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Abstract
Angiogenesis is the growth of new capillaries from the preexisting blood vessels. Glioblastoma (GBM) tumors are highly
vascularized tumors, and glioma growth depends on the formation of new blood vessels. Angiogenesis is a complex process
involving proliferation, migration, and differentiation of vascular endothelial cells (ECs) under the stimulation of specific signals.
It is controlled by the balance between its promoting and inhibiting factors. Various angiogenic factors and genes have been
identified that stimulate glioma angiogenesis. Therefore, attention has been directed to anti-angiogenesis therapy in which glioma
proliferation is inhibited by inhibiting the formation of new tumor vessels using angiogenesis inhibitory factors and drugs. Here,
in this review, we highlight and summarize the various molecular mediators that regulate GBM angiogenesis with focus on recent
clinical research on the potential of exploiting angiogenic pathways as a strategy in the treatment of GBM patients.
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Introduction

Gliomas arising from the glial cells in the central nervous sys-
tem of adult brain are the most common primary intracranial
tumors and account for 70–80% of all brain tumors [1–3].
Based on the recent classification of central nervous system
tumors, diffuse gliomas are categorized into four grades (I–
IV) according to World Health Organization (WHO): diffuse
astrocytoma (IDH mutant, WHO grade II), oligodendroglioma
(IDH mutant, WHO grade II), oligoastrocytoma (IDH mutant,
WHO grade II), anaplastic astrocytoma, anaplastic
oligodendroglioma (IDH mutant, WHO grade II),
oligoastrocytoma (IDH mutant, WHO grade III), and glioblas-
toma multiforme (GBM or IDHmutant WHO grade IV) [4–6].
Furthermore, among all glioma cases diagnosed, astrocytoma
grade III and GBM is considered to be the most aggressive and
highly invasive as they spread into other parts of the brain
quickly [7]. In spite of the aggressive treatments that include

surgery combined with radiation, chemotherapy [8], and bio-
logical therapy [9], glioblastoma tumors remain as an enormous
therapeutic challenge with survival rates following diagnosis of
12 to 15 months with less than 3 to 5% of people surviving
longer than 5 years [10]. GBM tumors are also highly vascular
brain tumors with very poor prognosis [11, 12]. Several angio-
genic receptors and factors are upregulated in GBM and stim-
ulate angiogenesis signaling pathways through activating onco-
genes and/or downregulating tumor suppressor genes [13]. In
this review, we will review the basic mechanisms of various
molecular signaling events that regulate GBM angiogenesis
and explore the potential of targeting angiogenic signaling as
a therapeutic strategy for brain tumor pathogenesis.

Angiogenesis in Normal Physiology
and in Tumor Progression

Physiological angiogenesis is a highly regulated process and
is an essential one for the adequate supply of nutrients and
oxygen to developing or healing tissues [14]. It is composed
of many steps and is a combination of various components
such as cells (endothelial cells and mural cells), soluble
growth factors, proteolytic enzymes and adhesion proteins
and matrix components (ECM) as shown in Fig. 1 [15, 16].
Hypoxia (low oxygen tension) is the main trigger which
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induce the activation of transcription factor, hypoxia-
inducible factor-1 (HIF-1), which controls the expression of
growth factors [17], matrix components [18, 19], adhesion
molecules [20], and metabolic proteins [21]. The induction
of angiogenesis relies on a balance between pro- and anti-
angiogenic factors. Lack of oxygen in the cell simulates the
release of pro-angiogenic growth factors like vascular endo-
thelial growth factor (VEGF) [22], transforming growth
factor-β (TGF-β) [23], fibroblast growth factors (FGFs)
[24], angiopoietin-1 [25], and epidermal growth factor
(EGF) [26]. These angiogenic factors bind to their receptors
on the endothelial cell membrane resulting in the dissolution
of the vessel wall and degradation of the endothelial cell base-
ment membrane and extracellular matrix (ECM). Following
the degradation of the basement membrane, specific proteases
such as matrix metalloproteinases (MMPs) remodel the extra-
cellular matrix components and a new matrix is synthesized
by stromal cells which in turn foster the migration and prolif-
eration of endothelial cells resulting in the formation of an
endothelial tube-like structure [27]. Finally, a mature vascular

basement membrane is formed around this newly formed the
endothelial tube and the Mural cells (pericytes and smooth
muscle cells) surrounding it resulting in a stable new vessel
(Fig. 1) [28, 29].

Angiogenesis is essential for tumor growth and progres-
sion. The tumor cells away from vessels experience hypoxia
due to deficiency of blood and oxygen. Hypoxic environment
induces cancer stem cells (CSCs) to differentiate toward en-
dothelial progenitor cells and mature endothelium, which in
turn generates new blood vessels inside the tumor. Tumors
generate abnormal and functionally immature blood vessels
due to deregulated factors such angiogenic growth factors,
angiogenesis inhibitors, and other genetic factors by a process
known as pathological angiogenesis [30]. Blood vessels de-
veloping in the primary tumor are larger than their normal
counterparts and follow a criss-cross path, with irregular lu-
men diameters, dilated, highly permeable, and branch irregu-
larly [31]. The tumor vasculature is also hyperpermeable to
plasma and plasma proteins leading to local edema and extra-
vascular clotting of plasma [32, 33]. This increase in the
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Fig. 1 Schematic representation of angiogenic events in GBM. (a)
Angiogenesis processes are initiated by the angiogenic factors, which
are being released from the GBM cells in the hypoxic tumor microenvi-
ronment. The major angiogenic factors are involved in GBM angiogen-
esis process which includes the VEGF, FGF, HIF1α, and Ang-1 andAng-
2. (b) These angiogenic factors bind to their receptors on endothelial cells
and then start to initiate the endothelial cell proliferation and migration.

