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Abstract
Neural stem cells (NSCs) have been recently identified in the inferior colliculus (IC). These cells are of particular interest, as no
casual therapeutic options for impaired neural structures exist. This research project aims to evaluate the neurogenic potential in
the rat IC from early postnatal days until adulthood. The IC of rats from postnatal day 6 up to 48 was examined by neurosphere
assays and histological sections. In free-floating IC cell cultures, neurospheres formed from animals from early postnatal to
adulthood. The amount of generated neurospheres decreased in older ages and increased with the number of cell line passages.
Cells in the neurospheres and the histological sections stained positively with NSC markers (Doublecortin, Sox-2, Musashi-1,
Nestin, and Atoh1). Dissociated single cells from the neurospheres differentiated and were stained positively for the neural
lineage markers β-III-tubulin, glial fibrillary acidic protein, and myelin basic protein. In addition, NSC markers (Doublecortin,
Sox-2, CDK5R1, and Ascl-1) were investigated by qRT-PCR. In conclusion, a neurogenic potential in the rat IC was detected
and evaluated from early postnatal days until adulthood. The identification of NSCs in the rat IC and their age-specific charac-
teristics contribute to a better understanding of the development and the plasticity of the auditory pathway and might be activated
for therapeutic use.
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Introduction

Neurogenesis is the formation of new nerve cells from precur-
sor and stem cells, which takes place both during embryogen-
esis and in some regions of the adult nervous system.
Following the discovery of adult neurogenesis in the
subventricular zone [1] and the dentate gyrus of the hippocam-
pus [2], these brain regions were intensively investigated re-
garding their neurogenic potential. However, the existence of
neural stem cells (NSC) has also been demonstrated in further
parts of the mammalian central nervous system, such as the
cortex [3], the striatum [4], the septum [4], the spinal cord [5],
the dorsal vagal complex [6], and the optic nerve [3]. The
main characteristics of NSCs are their capacity of mitotic

self-renewal and their potential to differentiate into neural
progenitor cells and all cells of the neuroectodermal lineage,
including neurons, astrocytes, and oligodendrocytes [7].

Furthermore, NSCs have been identified in the inner ear
and the auditory pathway. NSCswere initially described in the
utricle of the vestibular organ [8]. Since then, a neurogenic
potential has been confirmed in the spiral ganglion [9], the
lesser epithelial ridge [10], the organ of Corti, as well as the
stria vascularis [11]. Furthermore, neurogenic niches were
found in the centrally located parts of the auditory pathway.
A stem cell potential of the cochlear nucleus (CN) was found
in both rats [12] and mice [13].

The existence of NSCs was also shown in the inferior
colliculus (IC) of young postnatal mice [14] and rats [15].
These cells have the ability of mitotic self-renewal, which
was demonstrated by their capacity to form neurospheres over
several passages and by BrdU assays. Also, it has been dem-
onstrated that these cells can differentiate into progenitor cells
and all cell types of the neuroectodermal cell line, including
neurons, astrocytes, and oligodendrocytes. The IC is the
fourth relay station of the ascending auditory pathway and is
located in the midbrain, where, together with the superior
colliculi, it forms the lamina quadrigemina. The IC processes
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ascending information from the superior olivary complex as
well as from the ipsilateral and contralateral CN [16]. Its ef-
ferent axons lead to the medial geniculate body and the pri-
mary auditory cortex.

Hearing loss causes functional changes in the IC. These
changes show age-related characteristics and can also be de-
tected in adult animals. Segmental cochlear lesions cause
changes in the central nucleus of the IC. As a result, lesion-
associated frequencies are no longer represented on the
tonotopic map, and adjacent frequencies are increasingly
mapped. The lesion-induced tonotopic reorganization is more
pronounced in postnatal than in adult animals [17].
Furthermore, changes in continuous amplitude response char-
acteristics of post-synaptic field potentials after acute acoustic
hyperstimulation were detected on the surface of the IC of
adult rats [18]. Not much is yet known about the anatomical
basis of the functional reorganization of the IC after cochlear
lesions. However, some anatomical changes in the central
auditory pathway after acoustic deprivation have been de-
scribed, including transsynaptic degeneration [19] and reduc-
tion of the size of neurons [20]. Furthermore, investigations of
auditory brainstem connections showed that age-related dif-
ferences in the formation of projecting neurons occur after
cochlear removal [21].

Since NSCs have been discovered in the IC of postnatal
rats, the question of age-related changes in the neurogenic
potential of IC arises. Therefore, the neurosphere forming ca-
pacity, the presence of NSC markers in neurospheres and
tissue sections, as well as the ability to differentiate was ex-
amined in the different age groups of animals up to postnatal
day 48.

Materials and Methods

Animal Dissection

Postnatal day (PND) 6, 12, 24, and 48 Sprague-Dawley rats
(Charles River®) were sacrificed by cervical dislocation. The
skull was opened midsagittally, and its bony parts were re-
moved. After the cranial nerves were dissected, the brain,
including the brainstem, was removed from the skull base
and transferred into Neurobasal® medium (Thermo-Fisher
Scientific®) at room temperature. Using a stereomicroscope
(OPMI1, Zeiss®), the cerebrum and brainstem were separated
by a coronary incision above the lamina tecti, and the
brainstem was freed from meningeal tissue and blood vessels.
After identifying the IC, it was removed by blunt preparation.
The isolated tissues were transferred either into sterile DPBS
solution or into Neurobasal®medium at room temperature for
further processing. All procedures were performed under an-
tiseptic conditions. All experiments were performed in accor-
dance with the guidelines for animal experimentation under

German law. Since only organ removal was performed in
sacrificed animals, there was no need to obtain consent from
the local animal committee (German Animal Protection Act).

