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Abstract
Vesicular glutamate transporters (VGLUTs) control quantal size of glutamatergic transmission and have been the center of
numerous studies over the past two decades. VGLUTs contain two independent transport modes that facilitate glutamate
packaging into synaptic vesicles and phosphate (Pi) ion transport into the synaptic terminal. While a transmembrane proton
electrical gradient established by a vacuolar-type ATPase powers vesicular glutamate transport, recent studies indicate that
binding sites and flux properties for chloride, potassium, and protons within VGLUTs themselves regulate VGLUT activity as
well. These intrinsic ionic binding and flux properties of VGLUTs can therefore be modulated by neurophysiological conditions
to affect levels of glutamate available for release from synapses. Despite their extraordinary importance, specific and high-affinity
pharmacological compounds that interact with these sites and regulate VGLUT function, distinguish between the various modes
of transport, and the different isoforms themselves, are lacking. In this review, we provide an overview of the physiologic sites for
VGLUT regulation that could modulate glutamate release in an over-active synapse or in a disease state.
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Introduction

Glutamate (Glu) is the major excitatory neurotransmitter in the
mammalian central nervous system and is involved in all brain

functions and in various neurological pathologies [1–5].
Excessive and sustained release of glutamate from synapses
triggers glutamate-induced, NMDA receptor-dependent
excitotoxicity. The prolonged presence of glutamate in the
extrasynaptic space in the hippocampus has been proposed to
underlie the onset of a variety of cognitive neurological disor-
ders including those observed after cardiac arrest-induced
global or focal brain ischemia, traumatic brain injury, epilepsy,
and Alzheimer’s disease (AD) [6–14], among others.
Mechanisms to reduce excessive synaptic glutamate release
under these conditions could potentially prevent/reduce
excitotoxic damage to vulnerable hippocampal neurons. In ad-
dition, glutamate is suspected to be at the core of major psy-
chiatric disorders, such as schizophrenia, depression, addic-
tion, and compulsive disorders [15–25]. Treatment options to
modulate glutamatergic transmission are limited. Currently, in
human studies, most post-synaptic glutamatergic interventions
(with the exception of esketamine in major depressive disor-
ders [26–28] and memantine in AD [29–31]) have been disap-
pointing because of poor efficacy or unacceptable side effects
[32, 33]. Compounds selectively modulating the presynaptic
release of glutamate could constitute a novel pharmacological
approach for the prevention of glutamate excitotoxicity and
modulation of behavior under various disorders. Possible sites
to regulate presynaptic glutamate release are modulation of
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synaptic glutamate synthesis, VGLUT expression level, or
sites that mediate the transport of glutamate into synaptic ves-
icles. Three subtypes of vesicular glutamate transporters
(VGLUT1–3) have been identified that package glutamate into
vesicles [34–42] reviewed in [43–46]. The three VGLUTs
share a high degree of structural homology and, so far, their
functional activity cannot be distinguished by their bioenerget-
ic or pharmacological profiles. Nevertheless, identifying the
structural and functional sites for VGLUT regulation and un-
derstanding the differential molecular and cellular modes of
VGLUT regulation themselves is critical to recognize novel
potential targets to modulate presynaptic glutamatergic trans-
mission in normal and aberrant states.

VGLUTs: Markers for Glutamatergic Transmission

VGLUT1 and VGLUT2 are expressed in distinct and comple-
mentary subsets of neurons in the CNS that display differ-
ences in release probability [36, 39]. VGLUT1 is the most
abundant subtype in the CNS [47]. Unlike, vesicular trans-
porters for monoamines (VMAT1 and VMAT2) and
acetycholine (VAChT) that are found in both cell bodies and
nerve terminals, VGLUT1 and VGLUT2 proteins are restrict-
ed to nerve endings where they continuously recycle between
the plasma membrane, endosomes, and newly formed synap-
tic vesicles [48–50]. Thus, VGLUT1 and VGLUT2 likely
recycle in synapses for an extended period of time and are
therefore unique synaptic markers for select glutamatergic ter-
minals. VGLUT1 is found in asymmetric synapses in the ce-
rebral cortex, the hippocampus, the cerebellum, and the amyg-
dala (for review, see [44]). VGLUT2 is primarily, though not
exclusively, used by subcortical excitatory neurons [36, 38,
39, 51–53]. VGLUT1 and VGLUT2 are also co-expressed
in some thalamic neurons, layer IV cortical interneurons and
pinealocytes [38, 54–57]. Co-expression of VGLUT1 and
VGLUT2 in synapses could afford these cells with two dis-
tinct modes of release, if they are sorted to different vesicles.
VGLUT3, the atypical subtype, is sparingly expressed com-
pared to VGLUT1 and VGLUT2 [44, 58] and is often present
in neurons that use other “classic” neurotransmitters, such as
serotonin, acetylcholine or GABA [40–42, 59]. Indeed, in
some neuronal populations, such as striatal cholinergic inter-
neurons, VGLUT3 is abundantly present in the somato-
dendritic compartment, although its function there is not yet
elucidated [44]. However, VMAT2 sorting to the
somatodendritic compartment in neurons confers the
activity-dependent release of monoamines as well as multiple
retrograde signals involved in synaptic function, growth, and
plasticity [60, 61]. VGLUT1–3 are also expressed in sensory
nerves from the ventral horn of the spinal cord, suggesting
their involvement in nociception [62–68]. The distribution of
VGLUT1–3 is conserved between humans and rodents [69].

Mouse lines with deleted VGLUTs demonstrate the impor-
tance of VGLUTs for glutamatergic transmission in normal brain
function and facilitate recognizing roles VGLUTs could contrib-
ute to brain disorders [47, 70–78]. In mice, VGLUT1 or
VGLUT2 deletion (VGLUT1-KO mice and VGLUT2-KO
mice, respectively) is lethal. VGLUT1-KOmice die 2 to 3weeks
after birth, which is a time that normally follows a strong up-
regulation of VGLUT1 [55, 79, 80] and increased synaptic ves-
icle clustering in VGLUT1 synapses [81, 82]. The post-natal up-
regulation of VGLUT1 also replaces the VGLUT2 isoform that
is predominant in early cerebellar, hippocampal, and cortical
synapses [83]. VGLUT2-KO mice succumb to respiratory fail-
ure immediately after birth [71, 72] as VGLUT2 is abundantly
expressed in descending and in local brainstem glutamatergic
systems that control respiration [39, 52, 84, 85]. Reduced expres-
sion of VGLUT2 during neuronal development results in re-
duced pyramidal neuron plasticity, dendritic refinement, and spa-
tial learning [76]. Unlike VGLUT1-KOmice and VGLUT2-KO
mice, VGLUT3-KOmice survive [73, 86]. However, VGLUT3
null mice are deaf, hyperactive, and demonstrate increased anx-
iety [73–75, 87]. VGLUT3 may also provide protection against
neonatal hypoxic stress [88] and be critically involved in reward
regulation [78]. Selective modulation of specific VGLUT-
encoded systems will be required to repair any alteration in glu-
tamatergic transmission in specific VGLUT pathways that may
contribute to excitotoxic or disease pathology.