During the endothelial cell proliferation and migration processes, the
ECM start to degrade, and the endothelial cells are assembled into a
tube/vessel-like structure. (c) The final step of GBM angiogenesis process
is the maturation of the blood vessel wall, which is constructed by the
recruitment of pericytes to cover the endothelial cells from its outside to
form a new blood vessel formation
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interstitial pressure in the tumor vasculature alters the blood
flow and flux of leukocytes reaching the tumor site [34]. In
addition, tumor cells can easily spread to the distant tissues
due to the defective basement membrane and lack of normal
perivascular connective tissue barrier [35]. Leakiness and
compression of vessels leaves large volumes of tissue without
blood flow in tumor and obstructs the delivery of blood-borne
drugs, oxygen, and nutrients resulting in ischemia and necrot-
ic regions within the tumor [36–38]. Ischemia leads to a hyp-
oxic environment which in turn activates the HIF-1 resulting
in new blood vessel formation [39]. Thus, the disorderly
grown tumor vasculature observed in the tumors dramatically
alters the tumor microenvironment and influences various as-
pects of tumor progression like tumor growth, allows easy
penetration of the tumor cells and its ability to metastasize to
distant sites, escape from the host immune system and re-
sponse to anticancer therapies. Given the role of angiogenesis
in tumor growth, targeting tumor vasculature and inhibition of
growth factors/signaling pathways necessary for endothelial
cell growth and proliferation is one of the practical approaches
to inhibit tumor angiogenesis.

Factors Involved in Brain Tumor Angiogenesis

Brain tumor progression is closely associated with the forma-
tion of new vessels. Brain tumor angiogenesis is mediated
through the action of many angiogenic factors, some of which
are involved in normal angiogenesis (Fig. 2). The best-known
angiogenesis regulators in GBM progression include VEGF,
basic fibroblast growth factor (bFGF), hepatocyte growth

factor (HGF), platelet-derived growth factor (PDGF), and
TGF-β, MMPs, and angiopoietins (Angs). The expression
levels of the angiogenic growth factors were shown to impact
tumor progression. These angiogenic factors are upregulated
by a variety of mechanisms like oncogene activation, loss of
tumor suppressor gene function, and/or hypoxic microenvi-
ronments [40]. Moreover, fibroblast growth factor receptor
(FGFR) modulates a series of angiogenic processes which
includes FGF-mediated glioma endothelial cell migration
and proliferation. In addition, FGFR plays an important role
in the survival and angiogenesis of GBM cells through phos-
phatidylinositol 3-kinase (PI3K)/protein kinase B or AKT/
mammalian target of rapamycin (mTOR) molecular signaling
pathway [41–45]. FGF1, FGF2, and FGFR also activates the
c-JUN/p38-MAPK pathway and STAT3/NF-κB signaling
pathway; hence, all of these molecular signaling events are
the most important events associated with GBM tumorigene-
sis, cell proliferation, migration, and angiogenesis [41–45]
(Fig. 2). Previously, it has been reported that FGF2 is a prog-
nostic biomarker of GBM patients [44]. All these different
molecular effectors interact using various receptors equipped
with tyrosine kinase activity on the endothelial cells mem-
brane and transduce signals to activate multiple signaling
pathways in GBM [46]. These signal transduction pathways
regulate proliferation, migration, and differentiation of endo-
thelial cells required for new vessel growth [47]. Moreover,
the combination of VEGF-A with FGF-2 with/or without
platelet-derived growth factor BB (PDGF-BB) [48], and that
combination of FGF-2 and PDGF-BB [49] demonstrated syn-
ergistic effect in inducing neovascularization in vivo. The ex-
pression of these growth factors correlates with tumor
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progression with higher-grade tumors expressing higher levels
of growth factors and their corresponding receptors when
compared to low-grade tumors. Those factors that are well
characterized in GBM neovascularization are summarized in
Table 1 and are described below.

VEGF

Angiogenesis is fueled by several pro-angiogenic cytokines in
malignant glioma, among which VEGF is the most important
signaling molecule. This family of cytokines has six VEGF
isoforms (VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E,
and placental growth factor) [22]. VEGF-A is considered the
main mediator in hypoxia-induced tumor growth. VEGF sig-
naling is mediated through the receptor tyrosine kinases like
VEGFR-1, VEGFR-2, and VEGFR-3 and mediates a variety
of functions including pro-angiogenic activity, vascular per-
meability activity, and stimulate endothelial cell migration
[50]. VEGF was shown to synergize with many growth fac-
tors and the effects of VEGF combinations with other factors
exceeded those exerted by each factor alone in inducing an-
giogenesis [51, 52]. Binding of VEGF to its receptors on the
endothelial cell membrane activates endothelial cells to se-
crete MMP into the surrounding tissue that are responsible
for breakdown of ECM required for their proliferation and

migration [53]. In addition, the combination of VEGF-Awith
FGF-2 or PDGF-BB was shown to have a potent synergistic
effect in inducing angiogenesis in vitro and in vivo [48, 49].