Neurosphere Assay and Passaging

Accutase (PAA Laboratories®) was used to dissociate
the neuronal t i ssue of IC enzymat ica l ly in a
ThermoMixer (Eppendorf®) at 37 ° C and 500 rpm.
Every 10 min, the suspension was triturated until visible
portions of the tissue were not detectable anymore. The
solution was centrifuged at 1000 rpm for 5 min
(Centrifuge 5810, Eppendorf®) and the pellet suspended
in neural stem cell medium, containing Neurobasal®
medium (Thermo-Fisher Scientific®), 1% GlutaMAX®
supplement, 2% B27® supplement without retinoic acid
and 1% penicillin/streptomycin (Invitrogen®). EGF and
FGF-2 (PeproTech®) were added to the cultures at a
final concentration of 10 ng/ml each. This medium will
be referred to as “NSC-medium.” Before culturing the
cells, a mixture of a sample from the suspension and
trypan blue (Invitrogen®) was used to count the number
of viable cells in an improved Neubauer hemocytometer
(ZK06, Hartenstein®). All cells dissociated from both
IC of one animal were cultured in hydrophobic cell
culture flasks (CellStar, filter-top, 25 cm2, Greiner®
Bio One) at 37 °C and 5% CO2. Initially, a suspension
was carried out in 4 ml of NSC medium, and 2 ml of
freshly prepared NSC medium was added every 4 days.
The number of primary cell spheres was determined
after 30 days in culture with an inverted microscope
(Leica® DMI 4000B and DMI-8) in transmitted light
technique and recalculated to 100,000 cultured cells
per IC.

The dissociation of the neurospheres was performed
mechanically in order to passage the cells. After the
dissociation, the single cells were centrifuged for
5 min at 1000 rpm, and the pellet was rinsed with
PBS solution (Gibco®). Subsequently, PBS was re-
moved, and the single cells were resuspended in fresh
NSC medium and cultivated at 37 °C/5% CO2 for 30
days in 25-cm2 filter top cell culture flasks (CellStar,
Greiner® bio-one). The absolute number of viable cells
was determined between each passaging step.

Plating of Spheres

Neurospheres were taken out of the cell cultures and plated on
glass coverslips coated with Poly-D-lysine (100 μg/ml, Serva
Elec t rophores i s®) and Laminin (10 μg/ml , BD
Biosciences®). The plated neurospheres were cultivated in
NSC medium for 24 h for further analysis at 37 ° C/5% CO2.
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Plating of Single Cells and Cell Differentiation

The suspension from the propagated cell cultures was centri-
fuged (1000 rpm, 5 min), and the cell pellet washed once with
DPBS. After removing DPBS, Accutase® was added to dis-
sociate the cells enzymatically. The suspension was incubated
for 15 min at 37 ° C and 500 rpm in a ThermoMixer
(Eppendorf®) and triturated every 5 min. After centrifugation
and suction of Accutase®, the pellet was resuspended in the
NSC medium in order to plate single cells for differentiation
experiments. In 4-well dishes (Greiner® bio one), the single
cells were plated on glass coverslips coated with Poly-D-
lysine (100 μg/ml, Serva Electrophoresis®) and Laminin (10
μg/ml, BD Biosciences®) and cultivated in NSC medium.
After 24 hours, a differentiation medium (DIF medium) was
added, composed of Neurobasal®, GlutaMAX®, and B27
with retinoic acid. The single cells were plated at a density
of 100 cells/mm2 (8000 cells/coverslip) and cultivated for 5
days at 37 °C and 5% CO2.

Fixation and Immunocytochemistry

At the end of the experiment, the plated cells or
neurospheres on the coverslips were fixed with 4% para-
formaldehyde (PFA, Sigma-Aldrich®) for 30 min and
with acetone for 5 min. For blocking, a solution of
10% bovine serum albumin (BSA, Sigma-Aldrich®) in
TBS-T buffer solution (200 mM Tris-base (pH = 8),
8% NaCl, 1% Tween-20, Sigma-Aldrich®) was used.
The cells were incubated with the following primary an-
tibodies at 5 °C overnight in 1% BSA solution and TBS-
T: rabbit polyclonal against Doublecortin (DCX)
(1:1000, Abcam®), rabbit polyclonal against Sox-2
(1:100, Abcam®), rabbit polyclonal against Musashi-1
(1:100, Abcam®), rabbit polyclonal against Atoh1
(1:100, Santa Cruz®), mouse monoclonal against Nestin
(1:500, Millipore®), mouse monoclonal against β-
tubulin (1:500; Sigma-Aldrich®), rabbit polyclonal
against β-tubulin (1:50, Santa Cruz®), mouse monoclo-
nal against β-III-tubulin (1:500; Abcam®), rabbit poly-
clonal against β-III-tubulin (1:500; Abcam®), mouse
monoclonal against glial fibrillary acidic protein
(GFAP) (1:500; Millipore®) or rabbit polyclonal against
myelin basic protein (MBP) (1:100, Sigma-Aldrich®).
After being rinsed three times with TBS-T, the cells were
incubated for 1 h in a 1% BSA solution at room temper-
ature with goat anti-rabbit or goat anti-mouse secondary
antibody coupled to Alexa 488 or Alexa 555 (1:800,
1.500, Invitrogen®) and 5 μg/ml DAPI (1:5000, Sigma-
Aldrich®). The cells were then washed three times with
TBS-T, and the coverslips were embedded in Moviol
(Sigma-Aldrich®).

Histological Sectioning and Immunohistochemistry

After dissection, the IC was fixed in 4% paraformaldehyde
(Sigma-Aldrich®) for 1 h and incubated in three steps with
10, 20, and 30% saccharose in ascending order for 24 h each.
Tissue was then cryoprotected in Tissue-Tek O.C.T.
(Sakura®) and frozen in liquid nitrogen. Using the cryostat
(CM1510S, Leica®), preparations were cut in sections of 9
μm, mounted on superfrost slides (Hartenstein®) and stored
for immunofluorescence analysis. Therefore, sections were
post-fixed in 4% PFA for 5 min, washed three times in
TBS-T and blocked in 10% BSA in 0.3% Triton X-100
(Sigma-Aldrich®) for 1 h. For immunohistochemistry, the
sections were incubated with the following primary antibodies
in 1% BSA solution in 0.3% Triton X-100 for 24 h: mouse
monoclonal against Nestin (1:500, Millipore®), mouse mono-
clonal against β-tubulin (1:500, Sigma Aldrich®), rabbit
polyclonal against β-III-tubulin (1:500, Abcam®), rabbit
polyclonal against Atoh1 (1:100, Santa Cruz®), rabbit poly-
clonal against Musashi-1 (1:100, Abcam®), or rabbit poly-
clonal against Sox-2 (1:100, Abcam®). After three washing
steps with TBS-T, the sections were incubated with the sec-
ondary antibodies, coupled to Alexa 488 or Alexa 555 (1:800,
1:500, Invitrogen®) and 5 μg/ml DAPI (1:5000, Sigma-
Aldrich®). The specimens were then rinsed three times with
TBS-T and embedded in Moviol (Sigma-Aldrich®).