VGLUT expression levels have been considered as poten-
tial pathological or diagnostic markers for impaired or over-
active glutamatergic transmission. In humans, altered expres-
sion of VGLUT1 is associated with anxiety and mood disor-
der [15, 17–19], and in neurological conditions, such as
Parkinson’s disease, AD, and epilepsy [89–92]. Modulation
of VGLUT2 expression levels have been observed in schizo-
phrenia and neuropathic pain [21, 64, 72]. Reduced expres-
sion of VGLUT2 is associated with decreased motoneuron
degeneration in a mouse model of amyotrophic lateral sclero-
sis (ALS) [93], yet these mice are more susceptible to clonic
seizures [94]. A marked increase in VGLUT1 expression and
glutamate release (+ 40%) has been reported in a tau animal
model of AD during the early stages of the pathology [95].
Neuronal hyperactivity and increased functional connectivity
have been confirmed in preclinical AD, mild cognitive impair-
ment (MCI), and early AD stages at various levels [96–98].
Later stages of AD in humans and animal models of AD [99]
may include outright loss of excitatory synaptic terminals
[100–106]. In humans, initial studies pointed to a marked
decrease of VGLUT1 expression in the cortex of AD patients
[89, 90, 107]. However, recent work suggests that synapse
loss is probably not a hallmark specific to AD [108] and only
minimal alterations of VGLUT1 are observed in the prefrontal
cortex of demented individuals [109]. Instead, Alzheimer’s
disease may be a result of presynaptic glutamatergic dysfunc-
tion induced by tau and oligomeric β-amyloid [33, 110–112].
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Molecular Sites for VGLUT Regulation

VGLUTs are specific molecular and functional markers of
glutamatergic transmission as their presence in synaptic vesi-
cles in neurons is sufficient to convey exocytotic glutamate
release [35]. Excitatory synaptic vesicles in mammalian syn-
apses are thought to contain between 4 and 14 molecules of
VGLUT each [113, 114]. While alterations in levels of
VGLUTs leads to multiple altered or pathological behaviors
in humans and in mouse models, it is not entirely clear how
alterations in synaptic VGLUT levels impact glutamate trans-
mission. Primary hippocampal autaptic cultures from
VGLUT1- and VGLUT2-KO mice reveal a decrease in quan-
tal size that can be rescued by transgene over-expression of
VGLUT1 or VGLUT2, respectively [70, 72]. However, min-
iature EPSC amplitude, reflecting the amount of glutamate
released per vesicle (as well as the postsynaptic response)
does not differ in acute hippocampal slices from VGLUT1-
KO mice relative to wild-type littermates [115]. Likewise,
severe reduction of VGLUT3 (up to 80%) does not alter glu-
tamatergic signaling [116]. Liu and colleagues verified
biophysically that increasing the number of VGLUT1 mole-
cules at hippocampal excitatory synapses in dissociated neu-
ronal cultures results in an increase in the amount of glutamate
released per vesicle into the synaptic cleft [117]. Control of
the neurotransmitter content by transporter copy number has
been interpreted as a result of an equilibrium between gluta-
mate uptake and leakage. The modulation of synaptic strength
by VGLUT1 expression is endogenously regulated, both
across development to coincide with a maturational increase
in vesicle cycling and quantal amplitude and by excitatory and
inhibitory receptor activation in mature neurons to provide an
activity-dependent scaling of quantal size via a presynaptic
mechanism [117–119]. Indeed, presynaptic scaling of
VGLUT1 and VGLUT2 levels in synapses is observed at
the molecular and synaptic level [55, 120]. Presynaptic scaling
also occurs with the vesicular GABA transporter (VIAAT/
VGAT) [55, 121]. Work in Drosophila suggests that a single
copy of VGLUT on a vesicle is sufficient to load a vesicle
[122]. While increasing VGLUT levels in Drosophila also
results in increased quantal size (and synaptic vesicle volume)
a compensatory decrease is observed in the number of synap-
tic vesicles released that maintains normal levels of synaptic
excitation [123]. Molecular mechanisms of VGLUT regula-
tion for homeostasis may differ in Drosophila, which only
express a single VGLUT type, and higher organisms that ex-
press 3 VGLUTs in the brain.

Original findings revealed that a reduction of VGLUT1
expression results in the loss of synaptic vesicles in nerve
terminals [115]. More recent studies indicate that synaptic
vesicle clustering in VGLUT1 terminals is mediated through
a tripartite interaction of VGLUT1, endophilinA1, and
intersectin1 resulting in a combined reduction of axonal

synaptic vesicle super-pool size and miniature excitatory
events frequency [124, 125]. Indeed, low glutamate release
probability is a characteristic feature of VGLUT1-encoded
synaptic terminals [126–129]. Similarly, using high-
resolution stimulated emission depletion (STED) microscopy,
decreased VGLUT3 protein levels seems to be accompanied
by a reduction in the number of VGLUT3-positive vesicles in
varicosities [116]. VGLUT expression in mammalian synap-
ses may therefore not only contribute to quantal size, but also
to the availability of vesicles for release, which could explain
the different release properties of VGLUT1- and VGLUT2-
encoded synapses.

Molecular regulation of VGLUTsynthesis and degradation
represent powerful targets to control glutamate availability at
the glutamate site on VGLUTs for transport into vesicles and
subsequent exocytotic release at synapses. Regulation of
VGLUT expression is used endogenously to provide resis-
tance against glutamate-induced neurodegeneration. For in-
stance, ischemic tolerance is a well-known phenomenon in
which brief ischemic insults (ischemic preconditioning) con-
fer robust neuroprotection to hippocampal CA1 neurons
against a subsequent severe ischemic challenge [130–133].
Similarly, one or more brief seizures can serve to activate
endogenous protective programs which render brain regions
temporarily less susceptible to damage following an otherwise
harmful episode of status epilepticus (i.e., a prolonged seizure)
[78, 134, 135]. Furthermore, ischemic/hypoxic precondition-
ing can protect the brain from seizure-induced damage while
epileptic preconditioning can protect vulnerable neurons to
ischemia-induced injury [136, 137] suggesting some common
mechanisms for neuroprotection. Although the molecular
mechanisms underlying ischemic/epileptic tolerance are not
yet fully delineated, the considerable delay (~ 24 h) from the
preconditioning stimulus until onset of tolerance is consistent
with a role for transcriptional changes in such neuroprotection.
In neuronal cortical and hippocampal culture models, precon-
ditioning induces tolerance to exocytotic injury by suppress-
ing vesicular glutamate release and increasing vesicular re-
lease of GABA [138–141]. Accordingly, preconditioning
stimuli result in the presynaptic down-regulation of
VGLUT1 expression in excitatory neurons and up-
regulation of VIAAT and the GABA synthesizing enzymes
GAD65 and GAD67 in inhibitory neurons [55, 118, 120,
121, 142, 143]. Interestingly, preconditioning stimuli also
up-regulate VGLUT2 in select VGLUT1-encoded synapses
in cortical neurons that synapse onto GABAergic neurons
[120], suggesting that selective trafficking of VGLUT2 in
these neurons to synapses that target GABAergic inhibitory
neurons could promote glutamate-induced feed-forward in-
hibitory transmission as neuroprotective strategy for neural
circuit stability.

Molecular sites for selective VGLUT regulation are not yet
well defined. A critical challenge moving forward is to be able
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to selectively modulate discrete VGLUT-driven pathways in
the brain. Understanding the genetic controls and physiologic
factors that regulate VGLUT expression is therefore critical
[120, 144–148]. In addition, the development of viral vectors
that allow efficient glutamatergic-selective gene expression or
knockdown would permit the selective modification of
VGLUT levels in defined neuronal cell populations
[149–151]. Indeed, restoration of hearing in the VGLUT3
knockout mouse has been accomplished using virally mediat-
ed gene therapy, which is an important step towards gene
therapy of human deafness [152].

