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Abstract

COVID-19, the global threat to humanity, shares etiological cofactors with multiple diseases including Alzheimer’s
disease (AD). Understanding the common links between COVID-19 and AD would harness strategizing therapeutic
approaches against both. Considering the urgency of formulating COVID-19 medication, its AD association and man-
ifestations have been reviewed here, putting emphasis on memory and learning disruption. COVID-19 and AD share
common links with respect to angiotensin-converting enzyme 2 (ACE2) receptors and pro-inflammatory markers such as
interleukin-1 (IL-1), IL-6, cytoskeleton-associated protein 4 (CKAP4), galectin-9 (GAL-9 or Gal-9), and APOE4 allele.
Common etiological factors and common manifestations described in this review would aid in developing therapeutic
strategies for both COVID-19 and AD and thus impact on eradicating the ongoing global threat. Thus, people suffering
from COVID-19 or who have come round of it as well as people at risk of developing AD or already suffering from AD,

would be benefitted.
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Introduction

Coronavirus disease 2019 (COVID-19) is caused by severe
acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that
attacks predominantly the human respiratory system and has
also central nervous system (CNS) targeting and
neuroinvasive capabilities [1, 2]. Incubation period of
SARS-CoV2 is 5 days, and the mostly noted symptoms of
COVID-19 include fever, cough, and fatigue followed by or
associated with headache, dyspnea, and hemoptysis [1, 2].
Acute respiratory distress syndrome, acute cardiac problems,
pneumonia, and multiorgan failure had also been observed in
severe cases [1, 2]. CNS manifestations in about 25% of
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COVID-19 patients have been reported [3]. Besides, impaired
mental state, delirium, and electrolyte and metabolic derange-
ments have been noticed in some patients [3]. Among central
nervous system (CNS) comorbidities of COVID-19,
Alzheimer’s disease (AD) stands first [4]. AD is a neurode-
generative disorder that affects memory and learning, behav-
ior, and cognitive performance of the patient. The brain region
(especially the hippocampus) responsible for memory and
learning processes becomes affected due to deposition of am-
yloid beta (A{3) or neurofibrillary tangles (NFT) in the AD
patients [5]. AD symptoms appear mostly after age 60, and the
patients become solely dependent on their caregivers and fam-
ily members [5]. As COVID-19 management warrants isola-
tion and quarantine, AD management does not fit with those
of COVID-19 [2-4]. Thus, COVID-19 adds extra burden on
AD patients, caregivers, and family members and on the na-
tional and global economy. In this regard, identification of
common etiological factors would pave new vista in strategiz-
ing management and therapeutic approaches against both
COVID-19 and AD. Therefore, the present review has been
designed to elucidate the common links between COVID-19
and AD so that scientists, healthcare providers, policy-makers,
and the general readers would be benefitted in managing the
already sufferers and would also be able in safeguarding the
future generation.
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SARS-CoV-2 Invasion and AD-COVID-19
Manifestations

