the critical condition
in COVID-19 patients [21, 155, 156]. Previous studies dem-
onstrate that human CoVs have the potential to disseminate
other regions of the human body [45]. The existence of SARS-

CoV and MERS-CoV particles in the circulating blood cells,
lymphoid tissue, and epithelial cells of different human tissues
suggest the broad range of tissue tropism for CoVs [157].
SARS-CoV-2 has shown a multi-organ impact with signifi-
cant effects on the vascular system and homeostasis mainte-
nance [155, 158–160]. Although the hematogenous pathway
is proposed as a possible route for neurotropic viruses toward
the CNS, the vascular system derangements in COVID-19
patients are complicated and still unknown [90, 160, 161].
Intriguingly, human CoVs can pass through the epithelium
cells and spread throughout the blood circulation pathways,
thereby reaching the other regions, including CNS [42]. In the
hematogenous pathways, the endothelial cells of BBB or
blood-cerebrospinal fluid barrier provide a route for the acces-
sion of viruses to the CNS (Fig. 1c) [90]. The evidence of
direct infection of endothelial cells by SARS-CoV-2 [161]
and the presence of viral-like particles in brain capillary endo-
thelium of COVID-19 patients [90] support the concept that
the vascular system acts as a bed for SARS-CoV-2 to accesses
the nervous system. Furthermore, an in vitro study has shown
that SARS-CoV-2 can directly invade the engineered human
blood vessel organoids; however, the evidence to support the
CNS infection by CoVs particularly SARS-CoV-2 via hema-
togenous pathways is rare [21, 162].

Boosting inflammatory responses and the development of
cytokine storm, observed in severe COVID-19 patients, contrib-
utes to vascular permeability and promotes the dysfunction of the
endothelial cells [7, 155]. Accordingly, the immune system mal-
function, aberrant inflammatory responses, and endothelial dys-
function participate in the induction of a prothrombotic state
[156, 157]. Thrombosis, a physiological response termed
immunothrombosis that involves blood coagulation and platelet
aggregation, is a key effector of the innate immune response that
delimitates pathogen spreading through the vascular system
[163].While the immunothrombosis state is inherently beneficial
via the local control of the infection, endothelial dysfunction
accompanied by the hyper-inflammation response due to
SARS-CoV-2 infection might lead to a state of COVID-
induced coagulopathy [155, 156, 161]. Disseminated intravascu-
lar coagulation and its related parameters like thrombocytopenia
and D-dimer have been frequently reported in COVID-19 pa-
tients [155, 159, 164]. A study on 183 confirmed COVID-19
patients revealed that the levels of D-dimer are significantly
higher in deceased COVID-19 patients (71.4%) compared to
survivors (0.6%) [165]. Previously, in the case of SARS-CoV
infection, the artery cerebral thrombosis was reported in critically
ill patients with underlying conditions [166]. Likewise, the inci-
dence of large vessel stroke has been reported amongCOVID-19
patients in association with the elevation of inflammatory
markers and D-dimer levels [16, 18, 80, 166]. While acute ische-
mic stroke commonly occurs in older people [45], there are rare
reports of intracerebral hemorrhage among COVID-19 patients
[16, 45–48].
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Despite the observed high levels of D-dimer markers and
coagulation system dysfunction in COVID-19 patients, it
seems likely to be associated with nervous system impairment
[5]. It has not been understood that hemorrhagic events occur
due to the SARS-CoV-2 infection or whether it is a coinciden-
tal situation [48]. However, the ACE2 receptor occupation on
vascular endothelial cells with SARS-CoV-2 may cause aber-
rantly increased blood pressure and elevate the risk of intra-
cranial hemorrhage [15, 20, 21]. Besides, it is of note that
severe hypoxia development due to lung injury and respirato-
ry failure might cause CVD-like ischemic stroke [21, 164].
Indeed, the progress of ARDS in severe COVID-19 patients
leads to profound systemic hypoxemia, which may correlate
with observed congestion and edema in the brain tissue [16,
89]. Furthermore, the induction of hypoxemia by lung injury
and ARDS may facilitate SARS-CoV-2 access to the brain.
Nevertheless, there are no adequate data to indicate that
SARS-CoV-2 directly invades the CNS. So, research on the
neuroinvasive potential of SARS-CoV-2 requires further con-
sideration [89].