VGLUT Structural Sites

The superfamily of solute carrier transmembrane transporters
(SLC) is encoded by more than 300 genes organized into 52
families. The substrates used by these carriers are very diverse,
including charged or neutral organic molecules and various
ions. Currently, in the SLC superfamily, nine genes divided
into three families (SLC17, SLC18, SLC32) have been iden-
tified as coding for vesicular transporters and are divided ac-
cording to their natural substrates (Fig. 1) [43]. These three
SLC family members predominantly use the transmembrane
proton electrochemical gradient (ΔμH+) generated by a
vacuolar-type H+ pump (V-ATPase) to translocate substrates.
The SLC17 family includes (i) VGLUT1–3 (substrate: gluta-
mate, Km ~ 1 mM) [153], (ii) Sialin (substrate: sialic acid, Km

~ 0.2 mM) [154], and (iii) a vesicular nucleotide transporter
VNUT (substrate: ATP, Km ~ 1mM) [155]. The SLC17 family
also includes the Na+-dependent inorganic phosphate (Pi)
transporters NPT-1, NPT-3, NPT-4, and NPT-5 (substrate: Pi,
Km ~ 3–6 mM) [156]. The SLC18 family includes the vesicu-
lar polyamine transporter VPAT, (SLC18B1, substrate:
spermine and spermidine, Km ~ 100 μM) [157], vesicular
amine transporters for adrenaline, dopamine, norepinephrine,
histamine, and serotonin (VMAT1 and VMAT2, SLC18A1

and SLC18A2, Km ~ 1 μM) [158–161] and acetylcholine
(VAChT, Km ~ 1 mM) [162, 163]. SLC32 includes a single
member, the vesicular inhibitory amino acid transporter
(VIAAT or VGAT) [164, 165] that can transport GABA or
glycine (Km ~ 5–10 mM) [166, 167].

VGLUTs are composed of 560 to 582 amino acids with 12-
membrane spanning segments and with the N- and C-termini
in the cytoplasm. No crystal structures for these proteins are
currently available, but technical progress in transporter crys-
tallography of distantly related bacterial transporters provides
some clues to the resolution of VGLUT structure. VGLUTs
show primary sequence homology with the major facilitator
superfamily (MFS), the second major family of transmem-
brane transporters involved in the translocation of small sol-
utes using the driving force of an electrochemical gradient
[168]. The crystallographic 3D structures of the lactose bacte-
rial permease, also known as glycerol-3-phosphate transporter
(GlpT), as well as D-galactonate transporter (DgoT) led to the
conclusion that these transporters consist of 12 α-helices or-
ganized into two groups of 6 (two halves) [169, 170]. The two
groups of 6 α-helices are connected by a cytoplasmic flexible
loop, forming a hydrophilic cavity at their center deep in the
transporter for translocation of hydrophilic substrates. The
amino acid residues responsible for the specificity of the trans-
porter are located on the walls of this polar pocket [170–172].
Because of the distant, yet distinct, homology between GlpT,
DgoT, and VGLUTs, a putative 3D homology model of
VGLUTs can be postulated (Fig. 2).

Site-directed mutagenesis of VGLUTs has identified sev-
eral transmembrane charged residues important for the recog-
nition and translocation of substrates (i.e., Arg184, His128,
and Glu191) [173]. Arg184 is located on transmembrane do-
main 4 (H4). This residue is conserved in all the members of
the SLC17 family, suggesting a common and essential role,
such as recognition of anionic substrates (Glu, Asp, ATP), and
Cl− ions. Its mutation into a neutral residue (e.g., alanine), or a

Fig. 1 H+-dependent vesicular neurotransmitter transport. Specific H+-
dependent transporters are responsible for neurotransmitter vesicular
uptake and belong to different families depending on the global charge
of their respective substrates: SLC17 for glutamate and ATP, SLC18 for

monoamines and acetylcholine, and SLC32 for GABA and glycine. The
driving force for the vesicular accumulation of all neurotransmitters is an
H+ electrochemical gradient (ΔμH+) generated by the vacuolar V-ATPase
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positively or negatively charged amino acid (e.g., glutamate,
or even lysine), leads to complete inhibition of transport [173].
Interestingly, Na+-dependent Pi transport of this mutant was
normal [173]. More recent studies show that the arginine res-
idue Arg184 in TMD4 selectively controls the allosteric bind-
ing of Cl− in the vesicle lumen, which might be important to
VGLUT activation [174] (see below). His128 and Glu191
reside on transmembrane domain 2 and 4 (TMD2 and
TMD4), respectively and are conserved in the 3 subtypes of
VGLUTs—mutation of these residues also inhibit glutamate
transport [173]. However, His128 is not conserved in the an-
ionic transporter sialin [175], suggesting an important role for
His128 in the selectivity of substrate transport. In this regard,
sialin transports both aspartate and glutamate, while VGLUTs
only recognize glutamate. In the VGLUT 3D putative model,
these three charged residues are located deep in the hydrophil-
ic binding pocket created by α helices [173, 176]. In alternate
access model of transport, the interaction of Cl− ions with a
basic residue may induce a conformational change that facil-
itates the translocation of glutamate (Fig. 3).

The molecular and functional methods available today will
enable the identification of additional structural sites impor-
tant for VGLUT-specific transport function. A clever idea to
understand basic mechanisms of ΔμH+-driven substrate
translocation across intracellular brain vesicles is to under-
stand these mechanisms in simpler organisms, such as their
bacterial homologs. For example, Shuldiner and colleagues
examined SARs between various transmembrane embedded
charged amino acids in the bacterial multiresistant transporters
for the study of their mammalian counterparts, such as
VMATs [178–181]. Recently, Edwards and colleagues used
a similar approach with DgoT showing an interesting

cooperation of H+ transfer between transmembrane embedded
glutamate (Glu133) and arginine (Arg47) residues that sug-
gest a mechanism that couples H+ flux to substrate recognition
[170]. That is, protonation of this bacterial transmembrane
glutamate residue effectively releases a transmembrane argi-
nine residue to bind and translocate substrate. If there is no
substrate bound, the glutamate residue must give up its H+ so
that it can form a charge pair with the arginine residue and
reorient empty to complete the transport cycle [170].

Genetic tools may also be of great value to identify impor-
tant structural residues involved in vesicular transporter func-
tion. Rand and colleagues identified numerous point mutants
in Caenorhabditis elegans that map to highly conserved re-
gions of the VAChT gene and exhibit behavioral phenotypes
consistent with a reduction in vesicular transport activity and
neurosecretion [182]. These mutants display selective defects
in initial acetycholine transport velocity with Km values rang-
ing from 2- to 8-fold lower than that of wild-type. This indi-
cates that specific structural changes in VAChT translate into
specific alterations in the intrinsic parameters of transport and
in the storage and synaptic release of acetycholine in vivo
[182]. Similar work in Drosophila [183] or other organisms
[184] where genetic manipulation can be performed with rel-
ative ease could identify additional important structural sites
in VGLUT important for transport function and synaptic re-
lease of glutamate.