Possible route of SARS-CoV-2 entry into the human body in-
cludes neural parenchyma, the nasal mucosa, the lamina
cribrosa, retrograde axonal transport, and the olfactory bulb [6].
The neurotropism characteristic of SARS-CoV-2 aids in its in-
vasion on the neural tissues by binding its spike protein with the
angiotensin-converting enzyme 2 (ACE2) receptors present on
both neurons and glial cells as well as on the capillary endothe-
lium [6, 7]. In lungs, epithelium of the upper and lower airways
harbor ACE2 mostly [6,7,8]. On the other hand, braind stem,
capillary endothelium and cardiovascular function regulatory re-
gion of the CNS harbor ACE2 highly [6-8]. Compared with
those of other SAR-COVs, 10-20-fold increased affinity of
SARS-CoV-2 spike protein towards ACE2 has been found [8,
9]. Bypassing the ACE2 receptor, SARS-CoV-2 might utilize
the olfactory bulb and avail the trans-synaptic route directly [10,
11]. Upon invasion, SARS-CoV-2 stimulates reactive
astrogliosis, microglial activation, and neuroinflammatory cas-
cade. Consequently, the blood-brain barrier (BBB) becomes
compromised due to systemic inflammation followed by
disrupted brain homeostasis and neuronal death [11].
Subsequent infection of the brain stem might hamper cardiovas-
cular and respiratory regulation through chemosensory neural
cells. Deranged ventilator function of the lung aggravates respi-
ratory failure resulting in intense hypoxia [10, 11]. Combined
interplay of hypoxia and neuroinflammation destroys the cortical
and hippocampal structure and function, resulting in the neuro-
logical disorders. According to the direct CNS invasion propos-
al, SARS-CoV-2 causes inflammatory mediator release leading
towards increased BBB permeability and heightened hypoxia
[12]. As the CNS is devoid of the major histocompatibility anti-
gen, it becomes solely dependent on cytotoxic T lymphocytes
for removal of virus. Consequently, infectious toxic encephalop-
athy, acute encephalitis, and cerebrovascular attacks (CVAs) en-
sue [12]. Headache and seizure are symptoms of acute enceph-
alitis; delirium and coma are symptoms of infectious toxic en-
cephalopathy while an increased risk of CVA is a manifestation
of SARS-CoV-2-provoked cytokine storm and coagulation ab-
normalities [12]. Neuronal expression of ACE2 escalates
through nACh receptor stimulation by nicotine, and this makes
the smokers much vulnerable towards neuropathological mala-
dies [13].

Concordant Cross-talk Between AD and COVID-19
Inflammo-proteomics

Until recently, respiratory syndromes of SARS-COV-2 have got
most attention while neurological co-manifestations have re-

ceived the least though more than one-third of the patients had
neurological symptoms [14]. Almost all the neurological
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symptoms had been manifested during the initial stage of illness
[15]. Inflammatory mediators have been implicated in CNS man-
ifestations, and immunological processes in peripheral nervous
system (PNS) abnormalities, while skeletal muscle injury has
been considered the direct effect of SARS-CoV-2 [10, 16, 17].
Among inflammatory markers, interleukin 6 (IL-6), interleukin 1
(IL-1), cytoskeleton-associated protein 4 (CKAP4), and galectin-
9 (GAL-9 or Gal-9) had received most attention as the common
links between COVID-19 and AD manifestations [18] (Fig. 1).

IL-6

Plasma level of inflammatory cytokines had been reported to
be associated with the status of AD progression and inversely
related with immune response [18]. Similarly, human cogni-
tive performance had been inversely linked with chronic pe-
ripheral elevation of IL-6 [18]. In line with this, a significantly
increased level of plasma IL-6 had been reported in 47 AD
patients compared with their age-matched controls [19].
Resultant increased acute-phase proteins in the serum of AD
patients are indicative of compromised immunity. Memory
and learning—related behavioral tests (Morris water maze test,
hole-board test, elevated plus maze test) on mice revealed that
the mice deficient of IL-6 retain improved reference and spa-
tial memory and demonstrate a better cognitive performance
[20]. Though exact mechanism has not been elucidated yet,
reduced IL-6 might mediate a signaling cascade involved in
maintaining and restoring memory [20].

An increased serum level of IL-6 had been reported to be
linked with increased COVID-19 fatality [21]. A similar trend
had been linked for respiratory dysfunction [22, 23]. Plasma
proteomics profiling also identified IL-6 among the most
perturbed proteins in COVID-19 patients and marked as an
indicator of disease severity [24]. Thus, increased serum IL-6
level is a common indicator of respiratory complications oc-
curred in COVID-19. Also, rapid replication of SARS-CoV-2
triggers elevated production of IL-6 and heightened respiratory
distress. Therefore, IL-6 stands as a common biomarker for AD
and COVID-19. Antibodies capable of blocking the IL-6 recep-
tor (tocilizumab and sarilumab) have been undergoing phase 2/
3 clinical trials as the putative medications against COVID-19
[25]. As inflammatory process of AD results in neurodegener-
ation that could be slowed down through reduced generation of
IL-6, tenidap, a non-steroidal anti-inflammatory drug, had been
found promising in AD therapeutics [26]. Thus, IL-6 stands as a
pleiotropic biomarker for CNS and respiratory system dysreg-
ulation among which AD and COVID-19 worth mentioning.