RNA Extraction and First-Strand cDNA Synthesis

After the dissection, the IC samples from rats of different ages
(n = 4 animals/age group) were used for a qRT-PCR array.
First, total RNA was isolated according to the RNeasy Micro
Kit (Qiagen®). The RNA of the different samples of one age
group was pooled. The RNA concentration (A260) and qual-
ity (A260/A280 ratio) were determined with a NanoDrop
spectrophotometer (Thermo Scientific®). For the A260/
A280 ratio, samples in the range of 2.0 ± 0.2 were accepted.
To obtain cDNA, 500 ng of RNA per age group was synthe-
sized into cDNA using the RT2 First Strand Kit (Qiagen®)
according to the instructions for use.

Rat Neurogenesis RT2 ProfilerTM PCR Array

Of the obtained cDNA, 102 μl were labeled with 1350 μl RT2
SYBRGreenMastermix (Qiagen®) and 1248μl dH2O. From
this mixture, 25 μl per well were transferred to a 96-well PCR
array plate containing the genes DCX, Sox-2, CDK5R1, and
Ascl-1 (Rat Neurogenesis RT2 ProfilerTM PCR Array,
Qiagen®). Additionally, five household genes (Actb, B2m,
Hprt1, Ldha, Rplp1) and three quality controls for RNA con-
tamination and PCR quality were on each plate. Three PCR
array plates were evaluated per age group. The PCR reactions
were performed with a Step One Plus (Applied Biosystems®)
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and according to the following cycling program: the plates
were first incubated for 10 min. at 95 °C and then subjected
to 40 cycles, each consisting of two phases. The plates were
incubated for 15 s at 95 °C and then incubated for 1 min at 60
°C.

Digital Pictures, Quantification, and Statistical
Analyses

Digital images of the cell cultures and preparations were taken
with a Leica® DMI8 fluorescence microscope and Leica
Application Suite X software v3.0.1, Leica®. To quantify
the number of neurospheres, all culture flasks were scanned
using the transmitted light technique in tile scan mode. The
digital images of microscopic images were exported directly
from the Leica Application Suite software in TIFF format. The
final image composition was done with the Adobe® InDesign
CC 2020 v15.0.2 software. Tissue sections were analyzed
with an Olympus® Fluoview FV3000 confocal laser scanning
microscope and exportedwith the Fiji/ImageJ V2.0.0 software
[22]. All collected data was compiled using the Microsoft®
Excel 2018 V16.19 spreadsheets and statistically analyzed
with the GraphPad® Prism 7.0a software. The Shapiro-Wilk
normality test was used to determine whether a Gaussian nor-
mal distribution was present. For further analysis, a one-way
ANOVA with a post-hoc Tukey’s multiple comparison test
was used in case of normal distribution. A p value less than
0.05 was considered significant. If the data set followed a
Gaussian normal distribution, mean and standard error of the
mean (SEM) are displayed, whereas without Gaussian normal
distribution, mean and standard deviation (SD) are depicted.

The analysis of the gene expression of the individual fac-
tors was performed according to the instructions of the Gene
Globe Data Analysis Center (Qiagen®). Due to the inversely
proportional relationship between the threshold cycle (CT)
and the pure expression level of a gene, and the doubling of
the amount of a gene product per amplification cycle, the
expression level for each gene was determined as 2-CT. To
normalize the expression level of a gene of interest (GOI), it
was related to the expression of the mean of the HKGs:
2-CT(GOI)/2-CT(HKG) = 2-[CT(GOI)-CT(HKG)] = 2-ΔCT. The resulting
2-ΔCT values were compared between different age groups
using a two-stage, unpaired Student’s t test.

Results

Neurosphere-Forming Capacity and Single-Cell Count

The formation of primary neurospheres was detected in cell
cultures of the dissociated cells from the IC. For estimation, a
ratio of primary neurospheres per 100,000 vital cells was cal-
culated (PND 6903 ± 282.4, PND 12 522 ± 193.3, PND 24

480 ± 106.6, PND 48 348 ± 170.7) (n = 6). This evaluation
showed a significant decrease in the ratio between PND 6 and
the following age groups (PND 6 vs. PND 12, p = 0.0164;
PND 6 vs. PND 24, p = 0.0073; PND 6 vs. PND 48, p =
0.0005). No significant difference was found between PND
12 and PND 24 (p = 0.9825), and PND 24 and PND 48 (p =
0.4477) (Fig. 1).

In addition, the formation of secondary, tertiary, and qua-
ternary neurospheres from PND 6 throughout PND 48 was
analyzed. Therefore, the amount of primary neurospheres
per animal was analyzed (n = 6) (PND 6 1505 ± 527.8,
PND 12 1606 ± 583.2, PND 24 2152 ± 636.4, PND 48
2045 ± 753.3) (Fig. 2). With increased passages, the number
of neurospheres increased within all examined age cohorts (P0
vs. P3) (PND 6, p < 0.0001; PND 12, p < 0.0001; PND 24, p <
0.0001; PND 48, p < 0.001). The capacity to generate
neurospheres varied between age cohorts and passage num-
bers (Fig. 2). The increases between the various passages at
PND 6 were all significant (P0 vs. P1, p = 0.0088; P1 vs. P2, p
= 0.0449; P2 vs. P3, p < 0.0001) (Fig. 2). At PND 12 and PND
24, no significant changes between primary culture and pas-
sage 1 (PND 12, p = 0.0664; PND 24, p = 0.9947) and be-
tween passage 1 and passage 2 (PND 12, p = 0.0663; PND 24,
p < 0.0667) (Fig. 2) were found. However, between passage 2
and passage 3, significant increases were detected at both age
stages (PND 12, p < 0.0001; PND 24, p = 0.0265) (Fig. 2).
The increase between a passage and its immediately adjacent
passage showed no significance at PND 48 (P0 vs. P1, p =
0.12; P1 vs. P2, p = 0.5729; P2 vs. P3, p = 0.6346) (Fig. 2).