VEGF plays an important role in the survival and pro-
liferation of gliomas. VEGF mRNA expression was ob-
served in low-grade gliomas with further upregulation in
high-grade gliomas [54, 55]. Glioma formation occurs
with the induction of VEGFR-1 mRNA in endothelial
cells while progression toward malignancy is observed
with the coordinated function of both the VEGFR-1/
VEGFR-2 genes [56]. High levels of VEGF mRNA ex-
pression were observed in the necrotic regions in glioblas-
toma tumors [57, 58] which in turn promotes vascular
proliferation and tumor progression of human glioblasto-
ma [34, 59]. Overexpression of VEGF and VEGF-R1 in
the low-grade astrocytomas was significantly associated
with the same dismal prognosis as high-grade lesion, sug-
gesting that VEGF and VEGFR expression can serve as a
prognostic biomarker and provide useful information in
determining the regime [60].

FGFs

FGF is another pro-angiogenic growth factor, which is both
present the tumor cells and as well as stored in the vascular

Table 1 List of major
angiogenesis factors in GBM Angiogenesis factors Molecular functions Reference

VEGF (VEGF-A, VEGF-B,
VEGF-C, VEGF-D)

It promotes endothelial cell proliferation, migration,
mitosis of endothelial cells and promotes blood vessel
formation (angiogenesis process).

[158–160]

VEGFR (VEGFR1,
VEGFR2 and VEGFR3)

Hematopoiesis process, promotes tumor angiogenesis,
activates MMPs, Mediates the angiogenic, mitogenic
and permeability-enhancing effects of VEGF.

[158]

MMP-2 and MMP-9 It has been predominately involved in the proteolytic
degradation of ECM components and facilitates cell
motility, cell invasions and promotes glioma
cells angiogenesis.

[161, 162]

aFGF and bFGF It induces the endothelial cell proliferation and promotes
tubule-like morphology in endothelial cells.

[160, 163]

FGFR It modules the cell proliferation, cell migration
and angiogenesis

[44, 160, 163]

Integrin ανβ3
and Integrin ανβ5

It facilitates the cell-to-cell interaction, cell adhesion to
extra cellular matrix and cellular migration

[164, 165]

Angiopoietin 2
and Angiopoietin 4

Angiopoietin 2 binds to tyrosine kinase with
immunoglobulin like and EGF like 2 (TIE-2) and it
destabilizes tumor vasculature. Angiopoietin 4 binds to
TIE-2 and induced angiogenesis via ERK ½ pathway.

[92, 160]

HGF It promotes angiogenesis through induction
of VEGF signaling.

[158, 160]

EGFR It stimulates VEGF production in GBM cells [166]

TGF-β It promotes VEGF induced angiogenesis; it regulates
endothelial cell proliferation, migration, differentiation
and extracellular matrix synthesis in endothelial cells.

[167]

aFGF acidic fibroblast growth factor, bFGF basic fibroblast growth factor, FGFR fibroblast growth factor
receptor, HGF hepatocyte growth factor
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basement membrane for sustained release and is upregulated
during angiogenesis. Two forms of FGFs, FGF-1 or acidic
FGF (aFGF or FGF1) and FGF-2 or basic (bFGF or FGF2),
bind most commonly to the receptor tyrosine kinases FGFR-1
or FGFR-2 [61]. FGF binding to its receptor activates signal-
ing pathways mediated in part by protein kinase-C (PKC),
phospholipase A2 [62], and increases endothelial cell migra-
tion and capillary formation promotes capillary morphogene-
sis [63]. FGF-2 also mediates proteolysis of matrix compo-
nents and enhances the synthesis of collagen, fibronectin, and
proteoglycans by endothelial cells demonstrating its effects on
ECM remodeling during angiogenesis [63].

FGF-2 is implicated in brain tumor progression and local-
izes in the microvasculature as well as in the tumor cells in
human gliomas [64–66]. bFGF levels correlate with the de-
gree of glioma malignancy and vascularity as determined by
immunohistochemical analysis [65]. It has previously shown
that antibodies against bFGF were shown to inhibit glioma
growth in vivo model and led to reduced blood vessel densi-
ties in glioma tumors of treated animals [67].

PDGF

PDGF family proteins are 45-kDamolecules and consist of four
polypeptide chains (PDGF-A, PDGF-B (c-Sis form), PDGF-C,
and PDGF-D) and were originally purified from platelets. All
the PDGF family polypeptides have a highly conserved growth
factor domain, called the PDGF/VEGF homology domain in-
volved in forming bisulphite bridges to form the PDGF dimers
PDGF-AA, PDGF-AB, PDGF-BB, PDGF-CC, and PDGF-DD
[68]. PDGF proteins regulate angiogenesis by binding to and
activating two cell surface receptor tyrosine kinase (RTK) re-
ceptors, PDGFR-α and PDGFR-β, which leads to receptor
dimerization, transphosphorylation, and subsequent activation
of intracellular signaling pathways, such as PI3K/AKT and
RAS/MAPK [69]. PDGF-B and PDGFR-β axis stimulates
the proliferation of cultured smooth muscle cells and pericytes
to the site of newly sprouting vessels and aids in establishing a
new basement membrane [70]. In addition, PDGF-BB-induced
erythropoietin (EPO), a hormone that stimulates erythropoiesis
is elevated during tissue hypoxia through activation of the HIF-
1α and promotes angiogenesis, vascular stability, and endothe-
lial cell survival [71, 72]. Therefore, PDGF exert its pro-
angiogenic effects by direct induction of endothelial cell prolif-
eration and new vessel formation, and by endocrine stimulation
of extramedullary hematopoiesis leading to increased oxygen
perfusion and protection against tumor-induced hypoxia.