IL-1
IL-1 had been noticed to be significantly higher in the

COVID-19 patients during disease onset and entire range of
disease progression [27, 28]. Anakinra, a recombinant IL-1
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Fig. 1 Concordant and
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receptor antagonist, had been found effective in improving
clinical symptoms especially respiratory distress in 72% cases
[27, 28]. Levels of IL-1 had also been reported to be increased
in AD patients [29]. Impaired long-term potentiation and hip-
pocampal consolidation of memory and learning processes
had been associated with increased IL-1 level [30]. Injection
of IL-1f3 in the rat brain showed increased A3 and NFT pro-
duction [31]. On the other hand, blockade of IL-1 had been
found AD ameliorating [32].

GAL-9

Gal-9 is a [3-galactoside-binding protein involved in immune
reaction regulation. Its increased production had been associ-
ated with viral infection especially in the lung [33]. Thus,
therapeutic strategies aimed at suppressing Gal-9 production
seem pertinent in COVID-19 pandemic [34]. In the CNS, Gal-
9 had been reported to be a facilitator of oligodendrocyte
maturation and myelin repair mechanism [35]. Increased level
of serum Gal-3 had been reported in AD patients [36].
Galectin-3 had been reported to be a promoter of A3 oligo-
merization and toxicity in AD animal models [37]. Thus,
galectin-3 is an inflammatory marker whose modulation
seems promising in COVID-19 and AD therapeutics.

CKAP4

CKAP4, also known as p63, is a 63-kDa, reversibly
palmitoylated and phosphorylated, type II transmembrane
(TM) protein. CKAP4 regulates the quantity and survival of
neuronal precursor cells (NPCs) [38]. Ablation of CKAP4
results in increased NPC death through activation of a pro-
apoptotic pS3-PUMA pathway as well as impaired neuronal
and hippocampal memory and learning performance [38].
Though CKAP4 involvement in AD pathogenesis has not
yet been reported, its role as an NPC pro-survival agent and
cognitive enhancer stead this protein as a target in AD

therapeutics [38]. Besides, its role in embryonic development
of mammalian CNS has been regarded indispensable [38].

In lungs, CKAP4 had been implicated in maintaining
lipid homeostasis through regulation of surfactant turnover
[39]. In serum, lung cells, and tissues of the lung cancer
patients, CKAP4 had been detected to be significantly
higher than those of the healthy controls. Thus, CKAP4
stands as an early serodiagnostic marker for lung cancer
and respiratory distress [40]. Plasma proteomics profiling
also identified CKAP4 among the most perturbed proteins
in COVID-19 patients and marked as an indicator of dis-
ease severity [24].

ApoE4 Allele

Apolipoprotein E is the main carrier of cholesterol in the
central nervous system (CNS) and also an important con-
stituent of very low—density lipoproteins (VLDL). Among
its three alleles (e2, €3, and ¢4), individuals carrying the ¢4
allele are at a heightened risk of developing AD as the
ApoE €4/e4 genotype increases fibrinogenesis in the brains
of Alzheimer’s disease patients [41]. ApoE4 has also been
reported influencing cerebral hemodynamics such as leak-
age of the blood-brain barrier and cerebral amyloid
angiopathy [41]. Recently, APOE4 has been regarded as a
marker increasing COVID-19 severity [42, 43]. Thus, AD
patients carrying the APOE4 allele are at a heightened risk
of developing COVID-19.

ACE2 Upregulation

Ten times elevated expression of ACE2 gene, SARS-CoV-2
binding protein for cell entry, had been found in the brain
tissues of the AD subjects compared with those of their age-
matched non-AD individuals [44]. Thus, AD patients are at a
heightened risk of COVID-19 comorbidity.