Additionally, the number of viable cells in primary cultures
was determined (n = 6) (PND 6 661,833 ± 187,318; PND 12
638,333 ± 140,487; PND 24 225,667 ± 82,902; PND 48
276,833 ± 152,053) (Fig. 3). The number of viable cells in-
creased with higher passage numbers within all examined age
groups (P0 vs. P3) (PND 6, p < 0.0001; PND 12, p < 0.0001;

Fig. 1 The ratio of the number of primary neurospheres to 100,000
seeded vital cells of the rat IC shows an age-dependent decrease. The
highest neurosphere-forming capacity was found at PND 6 and the lowest
at PND 48. The central horizontal bars show the mean; error bars depict
the standard error of the mean; dots each represent one single cell culture,
n = 6; asterisks indicate the level of significance, *p < 0.05, **p < 0.005,
***p < 0.001, ****p < 0.0001
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Fig. 3 The number of viable cells within the neurospheres increased with
the rising number of passages from PND 6 to PND 48. a–dAll examined
age groups showed a significant increase from P0 to P3. aWithin the age
group, the number of vital cells within the neurospheres constantly
increased significantly at PND 6. b At PND 12, the increase between
P2 and P3 was significant. c and d No significant increase between

adjacent passages was observed at PND 24 and PND 48. The central
horizontal bars show the mean; error bars depict the standard error of
the mean; dots each represent a cell culture, n = 6; asterisks indicate the
level of significance, *p < 0.05, **p < 0.005, ***p < 0.001, ****p <
0.0001

Fig. 2 The number of neurospheres per organ formed increased with the
rising number of passages from PND 6 to PND 48. a–dAll examined age
groups showed a significant increase from P0 to P3. a Within the age
group, the number of neurospheres constantly increased significantly at
PND 6. b and cAt PND 12 and PND 24, the increase between P2 and P3

was significant. d No significant increase between adjacent passages was
observed at PND 48. The central horizontal bars show the mean; error
bars depict the standard error of the mean; dots each represent a cell
culture, n = 6; asterisks indicate the level of significance, *p < 0.05,
**p < 0.005, ***p < 0.001, ****p < 0.0001
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PND 24 p < 0.001; PND 48, p < 0.0001) (Fig. 3). At PND 6, a
significant increase was detected between all examined pas-
sages (P0 vs. P1, p < 0.001; P1 vs. P2, p = 0.0236; P2 vs. P3, p
< 0.0001) (Fig. 3). Changes between primary culture and pas-
sage 1 (p = 0.6329) and passage 1 and passage 2 (p = 0.1592)
showed no significance at PND 12, whereas the increase be-
tween passage 2 and passage 3 was significant (p = 0.0018)
(Fig. 3). At PND 24 and PND 48, no significant change was
detected between adjoined passages (PND 24 P0 vs. P1, p =
0.9811; P1 vs. P2. p = 0.0517; P2 vs. P3, p = 0.2013; PND 48
P0 vs. P1, p = 0.0503; P1 vs. P2, p = 0.3415; P2 vs. P3, p <
0.4766) (Fig. 3).

Identification and Quantification of NSC Markers in
Neurospheres

The neurospheres were stained with the markers DCX, Sox-2,
Musashi-1, Atoh1, and Nestin. The expression of the tran-
scription factors Atoh1 (Fig. 4a–d) and Sox-2 (Fig. 4m–p)
was found in all ages and few cells showed a colocalization
with DAPI in the nuclei of the cells. Neuronal migration mak-
er DCX (Fig. 4e, f) and RNA-binding protein Musashi-1 (Fig.
4i–l) were detected within the cytoplasm of the sphere-
forming cells at PND 6, PND 12, PND 24, and PND 48. In
addition, the cells within the neurospheres of all age groups
showed positive labeling of the progenitor marker Nestin (Fig.
4a–p) in their cytoplasm.

The analysis of marker-positive cells in relation to DAPI-
positive cells in the neurospheres of all age groups investigat-
ed was performed (Fig. 5). The ratio of Sox-2-positive to
DAPI-positive cells showed a significant decrease between
the age groups PND 6 (0.5850 ± 0.1535) and PND 48, as well
as PND 12 (0.5565 ± 0.1498) and PND 48 (0.3577 ± 0.1032)
(PND 6 vs. PND 48, p = 0.0161; PND 12 vs. PND 48, p =
0.0374). The comparison of the other age groups showed no
significant changes (PND 6 vs. PND 12, p = 0.9804; PND 6
vs. PND 24, p = 0.2566; PND 12 vs. PND 24, p = 0.3251;
PND 24 vs. PND 48, p = 0.5971) (Fig. 5a). The evaluation
concerning Atoh1 showed a significant decrease between
PND 6 (0.6013 ± 0.08311) and all other age groups (PND 6
vs. PND 12, p = 0.0005, PND 6 vs. PND 24, p = 0.0078, PND
6 vs. PND 48, p < 0.0001), and between PND 24 (0.3916 ±
0.09146) and PND 48 (0.1940 ± 0.1123) (PND 24 vs. PND
48, p = 0.0121). An exception was the comparison between
PND 12 (0.3141 ± 0.06849) and PND 24 as well as PND 12
and PND 48 (PND 12 vs. PND 24, p = 0.5071; PND 12 and
PND 48, p = 0.1687) (Fig. 5b).

Capacity to Differentiate into Cells of the Neuronal
Lineage

Single cells from dissociated neurospheres of all examined
ages developed into neurons and neuroglia. The neuron-

specific marker β-III-tubulin (Fig. 6 a) was labeled positively
in axons and the cytoplasm of neurons. Astrocytes were iden-
tified using GFAP (Fig. 6b).MBP (Fig. 6c) plays an important
role in the myelination of nerves and therefore stained the
myelin sheath of oligodendrocytes. In addition, neural precur-
sor marker Nestin (Fig. 6d) was used to detect neural progen-
itor cells in early stages of development. Throughout all age
cohorts, Nestin (Fig. 6h) was labeled positive in the cytoplasm
of cells.