VGLUT Functional Sites

Glutamate accumulates in synaptic vesicles by virtue of one of
the three VGLUTsubtypes and considerable efforts have been
made to understand how VGLUTs operate compared to the

Fig. 2 Putative 3D structure of
GlpTand VGLUTs. The glycerol-
3-phosphate transporter (GlpT)
shares distant homology with
members of the SLC17 family. Its
3D structure possesses two
groups of 6 transmembrane heli-
ces (H1–12) linked by a large cy-
tosolic and a luminal loop [169]
(a, b). VGLUT 3D homology
model based on glpT structure
(pdb code 1PW4) is shown in (c,
d). Key residues for glutamate
transport identified so far are
H128 (blue), R184 (blue), and
E191 (red) located on TM2, TM4,
and TM4, respectively. The soft-
ware that use used to make the
models was Discovery Studio
Modeling Environment, release
4.5; Dassault Systems BIOVIA:
San Diego, 2015
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Fig. 3 Model of transport and ion
binding of VGLUTs. One model
that has been proposed to describe
the uptake of glutamate by
VGLUTs is based on the alternate
access model [177]. a VGLUTs
have several binding sites for
transported ions: glutamate, Cl−,
K+ and H+ (and Na+ and Pi). b In
high chloride concentrations and
in the cytosol upon open
conformation, VGLUT is loaded
with one glutamate, one Cl−, and
partially by one K+. Glutamate
and K+ are released into the
lumen when VGLUT shifts to a
lumen open conformation (step
1). At this stage, the anionic
binding site is filled with another
Cl− while the cationic site loads
one proton (step 2). Finally,
VGLUT reopens in the cytosol
where it releases one Cl− and one
proton (step 3). c In the presence
of low luminal concentrations of
chloride, VGLUT follows the
same steps as in b but during step
2, the partially filled cationic site
is fully occupied by a proton,
while only a few chloride ions are
released into the cytosol in step 3
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other vesicular neurotransmitter transporters in the brain. In
the early 1980s, two independent groups showed, using puri-
fied synaptic vesicles from rat or bovine brain, that vesicular
glutamate transport is dependent on a transmembrane H+ gra-
dient generated by the vacuolar type (V-ATPase) proton pump
[185, 186]. Shortly, thereafter it was discovered that Cl− ions
greatly stimulates glutamate uptake into synaptic vesicles
in vitro [187]. Several teams rapidly confirmed these initial
findings [188–190]. VGLUTs have relatively low affinity for
glutamate (Km ~ 1–2 mM) but are highly selective for gluta-
mate compared to other structurally similar amino acids, such
as aspartate or glutamine. Estimates of glutamate levels in
synaptic vesicles suggest between 60 and 120 mM concentra-
tions [191, 192].

Inorganic Phosphate Site for VGLUT Regulation

VGLUT1–3 belong to the family of Na+-dependent inorganic
phosphate transporters (NPTs) forming the SLC17 subfamily
and were initially shown to transport inorganic phosphate (Pi)
[193, 194]. Interestingly, upon originally cloning of this brain-
specific inorganic Pi transporter (formally called BNPI), it was
revealed that it has strong sequence similarity to EAT-4, a
Caenorhabditis elegans protein implicated in glutamatergic
transmission and localized almost exclusively to mammalian
brain terminals forming asymmetric excitatory-type synapses
[195]. Although BNPI (now called VGLUT1) [34, 35] de-
pends on a Na+ gradient for Pi transport across the plasma
membrane, surprisingly BNPI associated preferentially with
the membranes of small synaptic vesicles [195]. Since
phosphate-activated glutaminase (PAG) in nerve terminals
produces glutamate from glutamine for release as a neuro-
transmitter [196], it was proposed that BNPI (VGLUT1)
may augment excitatory transmission following vesicle exo-
cytosis by increasing its expression at the plasma membrane
and thereby increase cytoplasmic Pi concentrations within the
nerve terminal to activate PAG and hence replenish glutamate
synthesis lost by neurotransmission [195]. Such intrasynaptic
sequestration of transport proteins involved in the Ca2+-de-
pendent expression on the plasma membrane, and in replen-
ishment of transmitter synthesis and/or vesicle sequestration
for release, has previously been reported in cholinergic and
GABAergic neurons [197–199]. When expressed in artificial
liposomes VGLUTS transport Pi in a Na+-coupled manner
with glutamate competing for binding, but at lower affinity
[173, 200]. Pi transport did not require Cl− and was not
inhibited by Evans blue, a competitive inhibitor of VGLUTs
[173]. Pi transport into vesicles via a transmembrane ΔμH+

has also been reported [200], but also with lower affinity than
glutamate. This Pi may also be transported out of the vesicle in
a Na+-coupled manner, which may be involved in Pi homeo-
stasis within glutamatergic neurons (Fig. 4) [200]. That
VGLUTs possess intrinsic transport machineries that are

independent of each other: Na+-dependent Pi flux and H+-
dependent vesicular glutamate uptake, would suggest dual
mechanisms to support glutamatergic neurotransmission, es-
pecially under high activity. However, other transporters have
been proposed as the major Pi transporters in the brain [201].
The identification of activity-regulated transport of Pi across
the synaptic membrane following exocytosis and glutamate
release could reveal a specialized role for VGLUTs in regulat-
ing Pi transport and synaptic glutamate synthesis.

Proton Site for VGLUT Regulation

Classic studies have concluded that cytosolic ATP activates
the vacuolar-type ATPase in the membrane of intracellular
storage organelles to transport H+ ions into the vesicle lumen
creating a transmembrane electrochemical gradient (ΔμH+)
(Fig. 4) [202, 203]. Compounds that dissipate the transmem-
brane ΔμH+, such as FCCP (H+ ionophore), were originally
used to show H+-dependent glutamate transport by synaptic
vesicles [185, 186] to differentiate this activity from Na+-
coupled glutamate transport across the plasma membrane
[204]. The electrical component (Δψ) of the totalΔμH+ gen-
erated by the V-ATPase is the primary driving force for the
transport of glutamic acid and subsequent acidification of ex-
citatory vesicles by glutamate itself [188]. Indeed, selective
inhibition of the ΔpH component of the transmembrane
ΔμH+ gradient (thus, favoring Δψ) by A23187 (a divalent
cation ionophore) [205], nigericin (an electroneutral cation
that exchanges H+ against K+) [206], or ammonium ion
(NH4

+) [205, 207] increases vesicular glutamate uptake at
low (4 mM) cytoplasmic chloride concentrations. Inhibition
of the V-ATPase with bafilomycin A1 reduces the amplitude
of glutamatergic miniature excitatory postsynaptic currents
(mEPSCs) in vitro, indicating that decreasing the amount of
glutamate in synaptic vesicles reduces quantal size [208].
However, direct inhibition of the V-ATPase or the dissipation
of the transmembrane ΔμH+ would inhibit transport of all
neurotransmitters into synaptic vesicles. While blocking the
transmembraneΔpH component may be selective to VGLUT
stimulation in synaptic vesicles, this too would abolish trans-
port by vesicular amine transporters that rely on protons for
H+ antiport (e.g., VMAT1 and 2, VAChT).

Whether VGLUTs operate as glutamate/H+ exchangers
[192, 209], glutamate/Cl− exchangers [205, 209], or as elec-
trogenic uniporters [210] remains controversial [174, 177,
211]. However, the luminal H+ contribution to Δψ activates
VGLUTs to drive the filling of synaptic vesicles with gluta-
mate. For an electrogenic transport mechanism, the presence
of a chloride-H+ exchanger (e.g., CIC3) [212] and a cation-H+

exchanger (e.g., NHE) [213] in the synaptic vesicle membrane
could also contribute to charge and H+ balance. For example,
K+/H+ exchange could play a role in sustaining glutamate
uptake as it would maintain Δψ and decrease ΔpH [213].
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Recent evidence using reconstituted systems indicate that
VGLUTs have cation (K+) and H+ binding sites on the cyto-
plasmic and vesicle lumen sides, respectively [177, 211]. The
localization of the H+ site on the luminal side of VGLUT
required for VGLUT activation is not known. Whether this
proton binding site allows for H+ antiport that is coupled to
electrogenic glutamate transport into vesicles as suggested
[192] is not entirely clear [177, 211]. Nevertheless, VGLUTs
themselves can exchange K+ for H+ (Fig. 4) and while this
may only loosely couple to glutamate transport [177], this
property could be influenced by physiologic conditions in
the brain to modulate vesicular glutamate storage.