Several studies demonstrate that gliomas express all the
PDGF ligands [73–75]. It was suggested that the growth fac-
tors produced by endothelial cells, such as PDGF-BB attract
the glioma cells to the surrounding vasculature [76]. It was
observed that the expression of PDGF ligand correlates with
poor prognosis factors such as age at GBM diagnosis,

phosphatase and tensin homolog deletion (PTEN), and
isocitrate dehydrogenase 1 (IDH1) mutation in glioblastoma
patients [77]. In situ hybridization studies indicated differen-
tial expression of the PDGF ligands and their receptors in glial
cell of the tumor mass and the endothelial cells in the tumor
areas suggesting the presence of autocrine and paracrine stim-
ulatory loops affecting glioma angiogenesis. High expressions
of both PDGF-B and PDGFR-β mRNA were found in the
endothelial cells present in the tumor tissue; these were
thought to stimulate the autocrine loop with the PDGFR-β
receptor, while PDGF-A mRNA and PDGF-α were observed
only in the glial tumor cells stimulating the autocrine/
paracrine loop with the PDGFR-α receptor [73]. PDGFR-β
is preferentially expressed in GBM stem cells, and genetic or
pharmacological targeting of PDGFR-β (not PDGFR-α) at-
tenuated glioma stem cell (GSC) self-renewal, survival, and
GBM progression [78, 79].

HGF/SF

Hepatocyte growth factor/scatter factor (HGF/SF) is a
heparin-binding mesenchyme-derived cytokine consisting
of a 60-kDa α-chain and a 30-kDa β-chain. It transduces
signals by binding to its receptor and is a transmembrane
tyrosine kinase encoded by c-MET. SF and c-MET are
strongly increased in several tumors and is often associated
with poor prognosis [80]. HGF is a potent angiogenic mol-
ecule, and its angiogenic activity stimulates endothelial
cell proliferation and migration in vitro and increases or-
ganization into capillary-like tubes in vivo. HGF/SF regu-
lates angiogenesis by simultaneous upregulation a VEGF, a
pro-angiogenic factor and suppressing thrombospondin 1
(TSP-1), an endogenous inhibitor of angiogenesis [81].
HGF/SF can also induce angiogenesis independently of
VEGF through the direct activation of the AKT and
ERKs to induce endothelial proliferation [82].

SF/HGF and its receptor tyrosine kinase c-MET are
expressed in brain tumors and were shown to promote tumor
proliferation, migration, invasion, and angiogenesis. This
ligand-receptor pair expression levels correlate with tumor
grade, tumor blood vessel density, and poor prognosis [83].
Inhibition of SF/HGF and c-met expression anti-SF and anti-
c-MET U1/ribozymes promotes tumor cell apoptosis and in-
hibits tumor angiogenesis in an in vivo glioma model [84].
Suppression of both MET and VEGF exhibited a synergistic
effect in the inhibition GBM growth compared to single treat-
ment alone in an intracranial glioma mode [85].

Ang

The angiopoietins are glycosylated proteins that bind to Tie-2
(Tyr kinase with Ig and epidermal growth factor homology
domains) receptors [86]. Four types of angiopoietins have
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been identified (Ang-1 to Ang-4) and were shown to play a
role in angiogenesis. All the angiopoietins bind the same re-
ceptor, tunica interna endothelial cell kinase 2 (Tie-2), but
appear to have differential and counteracting effects on the
vasculature. Ang-1 induced new vessel formation with angio-
genic actions that are distinct from VEGF and stabilizes them
through reciprocal interactions between the endothelium and
surrounding ECM [25]. Ang-2 is upregulated by the both
hypoxia and VEGF and enhances the VEGF-mediated endo-
thelial cell migration and proliferation. In the absence of
VEGF, Ang-2 functions as an antagonist to Ang-1 which me-
diates blood vessel regression and contributes to leakiness and
fragility of tumor vessels [87]. Therefore, Angs induce context
dependent pro- or anti-angiogenic effects. Furthermore, it has
been established that tetrameric or higher orders of aggrega-
tion of Angs is required for Tie-2-mediated signaling, suggest-
ing the presence of monomeric or dimeric angiopoietins that
may bind to their receptor and serve as inhibitors of Tie-2 [88].
Ang-3 is maintained as a monomeric form and exerts anti-
angiogenic and anti-cancer activity [89]. A study reported by
Cam et al. [90] showed that targeting the angiopoietin 1
(ANGPT1)/Tie-2 axis by using a highly potent, orally avail-
able small molecular inhibitor (rebastinib) in GBM extents
survival. In addition, rebastinib (DCC-2036) is a selective
inhibitor of the Tie-2 immunokinase and currently in clinical
trials in combination with carboplatin (NCT03717415) or pac-
litaxel (NCT03601897) in patients including with GBM [90].