The number of marker-positive single cells was eval-
uated in relation to the β-tubulin-positive cells on the
respective cover glass. The ratio of β-III-tubulin-
positive cells to β-tubulin-positive cells showed an age-
related decrease (PND 6 0.5097 ± 0.02224, PND 12
0.5098 ± 0.03613, PND 24 0.2297 ± 0.09029, PND 48
0.07332 ± 0.01564) with exception of between PND 6
and PND 12, with no significant difference (PND 6 vs.
PND 12, p > 0.99; PND 6 vs. PND 24, p < 0.0001; PND
6 vs. PND 48, p < 0.0001; PND 12 vs. PND 24, p <
0.0001; PND 12 vs. PND 48, p < 0.0001; PND 24 vs.
PND 48, p < 0.002) (Fig. 6e). The GFAP-specific eval-
uation showed a significant increase between PND 12
(0.04183 ± 0.01444) and PND 24 (p = 0.0074), PND
12 and PND 48 (0.1126 ± 0.02232) (p = 0.0004), PND
6 (0.05064 ± 0.01128) and PND 24 (p = 0.0285), and
PND 6 and PND 48 (p = 0.0017). The differences in the
cell ratio between PND 6 and PND 12 (p = 0.9263), as
well as PND 24 (0.0946 ± 0.04037) and PND 48 (p =
0.5998) were without significance (Fig. 6f). Regarding
MBP, a significant decrease between PND 6 (0.1436 ±
0.01144) and the following age groups (PND 12 0.07882
± 0.05974, PND 24 0.06275 ± 0.01104, PND 48 0.04929
± 0.01694) was shown (PND 6 vs. PND 12, p = 0.0111;
PND 6 vs. PND 24, p = 0.0016; PND 6 vs. PND 48, p =
0.0003). The other differences between the ratios of the
different age groups were not significant (PND 12 vs.
PND 24, p = 0.8219; PND 12 vs. PND 48, p =
0.4033; PND 24 vs PND 48, p = 0.8849) (Fig. 6g).
Analysis of the ratio between Nestin-positive and β-
tubulin-positive cells showed a significant decrease be-
tween PND 6 (0.1324 ± 0.06071) and PND 48 (0.02308
± 0.01266) (p = 0.0019), and PND 24 (0.09686 ±
0.05121) and PND 48 (p = 0.0421). The other differ-
ences between the age groups (PND 12 0.0833 ±
0.0373) were not significant (PND 6 vs. PND 12, p =
0.2522; PND 6 vs. PND 24, p = 0.5204; PND 12 vs.
PND 24, p = 0.9509; PND 12 vs. PND 48, p = 0.1194)
(Fig. 6h).

Identification of NSC Markers in Histological Sections

Histological sections were examined for the presence of the
markers Sox-2, Atoh1, Musashi-1, and Nestin. In sections
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from PND 6 to PND 48, Sox-2 (Fig. 7e–h) and Atoh1 (Fig.
7m–p) were found in the nuclei of the cells in colocalization
with DAPI. The expression of Musashi-1 (Fig. 7i–l) was de-
tected in the nuclei, collocated with DAPI, as well as in the
cytoplasm of cells and was detectable in the sections of all
examined ages. Throughout all age cohorts, Nestin (Fig. 7a–
d) was positively labeled in the cytoplasm of cells.

Molecular Genetic Analysis of NSCMarkers Using qRT-
PCR

The expression of the genes DCX, CDK5R1, Sox-2, and
Ascl-1 was studied. An expression of the investigated genes
was found in all age groups (Fig. 8). The gene expression of
DCX shows a significant decrease between PND 6 and the

Fig. 4 Neural stem cell markers are expressed in neurospheres from
progenitor cells of the rat IC from PND 6, PND 12, PND 24, and PND
48. (a–p) Cells inside the neurospheres and cells emigrating from the
spheres were stained positive for the neural progenitor marker Nestin
(red), cell nuclei were stained blue by DAPI. (a–d) The nucleus of cells
inside the sphere and of its branches showed positive labeling for
transcription factor Atoh1 (green). (e–h) The cytoplasm of emigrating

cells and cells inside the neurospheres were stained by neural migration
protein DCX (green). (i–l) The neural stem cell marker Musashi-1 (green)
was positive in the cytoplasm of cells inside the neurosphere and its
branches. (m–p) The nucleus of cells within the neurospheres and its
branches showed positive labeling for the transcription factor Sox-2
(green)
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other age groups (PND 6 vs. PND 12, p = 0.0338; PND 6 vs.
PND 24, p = 0.0172; PND 6 vs. PND 48, p = 0.0197). From
PND 12 on, there were no significant differences in the gene
expression of DCX with increasing age (PND 12 vs. PND 24,
p = 0.4189; PND 12 vs. PND 48, p = 0.5937; PND 24 vs.
PND 48, p = 0.2590) (Fig. 8a).

The gene expression of CDK5R1 (PND 6 vs. PND 12, p =
0.3745; PND 6 vs. PND 24, p = 0.5133; PND 6 vs. PND 48, p
= 0.3473; PND 12 vs. PND 24, p = 0.6536; PND 12 vs. PND
48, p = 0.9032; PND 24 vs. PND 48, p = 0.5806) (Fig. 8b),
Sox-2 (PND 6 vs. PND 12, p = 0.8180; PND 6 vs. PND 24, p
= 0.7046; PND 6 vs. PND 48, p = 0.5130, PND 12 vs. PND
24, p = 0.9658; PND 12 vs. PND 48, p = 0.6584; PND 24 vs.
PND 48, p = 0.5952) (Fig. 8c), and Ascl-1 (PND 6 vs. PND
12, p = 0.4023; PND 6 vs. PND 48, p = 0.5287; PND 12 vs.
PND 24, p = 0.9287; PND 12 vs. PND 48, p = 0.8681; PND
24 vs. PND 48, p = 0.9303) (Fig. 8d) showed no significant
differences with increasing age.