Following exocytosis of synaptic vesicles VGLUTs are
positioned in the plasma membrane such that glutamate could
leak out of the cytoplasm into the synaptic cleft. It is not clear
how much or how long VGLUTs could reside on plasma
membranes following exocytosis in normal or disease condi-
tions before they are endocytosed [48], although kiss-and-run
exocytosis is obviously short-lived [214]. But, under condi-
tions of massive depolarization (high extracellular K+) or en-
ergy failure such as that observed following transient cerebral
ischemia and traumatic brain injury, the extent and duration of
VGLUT expression on the plasma membrane may increase.
Extracellular H+ (ΔpH) can increase the release of glutamate
from cytoplasm through the plasma membrane via VGLUTs
[211, 215] and this could occur with ischemic/seizure insults
in vivo [172, 216–220]. Whether this H+ binding site on the
extracellular facing VGLUTs is the same site as the internal
H+ binding site in the vesicle lumen exposed following acti-
vation of the V-ATPase (and controlling glutamate transport
into vesicles) is not presently known. However, such a H+

binding site could restrict glutamate flux to synaptic vesicles
under normal conditions [211]. Drugs that selectively interfere
with H+ binding to this site may therefore have importance to

inhibit the leakage of glutamate from synaptic terminals under
conditions of acidic extracellular pH such as following ische-
mia or traumatic brain injury [172, 219, 220] where extracel-
lular glutamate levels dramatically increase [216–218]. Drug
binding to this H+ site on VGLUTs before engulfing by endo-
cytosis and reformation of vesicles may also serve to limit H+

activation of VGLUTs in the vesicle lumen and thus affect
vesicular glutamate sequestration and release.

Chloride Site for VGLUT Regulation

Early work had established a biphasic dependence of gluta-
mate transport on extravesicular Cl− ion concentrations with
low levels (4 mM) greatly stimulating and higher (> 20 mM)
levels inhibiting transport [187, 188]. In the absence of a per-
meable anion, the V-ATPase generates only a transmembrane
electrical gradient (i.e.,Δψ). However, in the presence of Cl−

(> 20 mM), a measurable ΔpH is generated by the luminal
accumulation of H+ and Cl− (i.e., HCl), which limits vesicular
glutamate transport [188, 206]. Jahn and colleagues also de-
scribed the presence of a Cl− binding site on the cytoplasmic
side of the transporter, distinct from the substrate binding site,
and that low Cl− concentrations (e.g., 4 mM) stimulate trans-
port activity directly through this site [221]. Wolosker’s work
confirmed that Cl− affects glutamate transport by two different
mechanisms: one is related to a change of the proportions
between the transmembrane Δψ and ΔpH components of
the total ΔμH+, and the other involves a direct stimulatory
interaction of Cl− with the glutamate transporter [205].

The molecular mechanism by which chloride ions could
differentially affect transvesicular Δψ and · pH gradients
was thought to occur by Cl− influx (at higher > 20 mM cyto-
plasmic levels) through exogenous Cl− channels (e.g., ClC-3)
that are present on synaptic vesicles [212]. However, upon

Fig. 4 VGLUTs transport
glutamate as well asmultiple ions.
In addition to their capacity to
transport glutamate into synaptic
vesicles, VGLUTs also display a
Cl− transport mode and a K+/H+

antiport mode, the later could
support maintenance of ionic and
charge balance during glutamate
transport. The Na+/Pi co-transport
mode of VGLUTs may be im-
portant in vesicles and when
expressed on the plasma mem-
brane following exocytosis to
regulate Pi homeostasis in gluta-
matergic terminals
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molecular identification of VGLUT1, Edwards and colleagues
demonstrated that the transporter itself displays a Cl− conduc-
tance (Fig. 4) and that glutamate and Cl− ion could compete
for the same transport site [34]. Thus, the lumen of glutamater-
gic vesicles will acidify by both glutamate and Cl− flux [188,
205, 206]. Indeed, glutamate or Cl− transported into the ves-
icle may further stimulate the V-ATPase to maintain a positive
Δψ [222]. Glutamate-induced acidification of vesicles also
enables the ΔpH-dependent uptake of monoamines, acetyl-
choline (ACh) or GABA by H+ antiport in neurons that co-
express co-express VGLUT3 and VMAT2, VAChTor VGAT/
VIAAT (see [223] for review).

To clarify the role of Cl− in VGLUT regulation, simplified
in vitro transport flux studies were developed with proteolipo-
somes containing purified recombinant VGLUT and the H+-
ATPase of Bacillus stearothermophilus (TF0F1 = F-ATPase)
[173]. Using this system, contributions of any endogenous
vesicular components that would affect transmembrane Δψ
and ΔpH gradients and various ion fluxes (e.g., K+, Cl−, Pi)
due to other proteins are eliminated. These studies clearly
show that VGLUT-mediated glutamate influx into vesicles
exhibits a biphasic dependence on Cl− ion [177, 209]. Thus,
VGLUTs (and not the chloride channel CIC-3 [212]) may
represent the major Cl− permeation pathway in glutamatergic
synaptic vesicles. Importantly, high luminal Cl− concentra-
tions markedly enhance loading of glutamate by Δψ-driven
uptake [209]. This is consistent with the idea that upon gluta-
mate release into the synaptic cleft, vesicles are regenerated by
endocytosis where they may contain high levels of Na+ and
Cl− ions (~ 130 mM) [190]. Using live-cell imaging with pH-
and Cl−-sensitive fluorescent probes in cultured hippocampal
neurons or wild-type and VGLUT1-deficient mice, Martineau
and colleagues confirmed that export of Cl− ion from the ves-
icle lumen into the cytoplasm can drive vesicular glutamate
transport [192]. It is not clear what happens to luminal Na+

following endocytosis, but it is possible that an increase in
Δψ following Cl− efflux could also be a result of residual
Na+ ions left in the vesicle lumen, or maybe they just leak
out of the vesicle into the cytoplasm (Fig. 4).

A novel approach to study VGLUTwithout the activity of
an endogenous H+ pump, and its link to Δψ and various ion
gradients associated with it, is by the electrophysiological
analysis of VGLUT-associated currents. Recently, Edwards
and colleagues used patch clamp recording from enlarged
endosomes of VGLUT-transfected cells and confirmed once
again that Cl− interacts with VGLUTs as both a permeant ion
and allosteric activator [174]. Remarkably, in addition to the
allosteric activation of VGLUTs by low cytosolic Cl− as de-
scribed above, endosome recording revealed allosteric regula-
tion of glutamate transport by luminal Cl− as well [174].
Interestingly, neutralization of the highly conserved arginine
residue in TM4 is sufficient to confer the activation normally
provided by Cl−. This basic residue is predicted to face the

vesicle lumen and that in the absence of luminal Cl−, it pre-
vents both vesicular glutamate transport and the associated
Cl− conductance [174]. Thus, in the presence of luminal Cl−,
this intravesicular Cl− binding site activates glutamate trans-
port into vesicles and Cl− efflux from vesicles into the cyto-
plasm (Fig. 4). The Cl− trapped in recycling vesicles by endo-
cytosis (or transported into the vesicle from the cytoplasm) by
VGLUTs, could therefore confer additional allosteric activa-
tion required for glutamate transport into vesicles. As gluta-
mate entry into the vesicle dissipatesΔψ the resulting drop in
luminal pH would activate Cl− efflux that would support the
maintenance of Δψ, and so maintain the driving force for
glutamate uptake. These results support the idea that Cl− per-
meates through a low affinity conduction pathway of a chan-
nel, and glutamate through the alternating access mechanisms
of a transporter [174, 224], similar to the Na+-coupled excit-
atory amino acid transporters (EAATs) [225, 226].