@ Springer
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Nitric Oxide Level

Nitric oxide (NO), an endothelium-derived relaxing factor and
a neurotransmitter, plays an important role in memory and
learning process and thus aids in maintaining behavioral and
cognitive normalcy [45]. SARS-CoV-2, binding with the va-
soconstrictor type 1 angiotensin II receptor (AT1R) through
overexpressed ACE2, might lower NO production on cerebral
neurons. Consequently, COVID-19 patients would become
much vulnerable to behavioral and cognitive decline, the man-
ifestations of AD [46].

Acetylcholine

Acetylcholine (Ach) is an excitatory neurotransmitter of the
CNS and neuromuscular junction and is essential for neuronal
functioning and for memory and learning abilities. According
to the cholinergic hypothesis of AD, decreased availability of
Ach leads towards AD consequences [47]. Produced by Ach
transferase from acetyl-CoA and choline, Ach is released into
the synaptic cleft and upon binding to the post-synaptic neu-
ron, exerts signal transduction [47]. Activities of Ach are me-
diated through two types of receptors, namely, muscarinic and
nicotinic [48]. Acetyl choline esterase (AchE) breaks down
Ach and does not allow prolonged action of Ach into the
post-synaptic neuron, and thus affects memory and learning
abilities [47]. AD hallmarks occur due to either structural al-
terations in cholinergic synapses or alteration of Ach receptors
or degeneration of ACh-producing neurons that ultimately
lead to deteriorated cholinergic neurotransmission [47].
Therefore, treatment strategies have been developed based
on this that agents having anti-AchEI activity would have
ameliorating effects on AD [49]. Different AchEIs (donepezil,
galantamine, rivastigmine, and tacrine) have been developed
to ameliorate AD complications [49]. AchEIs have been re-
ported to improve the cognitive and behavioral performance
of the AD subjects [50].

Ach-mediated lowered production of pro-inflammatory cy-
tokines such as tumor necrosis factor alpha (TNF-«), IL-1f3,
IL-6, and IL-18 and uninterrupted production of anti-
inflammatory cytokine IL-10 had been reported [51].
Interestingly, AchEI galantamine had been implicated in low-
ering TNF-« production [52]. Therefore, inclusion of AchEIs
in AD and COVID-19 therapeutics could lower the produc-
tion of pro-inflammatory cytokines and aid in anti-
inflammatory cytokine generation with net result: AD amelio-
ration through Ach make-up and COVID-19 mitigation
through pacification of “cytokine storm.” Another calming
approach to “cytokine storm” is nicotinic receptor—mediated
vagus nerve stimulation that yields cholinergic anti-
inflammatory response [53, 54]. Thus, treatment strategies
applying nicotinic substances and cholinergic system would
shed ameliorating influence on both AD and COVID-19 [55].
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Degenerated Cholinergic Neurons

The neurotoxic effect of A3 oligomers deranges the choliner-
gic system that manifest in behavioral alteration of AD sub-
jects [56]. Degeneration of the cholinergic neurons up to 75%
in AD brains had been reported [57]. Consequent reduction in
ChAT in the hippocampi and cerebral cortex of AD patients
had been correlated with degenerated cholinergic nerve end-
ings originated in the basal forebrain and septum [57]. In line
with this, inverse relationship between cholinergic neurons
with A3 and NFT generation had been documented in AD
animal models [58]. On the other hand, muscarinic receptor
agonist or AchEI-based stimulation of the cholinergic receptor
systems had been associated with shifting the amyloid precur-
sor protein processing from amyloidogenic towards non-
amyloidogenic pathway [59]. In addition to anti-
inflammatory effects, stimulation of o7 nicotinic receptors
had been attributed with neuroprotection against Af3-, tau-,
and NFT-induced neurotoxicity [60, 61]. Thus, treatment
strategies aimed at the cholinergic system aid in amelioration
of both AD and COVID-19.