Discussion

Previous studies have shown that there is strong evidence for
the existence of NSCs in the rat neonatal IC [14, 15]. Since
distinct markers of NSCs do not exist, this study aimed to
analyze the neurogenic potential of the rat IC using indirect
methods [7, 23]. The presented results indicate that
neurogenetic potential is present in the rat IC into adulthood.

The tests were carried out on PND 6, 12, 24, and 48 rats in
order to take into account all the critical stages of development
of the rat IC. The age groups PND 6 and 12 represent the
critical phase in the development of the rat’s auditory path-
way. The rat’s hearing onset takes place around the 14th

postnatal day. [24–26]. With 24 and 48 days, rats are either
approaching sexual maturity or are at a stage shortly after
sexual maturity, which is about 40 days [25] and can, there-
fore, be called adult. Thus, taking into account the ethical
necessity of reducing the number of animals used in experi-
ments, an attempt was made to choose intervals that are rep-
resentative of essential stages of development, on the one
hand, and allow a statement to be made about proportionality,
on the other.

Neurosphere-Forming Capacity

The ability of NSCs to mitotic self-renew has been demon-
strated in cell culture studies, which are often described for
this purpose in the literature. Cell cultures provide an in vitro
analysis of the proliferation and self-renewal of NSCs for the
evaluation of the neurogenetic potential [4, 7]. Primary, sec-
ondary, tertiary, and quaternary neurospheres formed in all
age cohorts studied. The neurospheres of the primary cultures
were analyzed in relation to the number of plated cells to
achieve better comparability with similar studies. An age-
related decrease in the number of neurospheres formed per
100,000 cells (PND 6 vs. PND 48, p < 0.001) (Fig. 1) was
observed. The IC of 48-day-old rats showed a formation of
about 348 neurospheres per 100,000 cells. Only a few com-
parable cell culture studies of similar brain regions are de-
scribed in the literature. In one study, the formation of 68
neurospheres per 100,000 cells in the inner ear of the adult
rat was described [8]. The CN of the adult rat showed a for-
mation of 1 neurosphere per 100,000 cells [27]. In the dorsal
vagal complex of adult rats, 760 neurospheres were formed
per 100,000 cells [28].

Fig. 5 Age-dependent evaluation of neural stem cell marker–positive
cells in relation to DAPI-positive cells in neurospheres from the rat IC.
a The relative expression of the transcription factor Sox-2 showed a
significant decrease between PND 6 and PND 48, as well as PND 12
and PND 48. b With the exception between PND 12 and PND 24, and
PND 12 and PND 48, the relative expression of the bHLH transcription

factor Atoh1 showed a significant decrease with increasing age. The
central horizontal bars show the mean; error bars depict the standard error
of the mean; dots each represent a cell culture, n = 6; asterisks indicate the
level of significance: *p < 0.05, **p < 0.005, ***p < 0.001, ****p <
0.0001
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Subsequently, the number of neurospheres per animal was
plotted to show the proliferation potency within an age group
along the passages. The number of neurospheres increased
within all age groups with increasing passage (Fig. 2). In the
literature, both passage studies of NSCs with increasing and
decreasing number of neurospheres have been described [27,
28]. In one study an increasing number of neurospheres with
an increased passage in cell cultures of the CN of neonatal

mice was shown [13]. Following the results, the evaluation of
the number of living cells in the cell cultures was depicted.

It is challenging to compare the results with those of the
different studies because of the different approaches. The cell
culture medium (DMEM vs. Neurobasal medium®), the way
the passage was performed (enzymatically vs. mechanically;
after 5 days vs. after 30 days), and the species studied (rat vs.
mouse) are essential factors influencing the outcome of the

Fig. 6 Age-dependent capacity of cells from neurospheres of the rat IC to
differentiate into all cell types of the neuroectodermal cell lines. a–d
Immunofluorescence images of differentiated cells from the rat IC at
PND 48. The cells were incubated for 5 days on glass coverslips in
differentiation medium. a β-III-tubulin (red) marked cells differentiated
into neurons. b Astrocytes were stained with GFAP (red). c
Oligodendrocytes are positively labeled by MBP (red). MBP marked
the peripheral myelination processes, whereas the proximal portions are
β-tubulin-positive (green). d Undifferentiated progenitor cells were
stained with Nestin (red). The cytoskeleton of all viable cells was stained
with β-tubulin (green). Cell nuclei were stained with DAPI (blue). e–h
Evaluation of differentiation marker-positive cells in relation to β-
tubulin-positive cells from PND 6 to PND 48. e The neuron-specific

markerβ-III-tubulin showed a constant significant decrease of expression
with increasing age except between PND 6 and PND 12. f Between PND
6 and PND 48, with a significant increase between PND 12 and PND 24,
there was a significant increase in the expression of the marker GFAP. g
A significant age-dependent decrease between PND 6 and PND 48 of the
expression ofMBPwas foundwith the most significant decrease between
PND 6 and PND 12. h The neural progenitor marker Nestin is signifi-
cantly reduced in expression with increasing age between PND 6 and
PND 48. The central horizontal bars show the mean; error bars depict
the standard error of the mean; dots each represent a cell culture, n = 6;
asterisks indicate the level of significance: *p < 0.05, **p < 0.005, ***p <
0.001, ****p < 0.0001
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studies. In previous studies, a different potency to form
neurospheres between the CN and the IC of neonatal animals
was shown [15]. Furthermore, the use of different growth
factors and their concentration influences the formation and
development of neurospheres [29]. However, there are studies
of other brain regions that are methodologically comparable
with this study. In a similar study of the forebrain, 500 primary
neurospheres in PND 1 and about 150 primary neurospheres

in PND 28 per 10,000 cells were found. This study also shows
the relationship between age and the rate of neurosphere
growth. With increasing age, a significantly longer time is
required for neurosphere formation to occur [30]. Another
comparable study showed a growth of about 35 primary
neurospheres per 10,000 cells from cells of the hypothalamus
(including the 3rd ventricle) of the rat under similar prepara-
tion and culture conditions [31]. Considering that the

Fig. 7 Neural progenitor and stem cell markers are expressed in
histological sections of the rat IC from PND 6, 12, 24, and 48. (a–p)
Cell nuclei are stained blue by DAPI. a–d The neural progenitor marker
Nestin (red) and neuron-specific marker β-III-tubulin (green) are
expressed in the cytoplasm of cells, but no co-labeling of both markers
was detected (a as published in [15]). (e–h) The neural stem cell marker

Musashi-1 (green) is expressed perinuclear. β-tubulin (red) is positive in
the cytoplasm of cells. (i–l) The transcription factor Sox-2 (green) is
expressed in the nucleus of cells. β-tubulin (red) is expressed in the
cytoplasm of the cells. (m–p) The transcription factor Atoh1 (green) is
expressed in the nucleus of cells, and the cytoplasm of cells was positive
for Nestin (red)
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hypothalamus is a brain region that has been extensively ex-
amined for neural stem cells and is neurogenically active, the
potency of the inferior colliculus to form primary
neurospheres is comparable.