Understanding the physiological role of the Cl− allosteric
binding sites and the Cl− conductance’s among all VGLUT
isoforms and the structural and functional sites involved will
require more specific tools to inhibit Cl− binding/permeation
by the VGLUTs. Inhibitors, such as DIDS (EC50 = 0.7 μM)
and SITS (EC50 = 0.2 μM) inhibit glutamate uptake by com-
peting with their Cl− binding site [227]. DIDs also potently
inhibits Cl− dependent vesicular ATP uptake with an IC50 of
1.5 μM [155]. On the other hand, DIDS and SITS are also
potent Cl−-HCO3-exchange blockers [228] and also block
monoamine transport into synaptic vesicles [229] (Scheme 1).

Ketone bodies (acetoacetate and 3-hydroxybutyrate) and
α-keto acids have been proposed to compete with Cl− for
VGLUT activation at a cytoplasmic-exposed site and there-
fore inhibit glutamate uptake into vesicles and release from
synapses [227, 230, 231]. Metabolic derivatives such as
acetoacetate, pyruvate, phenylpyruvate, kynurenate, α-
keto-β-methyl valerate, and α-keto-isovalerate ketones bind
to this Cl− site to modulate the activity of VGLUTs by nega-
tive cooperation. One explanation for the beneficial effect of
ketogenic diets for the treatment of young patients with epi-
lepsy then could be that these compounds modulate gluta-
matergic neurotransmission by reducing vesicular glutamate
accumulation and quantal size by an allosteric mechanism
[228289]. Whether VGLUTs can affect metabolism (or at
least metabolic pools of glutamate in synapses) in addition
to their synaptic function is not known. Further exploration
of endogenous and dietary compounds that could modulate
Cl− binding in VGLUTs and whether these compounds
interfer with Cl− flux properties, as well, could lead to the
discovery of novel pharmacological tools to treat neurological
disorders caused by excessive synaptic release of glutamate.

Cl− fluxes across the plasma membranes of glutamatergic
synapses can be mediated by axo-axonal GABAergic synap-
ses [232], neuron-specific cation-Cl− co-transporters [233], or
other modulators [234]. Thus, modulation of cytoplasmic Cl−
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concentrations could be important effectors of the cytoplasmic
Cl− binding and permeation sites of VGLUTs, in some way.
However, varying intracellular levels of Cl− in the ‘giant’ syn-
apses from the calyx of Held in the auditory brainstem has
little bearing on quantal size of glutamate released [235].
However, more recent studies have shown that presynaptic
Cl− levels play a biphasic regulatory role in the process of
glutamate refilling into those vesicles via VGLUTs [236],
similar to that observed with in vitro transport experiments.
Excitability of hippocampal neurons could be greatly affected
by intracellular Cl− levels, especially under potential
excitotoxic conditions [237, 238]. Since extracellular Cl−

levels (or various drugs) that are present in the extrasynaptic
space are endocytosed into newly formed vesicles they could
also potentially modulate intravesicular Cl−, glutamate, and
H+ binding sites and fluxes across vesicles and thus, intracel-
lular storage of vesicular glutamate available for synaptic
release.

Glutamate Site for VGLUT Regulation

Under normal conditions, cytoplasmic glutamate levels for
vesicular loading are likely mostly derived from glucose me-
tabolism, pyruvate carboxylation and tricarboxylic acid
(TCA) intermediates such as α-ketoglutarate [239–242].
Neuronal glutamate reuptake after release may also occur to
some extent in forebrain regions [243–245]. Whole-cell re-
cording of the presynaptic terminals in the calyx of Held re-
veal that the content of a single vesicle is insufficient to satu-
rate AMPA receptors such that the release of several vesicles
is required [246–249]. Indeed, direct injection of glutamate
into this synapse increases quantal size and thereby post-
synaptic receptor saturation by single vesicle release of gluta-
mate [246, 249]. Single vesicle release also may not saturate
post-synaptic glutamate receptors at hippocampal synapses

either [250] and since vesicle release probability is very low
in hippocampal synapses [126, 129] single vesicle release and
nonsaturation of post-synaptic glutamate receptors likely pre-
dominates there too [251, 252].

Regulation of vesicle filling levels can be mediated by the
cytoplasmic glutamate concentration that is available to the
glutamate site on VGLUTs for uptake into synaptic vesicles
(Fig. 4). The cytoplasmic concentration of glutamate in gluta-
matergic synaptic terminals is not precisely known.
Semiquantitative electron microscopic analysis of the distri-
bution of glutamate-like immunoreactivity in excitatory hip-
pocampal pathways have estimated the glutamate concentra-
tion in synapses to range from 1 to 10 mM [253–257].
Transporter flux experiments using brain synaptic vesicles
in vitro indicate that maximal vesicle filling in vitro saturates
at ~ 4 mM external glutamate concentrations [117], which is
similar to cholinergic synaptic vesicles that also exhibit low
affinity for acetylcholine [162, 258]. Thus, if vesicular gluta-
mate storage capacity is not maximal under normal conditions
[246, 247, 249, 250] then endogenous cytoplasmic glutamate
concentrationsmay lie somewhere below 4mM; likely around
the Km of VGLUTs for glutamate (1–2 mM) to enable
activity-stimulated regulation. Sub-saturating levels of gluta-
mate at the glutamate binding site on VGLUTs in the cyto-
plasm under normal conditions suggests that regulation of
vesicle filling by modulating biosynthesis or degradation of
glutamate in the terminal would affect vesicular glutamate
filling. That the vesicle fill level is dependent on the cytoplas-
mic neurotransmitter levels available for filling in synaptic
terminals may be a common feature of vesicular transmitter
storage, in general, as the extravesicular level of all other
transmitters such as acetylcholine [162, 259], GABA [142],
and the monoamines [260] in synaptic vesicles can also be
scaled pharmacologically by interfering with the metabolism
or by providing precursors for transmitter synthesis.

Scheme 1 Inhibitors of the
electrochemical gradient
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Rapid replenishment of neurotransmitter glutamate synthe-
sis under conditions of high neural activity in various neuro-
logical conditions (e.g., epileptic seizures, traumatic brain in-
jury, cerebral ischemia, and others) would be required to main-
tain synaptic cytoplasmic glutamate levels at levels optimal for
continued release [261]. Original suggested that glutamine
transport into synapses (derived from surrounding astroglial
cells [262]) is a preferred precursor for transmitter glutamate
released following K+-depolarization (56 mMKCl) of slices of
the molecular layer of the dentate gyrus [263–265]. Thus, the
availability of glutamine to nerve terminals could affect synap-
tic glutamate synthesis and vesicular glutamate storage for re-
lease [266–269], especially under conditions of excessive syn-
aptic glutamate release. However, Kam and Nicoll reported
that excitatory transmission can persist for hours without glu-
tamine in young neuronal cultures and slices [270]. Yet, syn-
aptic transmission is impaired under intense stimulation by
preventing the conversion of glutamine to glutamate in
phosphate-activated glutaminase (PAG) knockout mice [271].
Indeed, the enzymatic activity of PAG has been detected in
neurons and in nerve endings, suggesting local glutamate bio-
synthesis in axon terminals [272–274]. Whether Na+-depen-
dent glutamine import into neuronal synapses from astroglial
synapses to replenish synaptic cytoplasmic glutamate stores
under high synaptic activity is a potential novel target to pre-
vent excessive glutamate release under conditions of
excitotoxicity is currently not known.While glutamine synthe-
tase (GS) is a critical component of the glutamate/glutamine
cycle, GS-KO mice develop epilepsy [275], likely because GS
must inactivate synaptically released glutamate that is taken up
in astrocytes, and cleared from the synaptic cleft, by the EAATs
[276, 277] as well. However, activity-induced modulation of
synaptic glutamate efficacy [278] and glutamate epileptiform
activity [279–281] are significantly reduced by acute inhibition
of glutamine synthesis in astrocytes with methionine

sulfoximine or by application of 2-(methylamino-isobutyrate)
(MeAIB), a competitive and reversible inhibitor of the neuro-
nal Na+-coupled glutamine transporters (SNAT; system A)
subtypes 1 and 2 [282]. However, SNAT1 and SNAT2 are
confined to cell soma and proximal dendritic regions of neu-
rons [283] and are excluded from axon terminals supporting
the notion that an unidentified synaptic glutamine/MeAIB
transporter could support activity-stimulated/excitotoxic gluta-
mate release from synapses [284].