COVID-19 and Possible Long-Term
Neurological Consequences

The accumulating information about nervous system involve-
ment and evidence of cognitive impairment among COVID-
19 patients provide an alarming document about the possible
further delayed-onset neurological complications. This condi-
tion may include unpredictable outcomes, either via aggravat-
ing a pre-existing neurological disorder or causing a neurode-
generative disease in COVID-19 survivors [11, 167–169].
Although it is too early to conclude about the possible risk
of developing long-term neurological consequences of
COVID-19 infection, it is plausible that chronic neuroinflam-
mation associated with SARS-CoV-2 may cause neurodegen-
erative diseases in the future. Moreover, the SARS-CoV-2
neuroinvasive nature may result in subsequent neurodegener-
ative disorders like multiple sclerosis (MS), Huntington,
Parkinson’s (PD), and Alzheimer’s diseases (AD) [41, 79].
The significant risk of developing subsequent neurological
complications in COVID-19 survivors is consistent with pre-
vious evidence that indicated other human CoVs latency in the
nervous system and induced oxidative tissue injury and CNS
chronic complications [42, 169, 170]. In other words, the po-
tential neuroinvasive feature of SARS-CoV-2, as well as
chronic neuroinflammation and cytokine storm associated
with COVID-19 severity, spotlight the possible increased risk
of neurodegeneration characteristic of this disease [171, 172].
The reports on CoVs in the CNS of patients with PD, AD, and
MS raise the question of whether and how COVID-19 infec-
tion may be related to this neurodegenerative disease [173].

COVID-19 is accompanied by the impaired immune re-
sponse and sustained rise of inflammatory cytokines, which
can promote cognitive decline and neurodegenerative disor-
ders [169, 174]. Available data recommend that chronic neu-
roinflammation associated with high levels of cytokines may
implicate pathogenesis and different clinical features of neu-
rodegenerative disorders. For instance, the COVID-19-
associated cytokine storm may synergize with amyloid-
stimulated type I interferon (IFN) response and exacerbate
the cognitive decline in patients with AD. It has been reported
that profound systemic hypoxemia complicates the presenta-
tion of dementia in AD patients that mostly manifest COVID-
19 with diarrhea or drowsiness [175, 176]. These diverse clin-
ical profiles may correspond to distinct pathogenesis and age-
related concepts that influence patients with pre-existing neu-
rological conditions [177]. Since elderly individuals are at a
higher risk for developing both neurodegenerative and
COVID-19 diseases, SARS-CoV2 infection may cause de
novo neurodegenerative consequences like PD by accelerat-
ing aging in the brain tissue. Also, COVID-19may complicate
the clinical course of pre-existing PD, thereby resulting in
worsening of its symptoms [172, 176–179]. Although the
long-term effects of SARS-CoV-2 on the brain are not well
characterized, the expression of ACE2 receptor in the CNS
suggests that SARS-CoV-2 may infiltrate the brain regions to
develop neurodegenerative disorders in the future [31, 49,
180]. The capacity of SARS-CoV-2 to reach the brain and
the immunological complexity of COVID-19 can theoretical-
ly explain the likelihood of developing long-term neurodegen-
erative diseases. However, it is challenging to clarify the ex-
pected neurodegeneration sequelae in COVID-19 patients re-
lying only on the conducted investigations [96, 169, 177, 178,
181]. In line with evidence from other coronavirus families
that indicate their association with MS and other neurological
diseases, COVID-19 complications in patients with neurode-
generative disease indicate the urgent attention that should be
taken in the context of COVID-19 neurological studies [170,
181]. Overall, studies on critical outcomes and clinical presen-
tations of COVID-19 in patients with pre-existing neurologi-
cal conditions can provide valuable data to predict risk factors
developing long-term brain damage and subsequent neurode-
generative diseases.

Conclusion

COVID-19 is a complex multi-system infectious disease that
involves a set of currently unknown complications. The spec-
trum of clinical manifestations of SARS-CoV-2 is continuous-
ly broadened. Therefore, further studies are needed to evaluate
whether these multi-organ failures are reflective of direct tis-
sue viral invasion or due to the secondary or systemic effects
of the virus. Neurological symptoms and complications
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observed in COVID-19 patients, especially in severe cases,
suggest the impact of SARS-CoV-2 on the nervous system.
Although neurological manifestations can be devastating clin-
ical complications of COVID-19, the underlying precise mo-
lecular mechanism of neuroinvasion and interaction of SARS-
CoV-2 with the nervous system is poorly defined. The neuro-
logical pathogenesis of COVID-19 seems to be a complex
process. In this regard, hematogenous and neuronal retrograde
routes may play an essential role in CNS involvement. While
there are limited reports about the direct propagation and pres-
ence of SARS-CoV-2 in the human brain tissue, it has been
proposed that immune system impairment, subsequent cyto-
kine storm, and vascular system dysfunction might facilitate
SARS-CoV-2 entry to the brain. In this respect, the potential
of the SARS-CoV-2 invasion to the peripheral nerves might
be correlated with the neurological complication of COVID-
19. However, it is currently believed that SARS-CoV-2 in
concert with host immune responses may participate in the
neurological complication of COVID-19 disease. Hence, ex-
perimental studies focusing to unravel the precise molecular
mechanisms by which CNS or PNS is affected by COVID19
are urgently needed. These studies with shedding light on the
underlying molecular mechanisms of neurological complica-
tion of COVID-19, will potentially lead to develop more effi-
cient preventive and treatment strategies for these neurological
manifestations.
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