The passage studies show that the isolated cells of the IC of
all age groups examined theoretically have the ability to renew
themselves without limitation in vitro. An age-dependent de-
crease in this proliferative potency was observed between the
age groups. This quality is one of the main criteria of NSCs
and can be demonstrated using the neurosphere assay [32].

Stem Cell Proliferation

In previous studies, NSC markers were immunocytologically
detected in neurospheres generated from the IC of 6-day-old
rats [15]. Thus, the question arose as to whether different NSC
markers were detectable in the neurospheres of the IC until
adulthood. Nestin is an intermediate filament that is expressed
in the early stages of neuroepithelial cell development and is
detectable until the terminal differentiation of the cells [33].
Furthermore, the NSC markers Sox-2, Musashi-1, and DCX
were investigated. Sox-2 is an HMG-box transcription factor

detectable in multipotent NSCs of all developmental stages
[34]. Musashi-1 is an RNA-binding protein that is highly
enriched in Nestin-positive neuroepithelial cells and whose
expression is no longer detectable after neuronal differentia-
tion [35]. The basic helix-loop-helix (bHLH) transcription
factor Atoh1 plays a decisive role in the development of the
central auditory pathway and has been detected in
neurospheres, as well as in its branches [12, 27, 36, 37].
Moreover, the neurospheres were examined for DCX, a pro-
tein that is important for migrating and differentiating neurons
[38]. The expression of all examined NSC markers was
immunocytologically demonstrated in the neurospheres of
PND 6 to PND 48 rats (Fig. 4). The NSCmarkers were shown
not only in the cells of the neurospheres but also in the emi-
grating cells (Fig. 4). These cells may be attached neural pro-
genitor cells with an ability to grow on a monolayer [39]. Both
cells within the neurospheres and cells emigrating from them
showed Nestin-positive staining (Fig. 4). The detection of
Sox-2- and Atoh1-positive cells was limited to the nucleus
and took place in cells within the neurospheres as well as in
the emigrating cells (Fig. 4). These observations are consistent
with comparable studies [27, 34]. As shown in corresponding

Fig. 8 Expression of the genes of neural stem cell markers in rat IC from
PND 6 to PND 48. a–d Representation of the age-dependent expression
of the genes DCX, Sox-2, CDK5R1, and Ascl-1 using real-time quanti-
tative PCR. a The neuronal migration protein DCX shows a significant
decrease between PND 6 and PND 48 with the most significant decrease
between PND 6 and PND 12. b–d The gene expression of the

transcription factor Sox-2, the nestin phosphorylator CDK5R1, and the
bHLH transcription factor Ascl-1 shows no significant changes between
the age groups PND 6 to PND 48. The central horizontal bars show the
mean; error bars depict the standard error of the mean; asterisks indicate
the level of significance, *p < 0.05, **p < 0.005, ***p < 0.001, ****p <
0.0001
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studies, localized Musashi-1 areas in the cytoplasm and the
nuclei were found to be positively stained (Fig. 4) [35, 40].
DCX positively stained cells were localized in the cytoskele-
ton of the cells (Fig. 4). In the literature, it was shown that
DCX is associated with the proteins of the microtubules and
that co-labeling with Nestin is typical for progenitor cells with
neuronal determination [38, 41].

NSC marker–positive cells were compared with DAPI-
positive cells to show the expression of NSC markers in the
neurospheres of all age groups studied over time. The inves-
tigation of the NSC markers Sox-2 and Atoh1 showed a de-
crease of the expression with increasing age (Fig. 5). In the
literature, a decrease of Sox-2-positive cells in the
subventricular zone has been described [42]. The expression
of Atoh-1 in the cochlear nucleus decreased significantly with
increasing age [27].

These results show that the neurospheres developed from
the isolated cells of the IC in all age groups studied contain
cells that are positive for different stem cell and progenitor
markers, and that the expression of these markers follows
age-related patterns.

Capacity of Differentiation

Another characteristic of NSCs is their ability to differentiate
into all cells of the neuroectodermal cell line [39]. Specific
markers were used to analyze the differentiation ability of
the isolated single cells. β-III-tubulin is a protein of the mi-
crotubules and part of the tubulin family, which is formed
almost exclusively by neurons in the early stages of develop-
ment [43]. β-III-tubulin-positive cells whose cell bodies and
axons were stained positively were found (Fig. 6a). MBP
identifies the myelination processes of oligodendrocytes
[44]. The distal extensions of cells with prominent soma were
stained MBP-positive, allowing them to be identified as ma-
ture oligodendrocytes (Fig. 6b). Mature astrocytes were iden-
tified by GFAP, an astrocyte-specific intermediate filament
(Fig. 6c) [45]. Nestin positively stained cells were found
whose morphology and immunocytological staining were
compatible with the characteristics of neural progenitor cells
(NPC) (Fig. 6d) [33]. The identification of progenitor cells,
neurons, oligodendrocytes, and astrocytes were shown in the
single cells derived from the neurospheres of PND 6 to PND
48 animals. Themarker-positive single cells were related to all
β-tubulin-positive cells to demonstrate the capacity of differ-
entiation. The evaluation of all β-III-tubulin(+), MBP(+), and
Nestin(+) ratios showed a significant decrease in the respec-
tive cell numbers between early postnatal (PND 6) and adult
animals (PND 48) (Fig.6e, g, h). In literature, an age-
dependent decrease of MBP in the auditory nerve of mice
[46], a 7-fold higher level of β-III-tubulin mRNA in
corticospinal neurons in 8-day-old than in adult hamsters
[47], and a decrease in Nestin expression in the CN of adult

rats were described [27]. In GFAP, however, an increase in the
GFAP(+)/β-tubulin(+)-ratio was observed with increasing
age (Fig. 6f), which was also described in the CN of rats in
the first year of life and other sections of the CNS [48, 49].
The reasons for this increase seem to be multifactorial and
could be a trophic change due to decreasing afferent stimula-
tion or age-related degenerative changes in neuronal structures
[49].