VGLUT Pharmacologic Sites

Despite their importance, the pharmacology of VGLUTs re-
mains remarkably underdeveloped. The evaluation of
VGLUT inhibitors has generally been performed using
in vitro transport assays measuring the flux of radiolabeled
glutamate across the membranes of whole brain synaptic ves-
icles and more recently using liposomes with engineered
VGLUTs and transmembrane ΔμH+ gradients. Only a few
VGLUT inhibitors have been shown to affect glutamatergic
transmission in electrophysiologic recordings of rodent hippo-
campus and cerebral cortex [285, 286].

Competitive Inhibitors

Substrate Analogs

Among competitive modulators of glutamate uptake into syn-
aptic vesicles, cyclic and noncyclic glutamate analogs, such as
(2S, 4R)-4-methyl-glutamate (IC50 = 0.7 mM), L-trans-ACPD
(IC50 = 0.23 mM), and DL-trans-ACHD (IC50 = 0.8 mM), are
the most potent [287–289]. These compounds also modulate
the activity of mGluR [290] (Scheme 2).

Scheme 3 Structures of best
motifs quinolines and
quinoxalines able to inhibit
VGLUTs

Scheme 2 Cyclic and noncyclic
glutamate analogues such as (2S,
4R)-4-methyl-glutamate (IC 50 =
0.7 mM), DL-trans-ACHD
(IC50 = 0.8 mM) or L-trans-
ACPD (IC 50 = 0.23 mM)
(Thompson et al., 2005)
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Quinolines and Quinoxaline Analogs

The capacity of quinoline and quinoxaline to inhibit glutamate
uptake was reported 20 years ago [291]. Compounds such as
kynurenate, xanthurenate, 7-chloro-kynurenate, and 2-
quinoxaline carboxylate are competitive modulators of

glutamate transport. However, these compounds also act at
the postsynaptic level on ionotropic receptors [187, 287,
291, 292] (Scheme 3).

Kynurenate is a neuroactive endogenous compound
(antiexcitotoxic and anticonvulsant) derived from trypto-
phan metabolism. Carrigan and coworkers developed a

Scheme 5 Azo dyes (Favre-Besse et al., 2014; Omote et al., 2016; Tamura et al., 2013)

Scheme 4 Structures of QDCs
analogs as VGLUTs inhibitors
(Carrigan et al., 2002)
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series of ligands from this motif [293] and SAR studies
highlight conserved and crucial chemical functions to en-
sure potent inhibitory activity. This includes the impor-
tance of negative charges of the QDC motif, as well as
the size of the hydrophobic aryl unit. Substitution of the
phenyl moiety by biphenyl induces an affinity gain of one
log [293–295]. The best modulators are 6-biphenyl-QDC
and 6-(4-phenylstyryl)-QDC (affinities of 41 μM and
64 μM, respectively) (Scheme 4).

Azoic Dyes

Azoic dyes are formed by a polar region connected to a hy-
drophobic body via an azo bond. Thesemolecules have at least
one negative charge provided by a sulfonate group. The fol-
lowing has been surmised of these molecules: (1) the negative
charge is important for ligand activity and plays the same role
as the COO-proximal glutamate moiety; (2) the NH2 group,
present on the polar part of some inhibitors, plays the same
role as the amino group of glutamate. This NH2 does not seem
to be essential for glutamate affinity [296]. Currently, azo dyes
that inhibit VGLUTs with the best affinity are as follows:
Bright Yellow (BY, IC50 = 15 nM); Chrysophenine (CP,
IC50 = 27 nM), which corresponds to the methylated analog
of Bright Yellow; trypan blue (TB, IC50 = 50 nM); Evans blue
(EB, IC50 = 90 nM); and Violet Direct 51 (VD51, IC50 =
148 nM) [224, 286, 296, 297] (Scheme 5).

SAR studies have identified important pharmacophoric
sites for the affinity of azo dyes (e.g., TB) [296, 297]. These
studies highlighted the importance of the hydrophobic aryl
motif. In particular, increased size (changing phenyl for a

biphenyl, for example) or incorporation of halogen groups
induced a significant increase in affinity to the VGLUT
(Scheme 6).

An SAR study was also conducted using BYand its deriv-
atives [296]. These investigations confirmed the importance
of the negative charge of the sulfonate group, the importance
of the hydrophobic aryl body, the azo bond, and the H bond
acceptor moiety (this time, in para position to the azo link).
The OH group in BY or the OMe group in Chrysophenine
(Scheme 5) establishes a key hydrogen bond with Tyr195 of
VGLUTs, which prevents the binding of glutamate to charged
residues (Arg184, His128, and, in particular, Glu191) in the
VGLUT hydrophilic pocket [296]. The distance between the
nitrogen atom of the azo bond and the negatively charged
oxygen atom of the sulfonate group (distance N-O) is also
an important factor regarding the affinity of azo dyes. This
distance is similar in Brilliant Yellow (d (NO-) = 9.324 Å),
trypan blue (d (NO-) = 9.799 Å) and Violet Direct 51 (d
(NO-) = 8.274 Å, from (NO) = 10.354 Å) [296]. The negative
charges of the naphthyl-disulphonic polar motif also play an
important role in the inhibition of VGLUTs [297] (Scheme 7).

Evans blue was one of the first compounds found to inhibit
vesicular transport of glutamate [298]. Evans blue also potent-
ly inhibits the Cl− dependent vesicular transport of ATP with
an IC50 of 40 nM [155]. Recent studies indicate that Evans
blue reduces both Cl− and glutamate currents in enlarged
endosomes with a similar IC50 (~ 0.2 μM) [174]. Evans blue
therefore appears to bind to the glutamate site on VGLUTs but
it is not yet known if it (or other similar compounds) require a
H+ gradient across the membrane, similar to reserpine for
VMATs [299]. It should be noted that azo dyes do not remain

Scheme 6 Importance of the size of azo dyes for VGLUTs inhibition (Favre-Besse et al., 2014)
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Scheme 7 Pharmacophore of azo dyes and various potent inhibitors
superposed to pharmacophore model of VGLUTs. The pharmacophore
model allow the 3D representation of key features for potent VGLUT
inhibitory activity. This model was generated based on the activity of
various ligands (trypan blue (EC50 = 50 nM), Evans blue (EC50 =
90 nM), Brillant Yellow (EC50 = 15 nM, Chicago Blue Sky (EC50 =
330 nM), Direct violet 51 (EC50 = 148 nM), Chrysophenin (EC50 =

27 nM), four 2,4-dicarboxy-quinolines (EC50 = 41 μM; 64 μM;
167 μM; 288 μM), four monoazoic dyes (EC50 = 1.6 μM; 3.3 μM;
25 μM; 40 μM)). Structural key requirements to obtain a potent
VGLUT inhibitor are represented by color spheres (green = H bond
donor, slight blue = aromatic moiety, dark blue = negative charge); the
putative ligand/VGLUT steric bump are represented by exclusion gray
spheres

Scheme 8 Fluorescein analog
inhibitor of VGLUTs
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VGLUT-specific at high concentrations [298] as high doses of
Evans blue (> 20 μM) inhibit GABAergic vesicular transport
[298, 300] and lysosomal ATP transport [301], but not vesic-
ular transport of dopamine [298]. Evans blue is used as a
means to assess the permeability of the blood-brain barrier
(BBB) [302] and therefore cannot access VGLUTs in vivo.
Comparable nontransported inhibitors of VGLUTs that can
cross the BBB are not available.