Ang-1 mRNA was localized in tumor cells while Ang-2
mRNA was detected in endothelial cells and causes blood
vessel dissolution/destabilization, and it is identified as one
the early marker of glioma-induced neovascularization [66,
91]. Ang-4 is upregulated in human GBM tissues and cells
and was shown to have a more potent pro-angiogenic activity
than Ang-1 and promotes intracranial growth in mouse model
[92]. Tie-2 expression was observed in malignant human gli-
omas [93], and Ang-2 regulates VEGF expression at the tran-
scriptional level in Tie-2-expressing glioma cells [94]. One
preclinical study has demonstrated that combined anti-
VEGF/anti-Ang-2 therapy can obliterate resistance to VEGF
monotherapy by upregulation of Ang-2 in endothelial cells
and had a synergistic effect in overall GBM survival [95].

TGF-β

The TGF-β family of structurally related polypeptides and
control several pro-tumorigenic functions like proliferation,
apoptosis, differentiation, epithelial-mesenchymal transition
(EMT), and angiogenesis. They signal through heteromeric
complexes of type I (activin receptor-like kinases, also known
as TβRI) and type II (TβRII) transmembrane serine/threonine
kinase receptors serine/threonine kinase receptor complexes
which in turn triggers phosphorylation of the intracellular ef-
fectors, Smads (derived from proteins “Sma” and “Mad” from

C. elegans and D. melanogaster) to regulate the expression of
TGF-β target genes [96]. TGF-β1 is the most frequently
overexpressed in carcinomas and elevated TGF-β activity
has been associated with poor clinical outcome [97]. Smads
interact with and modulate the functions of various transcrip-
tion factors which mediate tumor-induced angiogenesis [98].
TGF-β regulates the expression of various ECM components
that play a pivotal role in both the initiation and resolution
phase of angiogenesis [99]. TGF-β modulates the levels of
FGF-2 which is required in the formation of capillaries during
angiogenesis by suppressing the induction of a serine prote-
ase, urokinase plasminogen activator [100]. TGF-β acts in
concert with VEGF promote endothelial cell apoptosis as part
of capillary acts in concert with TGF-β1 to induce endothelial
cell apoptosis [101]. TGF-β pathway also activates αvβ3,
which binds to various secreted ECM proteins, such as von
Willebrand factor, TSP-1, fibrinogen, proteolyzed collagen,
fibronectin, and vitronectin and facilitates their degradation
during vascular remodeling during angiogenesis [102].
Several approaches have been used to neutralize TGF-β sig-
naling at distinct levels to suppress tumor growth and angio-
genesis [103].

A high level of TGF-β correlates with poor prognosis in
GBM and enhances the expression of several pro-angiogenic
factors such as VEGF, FGF, and PDGF-β [104]. TGF-β1
increased glioma-induced angiogenesis via JNK pathway in
zebrafish embryo/xenograft glioma model [105]. A cross-talk
between TGF-β and VEGF/PLGF signaling in glioblastoma
was shown to have both pro- and anti-angiogenic activities in
human brain-derived microvascular endothelial cells
(hCMECs) and glioblastoma-derived endothelial cells
(GMECs). TGF-β induces VEGF and placental growth factor
(PlGF) mRNA and protein expression in glioma cells induc-
ing pro-angiogenic effects. In contrast, exogenous TGF-β had
inhibitory effects on endothelial properties and induces
endothelial-mesenchymal transition (EndoMT) in hCMEC
and GMEC [106]. High levels of TGF-β work in conjunction
with the PDGF-β to increase GSC proliferation [104]. TGF-β
induces generation of pericytes from the GSC residing in the
perivascular niches to support vessel formation and tumor
growth [107].

MMPs

MMP are a family of zinc-dependent endopeptidase endo-
peptidases that selectively degrade components of the ECM
and are implicated in tumor cell invasion angiogenesis and
suppression of anti-tumor immune surveillance. An integral
part of the angiogenic process is degradation of the vessel
basement membrane and surrounding ECM which facilitates
the invasion of endothelial cells. MMPs were also shown to
stimulate the proliferation and activation of pericytes through
the release of growth factor bound to the ECM and aid in
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their migration to the new formed vessels leading to vessel
stabilization [108].

Gelatinase-A (MMP-2) and gelatinase-B (MMP-9) are
highly expressed in patients withWHO grade III brain tumors
[109]. Both these proteases were shown to have a synergistic
effect on endothelial basement membrane degradation in gli-
omas [110]. MMP-9-mediated liberation of matrix-
sequestered VEGF induced the angiogenic switching in a
pre-malignant tumor; this effect was observed in several trans-
genic mouse models including glioblastoma [111].