These results show that the neurospheres, formed in free-
floating cell cultures, have the ability to differentiate into all
cell types of the neuroectodermal cell line in all age groups
studied. However, the neuroectodermal cell lines showed a
different and characteristic capacity for differentiation over
time.

NSC Markers in Histological Sections

Since the markers Sox-2, Nestin, Musashi-1, and Atoh1 were
detected in neurospheres generated from the IC, the question
arose whether these stem cell markers can also be identified in
histological sections of the IC. The stem cell marker Atoh1
showed co-staining with DAPI (Fig. 7m–p). This staining
behavior of Atoh1 is known from previous studies [50].
Musashi-1 showed a predominant staining of the perikarya
[40] (Fig. 7i–l). In the nuclei, co-labeling of Sox-2 and
DAPI was observed (Fig. 7 e-h). Sox-2 labeling is reported
to be specific to the nucleus [51]. In the histological sections,
stained with β-III-tubulin and Nestin, no co-labeling of both
markers was detectible, which indicates that the Nestin-
positive cells are undifferentiated neural precursor or stem
cells. Nestin was stained in cytoplasmatic structures and,
therefore, not in the cell nuclei (Fig. 7a–d).

Therefore, the detection of NSC markers up to the adult
stage was achieved not only in neurospheres from in vitro
cultures of the IC, but also in histological sections. This find-
ing supports the assumption of a neurogenic niche in the rat IC
until adulthood.

Molecular Genetic Analysis of NSC Markers

NSC markers were detected in neurospheres and histolog-
ical sections of the IC. The question arose whether NSC
markers and factors that have a decisive influence on
neurogenesis can be detected at the molecular genetic lev-
el. The gene expression of DCX, a marker for migration
and differentiation of neurons, peaked at PND 6 with a
significant decrease compared with older age groups (Fig.
8a). DCX is a specific marker for neurogenesis in adult
neural tissue, and a reduction in the expression of DCX
with increasing age is known from previous studies [52,
53]. The organization and regulation of the intermediate
filament Nestin at the molecular genetic level is signifi-
cantly influenced by CDK5R1 (p35). This activates
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Nestin-associated CDK5 and plays a vital role in
postmitotic neuronal differentiation [54–56]. The gene ex-
pression of CDK5R1 shows no significant changes over
time (Fig. 8b). The expression of mRNA of CDK5R1
was shown in adult rat IC by other studies [57]. The gene
expression of the HMG-box transcription factor Sox-2
showed a stable expression level and no significant chang-
es with increasing age (Fig. 8c). This is in contrast to the
relative decrease in the neurospheres observed in this study
and the decline in the number of Sox-2-positive cells in the
subventricular zone described in the literature. The same
study also describes a twofold increase in relative gene
expression of Sox-2 between embryonic and 3 to 5 months
old animals [42]. In the IC of the rat, no increase in gene
expression was found in this study, but a constant gene
expression level of Sox-2 in a comparable period. The di-
vergence between the molecular genetic results and the
immunocytological results suggests a crucial role in the
posttranscriptional and posttranslational modification of
Sox-2 [58]. The proneural gene Ascl-1 is a transcription
factor of the basic helix-loop-helix class. It plays an essen-
tial role in the maturation of NSC and in the development
of progenitor cells into differentiated neurons [59]. In ad-
dition to the basic helix-loop-helix transcription factor
Atoh1 detected in the neurospheres, and histological sec-
tions, the factor Ascl-1 from the same class was detected at
the molecular genetic level, which plays an important role
in the maturation of neurons in the IC [60]. Gene expres-
sion of Ascl-1 was detectable in all age groups studied and
showed no significant changes over time (Fig. 8 d). Ascl-1
has been identified in the adult stage as a marker of long-
term neurogenetic cell populations [61].

These results show that NSC markers in IC are detectable
to the adult stage at the molecular genetic level.

Conclusion

Up to adult age, the ability of mitotic self-renewal and
proliferation and the ability to differentiate into neural pro-
genitor cells and all cell types of the neuroectodermal cell
lines were demonstrated in cells isolated from the rat IC. In
summary, these results indicate the existence of a persis-
tent stem cell niche in the IC rats until adulthood.

However, there is an age-related decline in this potential. In
early postnatal animals, passage evaluations showed that their
proliferation potency is significantly more pronounced than in
adult stages. This is also reflected in the differentiation capac-
ity results, which showed age characteristic features and indi-
cated that progenitor cells in adult animals have a lower ca-
pacity to differentiate into all cell types of the neuroectodermal
lineage. The evaluation of NSC markers in the neurospheres
and at the molecular genetic level describes the same

tendency. Interestingly, acoustic deprivation of rats younger
than 14 days leads to diffuse immature patterns of innervation
between the cochlea and the IC [62]. The hearing onset of rats
also takes place at about this point in time [63]. It can be
assumed that neurogenesis in young animals has a decisive
influence on the development of the auditory pathway.
Furthermore, a variety of neurogenetic moderators were dis-
covered, which may allow a specific influence on
neurogenesis in the future [8]. The genetic modification of
neural stem cells in vitro and in vivo offers increasing possi-
bilities to influence individual genetic factors [64]. Likewise,
the epigenetic control of neural stem cells requires the identi-
fication of factors that play an essential role in the prolifera-
tion, maturation, and differentiation of neural stem cells [65].
If it were possible to influence neurogenesis specifically, this
would open up new therapeutic possibilities for the treatment
of neurodegenerative or traumatic diseases. However, this re-
quires a further and more profound knowledge of the cellular
and molecular genetic processes of neurogenesis.
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