Noncompetitive Inhibitors

Noncompeti t ive modula tors of VGLUTs include
polyhalogenated fluorescein analogs, among which Rose
Bengal has the highest affinity (IC50 = 25 nM) [303–305]
(Scheme ). SAR studies of Rose Bengal and its derivatives
facilitated identification of the bioactive form of Rose Bengal
derivatives (acid form of the molecule, see Scheme 8) [303].
The lactone form of Rose Bengal exhibits reduced affinity.
The halogen substituents on xanthene and phenyl are particu-
larly important in generating high affinity for VGLUTs
(25 nM). However, the binding site for these types of ligands
has not yet been identified. Some studies have suggested al-
losteric modulation of Rose Bengal on VGLUT [304], while
others think indirect modulation occurs by blocking the V-
ATPase [303]; although Rose Bengal strongly and specifically
affects glutamatergic but not GABAergic boutons [192]. A
recent study showed that Rose Bengal is a specific inhibitor
of glutamate transport but not the VGLUT-associated Cl− con-
ductance [192], so it could be an allosteric modulator of
VGLUTs, like tetrabenazine for VMATs or vesamicol for
VAChT. On the other hand, Evans blue inhibits both Cl− and
glutamate currents with submicromolar potency [174]. A 50%
inhibition of maximal uptake levels by submaximal concen-
trations of the competitive inhibitor trypan blue (like Evans
blue), is eventually overwhelmed by glutamate competition
(i.e., 4 mM) where vesicular levels reach control values
[117]. On the other hand, a 50% knockdown of functional
transporters by the noncompetitive inhibitor Rose Bengal pro-
duces a steady-state accumulation of glutamate that is approx-
imately 50% less than control values at all external glutamate
concentrations [117], yet maximal accumulation still occurs at
the same external (4 mM) value. These data support evidence
that the level of functional VGLUTs in vesicles is a critical
determinant in vesicle filling.

Conclusions

Multiple isoforms of VGLUT in mammals provide diversity
in vesicular glutamate storage and release in discrete synap-
ses as the three subtypes are differentially expressed in glu-
tamatergic neurons in the brain and are likely subject to dif-
ferential regulation at the level of biosynthesis and

degradation. Indeed, the level of expression of VGLUTs in
synapses could be a critical determinant that regulates both
quantal size and the availability of vesicles for glutamate
release. Changes in VGLUT expression levels in synapses
are seen in a variety of neurological disorders and disease
states. Adaptive changes in VGLUT expression levels may
even be used as a neuroprotective strategy to support neural
circuit stability to avoid excessive glutamate release from
synapses and excitotoxicity. While we are not yet able to
pharmacologically modify VGLUT biosynthetic pathways,
molecular approaches to modify VGLUT expression in syn-
apses using viral-mediated strategies are clearly a major av-
enue being explored to selectively target distinct glutamater-
gic systems that may affect aberrant synapses in neurologic
disorders and disease.

The three subtypes of VGLUTs are so closely structurally
related that none of the currently available inhibitors may be
able to discriminate between them functionally. An inability to
selectively interfere with vesicular glutamate storage and re-
lease in distinct glutamatergic neurons would render these
compounds ineffective in any clinical setting. However, the
inhibitory effects of these compounds have largely been per-
formed with brain synaptic vesicle preparations that contain a
mixed population of synaptic vesicles or in cortical/
hippocampal neurons where VGLUT1 predominates. The
evaluation of current inhibitors, and new pharmacological
compounds, in recombinant VGLUT systems are therefore
essential to determine if any are specific for VGLUT isoforms
and could help distinguish between the sites in VGLUTs that
are important for glutamate transport to better understand the
mechanisms involved.

Biochemical transport flux experiments in vitro using
radiolabeled tracers has long been instrumental in our under-
standing of vesicular neurotransmitter transport in brain syn-
aptic vesicles for all of the classic neurotransmitters. Recent
studies have shown important contributions are being made
following the incorporation of recombinantly expressed trans-
porters into artificial vesicles (liposomes) equipped with an
H+-ATPase and individual VGLUTs without any interfering
synaptic vesicle components. Indeed, these recent flux studies
have provided important information to the existence of crit-
ical binding/flux sites for H+, monovalent cations, and Cl− on
both sides of VGLUTs. Such assays could therefore also be
used to screen established and novel VGLUT inhibitors to
determine whether any of them are isoform-specific, or not.
Surprisingly, the ionic binding/flux properties of VGLUTs
that have recently been described may help generate trans-
membrane vesicular H+ gradients (i.e.,Δψ) under physiolog-
ic conditions to facilitate glutamate transport into vesicles and
maintain vesicular glutamate storage levels. In this regard, a
unique feature of vesicle exocytosis is that endocytosed vesi-
cles contain the content of the extracellular milieu (esp., Cl−)
that can increase Δψ within vesicles (positive inside) during
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efflux from the vesicle once back inside the terminal. The
unique ionic features of VGLUTs make them susceptible to
regulation by physiologic factors such as changes in extracel-
lular Cl−, K+, or H+ that occur under seizure, ischemic, and
other acute and chronic excitotoxic conditions. Exposure of
internal regulatory sites on VGLUTs to the extrasynaptic
space following exocytosis allows for a potential means to
introduce drugs to the vesicle interior, to modulate glutamate
filling for synaptic release.

Glutamate-induced excitotoxicity is an important con-
cern in a variety of detrimental brain injuries and disease.
A powerful means to control vesicular glutamate filling
and synaptic glutamate release is by regulating the avail-
ability of glutamate to the glutamate site on VGLUTs.
However, the glutamate sites in the three VGLUT isoforms
are likely highly conserved. Since, neurons expressing the
different VGLUT isoforms display inherent differences in
activity (esp., VGLUT1 and VGLUT2), it is likely that
they also express differential requirements to supply and
replenish cytoplasmic transmitter glutamate levels in syn-
apses to sustain glutamatergic neurotransmission in an
activity-dependent manner. It is not clear if differences in
metabolic precursors (e.g., glucose, α-ketoglutarate, lac-
tate, alanine, glutamine, etc.) and other potential pathways
used for glutamate synthesis and neurotransmission exist
in the different VGLUT-operated synapses. However,
activity-dependent regulation of synaptic glutamate syn-
thesis may be especially critical in VGLUT1-driven axon
terminals, which are positioned in vulnerable brain areas
such as the hippocampal CA subfields. VGLUT1-operated
synapses in the hippocampus have low inherent release
properties and are therefore subject to activity-stimulated
regulation. Activity-stimulated glutamine and Pi transport
across the plasma membrane in axon terminals of hippo-
campal neurons may therefore be novel sites to modulate
phosphate-activated glutaminase activity and glutamate
synthesis in synapses, activity-stimulated presynaptic glu-
tamate re lease and neuronal glu tamate- induced
excitotoxicity.

Novel electrophysiologic analysis of VGLUT function has
provided important information into understanding the molec-
ular mechanisms of vesicular glutamate transporter regulation
itself, similarly to the plasma membrane glutamate clearance
transporters (i.e., EAATs), via independent ion conductance
properties that are intrinsic to the transporters. Measurements
of transport flux in recombinant systems in vitro and electro-
physiologic analysis will be critical for in-depth analysis of
new drugs and their specific interactions with the anionic and
cationic binding sites and properties within VGLUTs. High
through-put screens of potential drugs that modulate Cl− and
H+ (bothΔψ andΔpH) changes are also likely to come from
the use of novel fluorescent tags and probes in in vitro and
in vivo studies.
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