Angiogenic Regulators and Targets
for Anti-angiogenesis Therapy in GBM

It has been previously mentioned that angiogenesis is one of
the most obvious hallmarks of most tumors including adult
brain tumor (GBM), which significantly contrasts GBM from
normal brain tissues [112, 113]. Hence, anti-angiogenesis
therapy has become the most effective strategy in the treat-
ment of GBM patients. Previously, it has been shown that
VEGF plays an essential role in the angiogenesis of GBM,
and inhibiting the expression of VEGF always known to be
the most effective therapeutic strategy to GBM growth in pa-
tients [58, 114]. Moreover, vasculogenic mimicry (VM) is a
newly discovered tube-like vascular structure which was
found to be among the potential therapies for GBM [115].
Additionally, anti-angiogenesis by the VEGF mono-antibody,
bevacizumab, showed minimal efficacy and enhanced tumor
invasiveness triggered by hypoxia induction, which may be
partially due to VM. Several studies have reported that VM is
endothelial cell-independent, consisting of tumor cells and
extracellular matrix, and is found to be associated with poor
prognosis in GBM patients [11, 116, 117]. In addition, these
studies showed that the VM-associated mechanisms offered
new insights compared to classical anti-angiogenesis thera-
pies. These studies have also confirmed that there were a se-
ries of genes including molecular targets and molecular sig-
naling pathways were involved in VM [115]. Hence, these
molecular mechanisms of VM may provide potential targets
for anti-angiogenesis therapy in GBM. For example, VEGFR-
2 kinase inhibitors (SU1498 and AZD2171) have been shown
to reduce VM formation in GBM cell lines in vitro and
in vivo, accompanied by reduction in chemotaxis, cell prolif-
eration, and tumorigenicity [118].

It has been reported that hypoxia-inducible gene 2 (HIG2)
is a marker of hypoxia and it can serve as a diagnostic bio-
marker for several cancers including GBM, as a potential tar-
get for anti-angiogenesis therapy [119]. Furthermore, Mao
et al. [120] showed a positive correlation of HIG2 with
VEGFA and HIF1α expression, which ultimately contributes
to bevacizumab resistance in GBM [120]. Several studies
have shown that STAT3 is a receptor that is activated by ligand

interaction and overexpression of STAT3 constitutively acti-
vated in several tumors including GBM [121, 122].
Additionally, it has been shown that STAT3 inhibitor
(AZD1480) combined with cediranib significantly reduced
the volume and microvessel density of GBM, suggesting that
the STAT3 molecular signaling pathway may mediate resis-
tance to anti-angiogenic therapy, and regulating the STAT3
pathway might be useful in treating the condition in GBM
patients [123]. Previously, it has been shown that the down-
regulation of HIF1α and mTOR signaling pathway through
rapamycin, including mTOR siRNA, may inhibit VM forma-
tion in GBM [124]. Moreover, this study provides the evi-
dence that mTOR as a potential therapeutic target in GBM.
A study reported by Nicholas et al. [125] has shown that the
epidermal growth factor receptor (EGFR) is associated with
tumor growth and angiogenesis, and it is also found activated
in all types of tumors including GBM [125]. In addition, this
study also reveals that RAS/MAPK and PI3K/AKT/mTOR
molecular signaling pathway regulates glioma cell prolifera-
tion, differentiation, tumor angiogenesis, and survival in
GBM [42, 45]. Furthermore, targeting of the RTK/PI3K/
AKT pathway enhances the cytotoxic effect of radiation and
TMZ in malignant GBM cells [126].

A study reported by Francescone et al. [127] showed that
targeting VEGFR2 using Flk-1 shRNA in GBM-derived cell
lines significantly reduced VM formation and subsequently
inhibited the development of tumors [127]. In addition, the
results of this study suggest that the VEGFR2 plays an impor-
tant role in the formation of VM in GBM as a possible thera-
peutic target [127]. There were several studies demonstrate
that vincristine promotes an anti-angiogenic effect via the in-
hibition of HIF1α in GBM, and result of this study may pro-
vide a new therapeutic target for anti-angiogenesis therapy in
GBM [128, 129].

A study reported that the PTEN molecular signaling act
as a tumor suppressor gene, and it is often inactivated in
several cancers including GBM [130]. This study also re-
veals that the loss of the PTEN signaling leads to VEGFR2
expression in tumor cells in GBM patients, which may con-
tribute to resistance against anti-angiogenic treatments.
Moreover, it has been shown that overexpression of
VEGFR2 in tumor cells could develop early resistance to
chemotherapy with TMZ and anti-angiogenesis therapy with
bevacizumab, in GBM [131].

More and more emerging studies have suggested that the
targeted gene knockout techniques with well-designed exper-
imental strategy could be effective in the treatment of GBM
patients and other human diseases. Moreover, newly designed
targeted drug delivery systems circumvent multidrug resis-
tance and demonstrated an enhanced efficacy for GBMpatient
[132, 133]. Additionally, the use of strategies targeting multi-
ple molecular signaling pathways in a combination with drug
targets may lead to increased therapeutic efficiency, and
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studies on VM as a novel and distinct regulating target con-
tribute significantly to the future of anti-angiogenesis treat-
ment in GBM patients.