Anosmia

Anosmia, the inability of detecting smell or taste, is a hallmark
of COVID-19 [62]. Anosmia or its relevant marker hyposmia,
lowered sensitivity to detect smell or taste, is also a hallmark
of AD [63]. Anosmia might arise either from infection or
blocked nose or due to degeneration of the nasal olfactory
receptor neurons [64]. Importantly, brain injury leading to
olfactory nerve or system damage may also manifest in anos-
mia [64]. Recently, a diminished Zn>* level had been linked
with COVID-19 comorbidity of anosmia [65]. SARS-CoV-2-
induced local deficiency in nasal cellular zinc level might
hamper the activity of Zn>"-dependent carbonic anhydrase,
the enzyme responsible for olfaction. Immunologically, de-
pleted Zn** level might shift the Th1/Th2 balance to Th2
predominance resulting in increased IL-6 generation of
COVID-19 subjects [65]. In this connection, decreased blood
Zn** level had been associated with AD [66]. Cognitive im-
pairment associated with olfactory dysfunction had become a
common marker of AD and COVID-19.

Discordant Cross-talk Between AD and COVID-19

Besides the abovementioned similarity-based cross-talks,
there exists some disparity-oriented discourse between AD
and COVID-19 [67] (Fig. 1). For example, headache, cough,
and seizures are common features of COVID-19 but not of
AD [67] (Fig. 1). Some other contrasting features are as
follows:
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Age

Older people are at a higher risk of falling victim of both AD
and COVID-19 [68]. But, for patients aged over 80 years,
further aging is not a risk factor for COVID-19, rather for
dementia and AD [68]. Though the exact mechanism is not
clear yet, reduced susceptibility of secondary lung inflamma-
tion might be the cause [68]. On the other hand, AD suscep-
tibility usually begins on or after 60 years of age and as aging
advances, so soars the AD pathogenesis [69]. Heightened pro-
duction of reactive oxygen species (ROS), exacerbated amy-
loid beta production, aggregation and neurodegeneration,
perturbed proteostasis, cardiovascular diseases (CVD), diabe-
tes, hypertension, and lifestyle modification had been impli-
cated in AD pathogenesis of the aged persons [69].

Sex

Compared with females, males had been found much vulnera-
ble to COVID-19 fatality [70]. Increased ACE2 level, effect of
testosterone on ACE2, imbalance among ACE2 products (Ang
1-7, Ang 1-9), and dire onslaught of cytokine storm are among
the possible factors affecting men much than those of the wom-
en [70]. Thus, manipulation of ACE2 expression through sex
hormone modulators seems pertinent in treating COVID-19.
On the other hand, estrogen and testosterone levels had been
found neuroprotective and amyloid beta—clearing agents [71].
In female AD patients older than 80 years, brain levels of an-
drogen and estrogen had been found lower than their age-
matched non-AD counterparts [72]. In case of normal and
AD male subjects, the downtrend level of androgen and testos-
terone had been observed as aging progresses over 70 years [72,
73]. Thus, disparity in sex hormone levels contributes to the
biased prospect of AD or COVID-19 in men and women.
Keeping pace with this fact, treatment strategies might be for-
mulated to restore the sex hormone levels in respective patients.

Different Treatment Strategies

AD and COVID-19 differ in their etiology. AD is caused by
deposition of abnormally higher levels of Af3 or NFT. Thus,
treatment strategies against AD focus mainly withstanding
A production or accelerating its clearance [74]. On the other
hand, COVID-19 is caused by SARS-CoV-2 entry into host
cell and subsequent inflammatory, respiratory, cardiovascular,
CNS, and psychological complications. Thus, COVID-19
treatment strategies tend to impede viral entry, viral replica-
tion, and subsequent symptom amelioration. In this regard,
SARS-CoV-2-directed drugs (remdesivir, lopinavir), host-
targeting agents such as ACE/ACE2 receptor inhibitors, an-
giotensin receptor blockers (ARB), and immunomodulators
such as inhibitors to IL-6 and IL-1, and convalescent plasma
therapy had been in practice worldwide [75].

Conclusion

In addition to the persisting COVID-19 complications, its
long-term consequences have been shaking the healthcare
professionals globally. Alzheimer’s disease stands among
the top-notch out-turn of COVID-19. Etiological cofactors
and physiological co-manifestations described in this review
would succor in strategizing therapeutic approaches against
both COVID-19 and AD. We must admit that we have
depended only upon the data available at hand, and we must
look towards future directions from the scientific community
to hold back the global crises like COVID-19 and AD.
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