Clinical Trials of Angiogenesis Targets in GBM

Several preclinical studies suggested that anti-angiogenic ther-
apeutic agents enhance the efficacy of conventional treat-
ments. A number of anti-angiogenic therapies have been eval-
uated in clinical trials as an alternative or complementary to
conventional cancer treatments. Table 2 summarizes clinical
drug trials targeting angiogenesis in primary and secondary
brain tumors, and the detail information about the clinical trial,
drug target concentration, number of patient population, and
the current clinical trial phase for the drug approval process.
Most of the anti-angiogenic agents currently in phase I/II trials
for brain tumors target the VEGF pathway as VEGF family
and its receptors function as the central signaling pathway of
glioma angiogenesis. On this basis, the majority of these clin-
ical trials are targeting VEGF signaling (Table 3) with mono-
clonal antibodies against VEGF-A (bevacizumab), a small-
molecule tyrosine kinase inhibitors (TKIs) that inhibit
VEGFR-2 tyrosine kinase activity (cediranib, sunitinib, van-
detanib) and soluble decoy receptors developed from
VEGFR-1 that selectively inhibit VEGF activity (aflibercept).

The first anti-angiogenesis agent approved for clinical use
for brain cancer is a drug called bevacizumab or avastin
(Genentech, South San Francisco, CA). Bevacizumab is a
monoclonal antibody, and it functions like the physiological
antibodies that the human body naturally produces as part of
the adaptive immune system. Bevacizumab binds to VEGF
and blocks signaling of the molecule and suppresses the for-
mation of new blood vessel growth. Several phase II clinical
trials have studied the therapeutic efficacy of bevacizumab as
a single agent or in combination with chemotherapy or radia-
tion for recurrent GBM. Bevacizumab as a single agent had
significant anti-glioma activity in patients with recurrent glio-
blastoma [134] (Table 2). A phase I study with a small number
of patients suggested that bevacizumab in combination with
irinotecan, an inhibitor of topoisomerase I, can be safely ad-
ministered to patients with malignant gliomas and
bevacizumab plus irinotecan achieved a significant improve-
ment in radiographic response (changes in the density of the
tumor area) as well as significant increases in progression-free
survival among recurrent GBM patients. These studies ob-
served anti-edema induced by bevacizumab treatment aug-
mented the efficacy of the cytotoxic drug by improving the
distribution of the drug in these tumors [135, 136]. Previously,
the BRAIN study was completed in 2007 for bevacizumab
drug trial in recurrent GBM patients, and the outcome of this
study was reported the median overall survival (OS) rate of
9.3% and 8.7% with progression-free survival (PFS-6) rate of

43% and 50.3%, respectively, with compared to bevacizumab
to bevacizumab plus irinotecan, an inhibitor of topoisomerase
I [137]. Later, similar clinical trial was performed by the
National Cancer Institute (NCI) for the use of bevacizumab
in recurrent GBM patients and they found the median OS rate
of 7.8% and PFS-6 rate of 29% [134]. There have been several
studies investigated the use of bevacizumab drug target in
combination with other drug products to treat recurrent
GBM. For example, the BELOB clinical trial was initiated
as a randomized phase-II clinical trial and this study used
lomustine with bevacizumab or lomustine and bevacizumab
alone for the treatment of recurrent GBM patients. The
BELOB clinical trial reported that the combination of both
drug products (bevacizumab and lomustine) resulted in a
PFS-6 of 42% compared to 11% and 18%withOS at 9 months
of 12% compared to 7.8% and 8% for lomustine and
bevacizumab alone, respectively [138]. Furthermore, based
on the BELOB study results, a phase III clinical trial
(EORTC 26101) was performed to compare lomustine alone
versus lomustine with bevacizumab. In conclusion of the
EORTC study, they did find any significant difference in OS
for combination treatment versus lomustine alone in recurrent
GBM patients [139]. Previously, it has been mentioned that
the AVAglio used the revised Response Assessment in Neuro-
oncology (RANO) criteria to assess the GBM disease progres-
sion in the newly diagnosed GBM patients. The AVAglio clin-
ical trial was performed based on this revised RANO criteria
and the clinical trial concluded that bevacizumab prolong the
maintenance of performance status in GBM patients, it also
reported that decreased in steroid utilization, and prolonged
time to deterioration in prespecified cognitive domains of the
newly diagnosed GBM patients [140]. Moreover, the similar
study has been performed in newly diagnosed GBM patients
using the randomized phase II GLAIRUS study, and this study
compared the standard care of chemoradiation with temozo-
lomide (TMZ) versus with bevacizumab and irinotecan in
GBM patients whose tumors expressed the DNA repair en-
zyme O6-methyl guanine DNA methyltransferase (MGMT).
This phase II GLAIRUS study also concluded that the loss of
MGMT increased the sensitivity to therapy with TMZ in new-
ly diagnosed GBM patients [141] (Table 2).

Some of these clinical trials also suggested that the anti-
angiogenic therapeutic agents (e.g., VEGF/VEGFR therapeu-
tic targets) (Table 3) enhance the efficacy of conventional
treatments by other mechanisms apart from normalization of
blood vessels. It was also observed that anti-angiogenic ther-
apy disrupted the tumor vasculature and that the CSC niche
microenvironment associated with the tumor blood vessels
reduced the CSC which in turn contributes to the efficacy of
anti-angiogenic cancer therapy [142]. In another phase II mul-
ticenter trial with one hundred sixty-seven patients with recur-
rent glioblastoma, bevacizumab, alone or in combination with
irinotecan, was well tolerated and active in recurrent
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glioblastoma [137]. It was also suggested that bevacizumab
therapy restore a balance between pro- and anti-angiogenic
cytokines and induces more stability within the tumor blood
vessels with structural and functional phenotype more reflec-
tive of normal blood vessels, thus allowing for more effective
penetration and distribution of cytotoxic chemotherapeutic
drugs within the tumor [143, 144]. A randomized controlled
phase II trial of a single-agent bevacizumab or lomustine ver-
sus a combination of bevacizumab plus lomustine in patients
with recurrent glioblastoma suggested improved OS as com-
pared with monotherapies [138]. Similarly, cediranib
(AZD2171, an oral, pan-VEGF receptor inhibitor) as a mono-
therapy was shown to induce “normalization time window” in
tumor vessels in patients with recurrent GBM with significant
clinical and functional consequences [145].

Limitation of Anti-VEGF Therapy and Future
Directions

More recent phase 2 trial suggested that the combination of
bevacizumab and lomustine did not confer a survival advan-
tage over treatment with lomustine alone in patients with pro-
gressive GBM [139]. A randomized phase III trial in newly
diagnosed GBM and recurrent grade III gliomas has failed to
show an overall survival in [146, 147]. These studies suggest
that although a combination of anti-angiogenic therapy with
chemotherapy compared with chemotherapy alone produces
favorable results with improvements in objective response and
PFS in patients with recurrent GBM, a large portion of the
patients benefit because of a several factors including changes
in the tumor microenvironment (TME) toxicity and resistance.
It was proposed that hypoxia caused by vessel regression
upregulates hypoxia regulated pro-angiogenic factors like
SDF1α leading to recruitment of bone marrow-derived cells
(BMDCs) that have the capacity to induce new blood vessel
growth leading to tumor progression and relapse [148, 149]. A
pro-invasive adaption of the tumors was observed in a subset
of GBM patients who had developed multifocal recurrence of
tumor’s during anti-VEGF therapy with bevacizumab along
with either irinotecan or carboplatin [150, 151]. Toxicity as-
sociated with anti-angiogenesis includes thromboembolic and
hemorrhagic complications. In addition, gastrointestinal (GI)
perforations and one case of reversible posterior
leukoencephalopathy were also noted [148, 149]. A compen-
satory switch to alternative angiogenic pathways could lead to
the acquisition of resistance to angiogenic therapy. For exam-
ple, the PDGF signaling was shown to contribute to angiogen-
esis in tumors refractory to anti-VEGF treatment by activating
tumor stromal cells. However, the anti-tumor effect obtained
with a combination of anti-VEGF and anti-PDGF therapy was
minimal under conditions of maximal VEGF antagonism,T
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suggesting that inhibition of these two pathways might not be
fully additive or synergistic [152].

As discussed above, although anti-VEGF treatment indeed
altered several abnormal characteristics of tumor vessels and
was generally well tolerated leading to devascularization that
limits tumor growth, a large fraction of patients develops tox-
icity and resistance to this treatment. Moreover, prolonged
exposure to anti-angiogenic drugs blocks blood supply to
the tumors leading to hypoxic environment which in turn is
known to induce chemo-resistance and tumor progression.
Therefore, the dose and time of initiation of anti-angiogenic
treatment could play a significant role on the therapeutic ben-
efit as the angiogenic inhibitors suppress the tumor growth by
inhibiting the growth of blood vessels but does not necessarily
kill cancer cells. Single-agent bevacizumab seems to have
significant effects on vascular permeability and cerebral ede-
ma, suggesting that future trials should focus on the role of
bevacizumab as the initial treatment of GBM before starting
the chemotherapy treatment [134]. The association between
the survival benefit and increased oxygenation leading to vas-
cular normalization in the phase II trials with anti VEGF ther-
apy suggest that identification and validation of early imaging
biomarkers and new imaging parameters could help identify
the subset of patients who most likely will benefit with anti-
angiogenic agents [153]. A baseline of high and low plasma
levels of MMP-2 and MMP-9, respectively, were associated
with a high response rate and prolonged PFS and OS in recur-
rent high-grade gliomas treated with Bevacizumab but not
with other cytotoxic agents suggesting that it could be predic-
tive biomarker and potentially allow initial patient selection
for bevacizumab treatment [154]. Another study showed that
the sensitivity to bevacizumab may depend on the relative
amount of the various isoforms of VEGF which differ in dif-
ferent molecular weights and biologic properties [155].
Bevacizumab-induced hypertension demonstrated significant-
ly better progression-free survival and OS, suggesting that it
could be a physiologic marker of outcome in patients with
recurrent GBM [156]. Further, developing patient-specific
personalized therapies, based on cellular response of the en-
dothelial cells from the primary brain tumor by screening for
sensitivity/resistance to anti-angiogenic agents, can optimize
anti-angiogenic therapy in GBM patients [157]. There is also a
need to determine novel points of convergence of various
signaling pathways in the initiation and development of
tumor-induced angiogenesis for predicting and identifying
new targets for anti-angiogenic therapy. Several clinical trials
are ongoing to validate and expand these efforts, including
multiple studies to evaluate non-VEGF anti-angiogenic strat-
egies for malignant glioma patients.
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