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Abstract

Hypoxic-ischemic (HI) brain injury remains an important cause of brain damage in neonates with potential life-long consequences.
Caffeine, which is a competitive inhibitor of adenosine receptors, is commonly used as treatment for preterm apnoea in clinical
settings. In the current study, we investigated the effects of caffeine given at 0 h, 6 h, 12 h or 24 h after HI in P10 mouse pups. Open
field and rotarod behavioural tests were performed 2 weeks after injury, and brain morphology was then evaluated. Gene expression
and immunohistological analyses were assessed in mice 1- and 5-day post-HI. A single dose of caffeine directly after HI resulted in
a reduction of the lesion in the grey and white matter, judged by immunostaining of MAP2 and MBP, respectively, compared to
PBS-treated controls. In addition, the number of amoeboid microglia and apoptotic cells, the area covered by astrogliosis, and the
expression of pro-inflammatory cytokines were significantly decreased. Behavioural assessment after 2 weeks showed increased
open-field activity after HI, and this was normalised if caffeine was administered immediately after the injury. Later administrations
of caffeine did not change the outcomes when compared to the vehicle group. In conclusion, caffeine only yielded neuroprotection

and immunomodulation in a neonatal model of brain hypoxia ischaemia if administered immediately after injury.
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Introduction

Perinatal hypoxia ischaemia (HI) remains a main cause of
morbidity and mortality in neonates, the latter accounting for
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45% of the 5.9 million child deaths that occurred in 2015
globally, with the highest incidence in low-income countries
[1]. HI, during or after birth, may affect the brain and lead to
serious neurological consequences, including cerebral palsy,
cognitive deficits, motor impairment and epilepsy [2].

Mild hypothermia is currently the only treatment that has
proven to improve survival without disability in neonates with
moderate (but not severe) HI [3]. However, this neuroprotec-
tive strategy demands intensive care support, and potential
side effects have to be considered, especially in low-income
settings [4]. Development of alternative treatment strategies is
ongoing.

Caffeine is the most commonly used psychoactive drug
worldwide. It is a non-specific adenosine receptor (AR) an-
tagonist and binds to some extent to three of the ARs (named
Al, A2a, A2b) with a preference for A1R and A2aR under
normal physiological conditions [5]. In the brain, these recep-
tors are expressed in the pre- and post-synaptic site of neurons,
respectively, but are also present in other cells, such as astro-
cytes, oligodendrocytes and microglia [6]. In addition, the
A2aR is implicated in neuroinflammation, and its expression
in microglial cells is increased after brain injury [7].

Caffeine has been routinely used for decades in the clinic
for apnoeic children [8], and a randomised controlled study to
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treat apnoea showed reduced incidences of cerebral palsy and
cognitive delay in caffeine-treated patients when compared
with the placebo group [9]. Pre-clinical studies have also re-
ported a neuroprotective effect of caffeine in experimental
models of neonatal HI, resulting in behavioural and functional
recovery [10—13]. Previous works from us and others have
demonstrated that caffeine reduced a mild lesion in mouse
models and/or ameliorated behavioural performances when
given before [13] or immediately after injury [10, 12], or for
multiple days following HI [11]. From a clinical and practical
point of view, it is important to know if the single-dose therapy
is effective at 624 h after injury and at different stages of
injury severity. Such data are not available to our knowledge.
In addition, the effects of caffeine on cellular injury and repair
in neonatal models have not been reported.

We therefore aimed to study the time window of the neu-
roprotective effect of one dose of caffeine given after neonatal
hypoxic ischemia using morphological, behavioural and
neuroinflammatory outcomes.

Materials and Methods

All experiments were approved by the regional ethics com-
mittee, Stockholms norra djurforsoksetiska namnd, in accor-
dance with local institutional guidelines and the Directive
N249/13. All methods were carried out in accordance with
relevant guidelines and regulations.

Hypoxic-Ischemic Brain Injury

Wild type C57/bl6 specific pathogen-free mice were bred in
house. Dams and pups had free access to pelleted food and
were housed in open cages with standard enrichment and daily
monitoring in accordance with local institutional guidelines.
On postnatal day 10 (P10), a modified version of the Vannucci
model [14] was performed on pups of both sexes deriving
from more than 10 1. Briefly, unilateral electrocoagulation
(8 W) of the right carotid artery was conducted via a midline
neck incision under isoflurane anaesthesia and local
bupivacaine infiltration to minimise pain and distress. Pups
were returned to the dam for 1 h for feeding purposes and then
subjected to hypoxia (10% O, in 90% N, at 36 °C). There was
no mortality, severe illness or need for early euthanasia.
During sham-operation, the carotid artery was visualised and
isolated but not electrocoagulated.

Treatment

Immediately after the 60 min of hypoxia, body temperature
was assessed via axillary measurement and the mice were
randomised to different groups.

A single dose of 5 mg/kg caffeine or vehicle (sterile PBS in
a comparable volume) was administered intraperitoneally
(i.p.) to injured and sham pups either directly after HI (0 h),
orat 6, 12, and 24 h (h) post injury.

The dose of caffeine was chosen to reflect clinically rele-
vant serum concentrations of caffeine when administered to
neonates for the prevention of apnoea [15-17].

Behavioural Tests

Behavioural assessments were performed 2 weeks after HI in
all groups (sham, caffeine- or PBS-treated animals), starting at
P24, for three consecutive days by an investigator blinded to
the lesion and treatment.

Open-Field Test Mice were tested in groups of four,
randomising sex and experimental condition, and placed in
four square arenas (50 cm per side). Mice were handled with
care to assure calmness, and their locomotion was investigated
for 30 min in the dark, using an infrared light (BIOBSERVE
GmbH Software, St. Augustin, Germany).

Rotarod Test Mice were subjected to a rotarod test (Ugo
Basile) on the last day of behavioural evaluations. They were
placed on a rotating cylinder for 5 min with increasing speed
(4 to 40 rpm), and the time each mouse managed to stay was
recorded. The test was performed five consecutive times, and
the average latency until they fell off the cylinder was
calculated.

Tissue Preparation and Cutting

The brains were collected after the end of behavioural tests
(P27) for evaluation of the atrophy, or at earlier time points
for histological (P15) and gene expression (P11) analyses.
Animals were sacrificed by injection of 50 mg/kg sodium
pentobarbital (APL, Stockholm) i.p. and cardially perfused
with PBS (Life Technologies) to remove intravascular
blood cells. The brains were extracted, snap-frozen in dry
ice and stored at — 80 °C until sectioning. In accordance
with previous studies [18], 10-um sections were collected
at three levels of each brain, corresponding to bregma
1.05 mm, — 1.76 mm and —2.78 mm of the adult mouse
brain [19], using a Leica cryostat.

Evaluation of Brain Injury

Tissue sections were fixed for 30 min in 4% paraformalde-
hyde and then subjected to Nissl staining. In brief, slides
were dehydrated in increasing concentrations of ethanol
and xylene, incubated for 10 min in a 0.1% cresyl violet
solution containing glacial acetic acid, and differentiated
in 95% ethanol.
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Brain injury in different regions was blindly evaluated by
two independent investigators using a semi-quantitative neu-
ropathological scoring system as described earlier [20].
Briefly, four different brain regions were scored depending
on the size of the damage for a total of 0-22 points. The
confluency of the injury in the cortex was rated 0—4, while
hippocampus, thalamus and striatum were rated a total of 0-6
each considering the hypotrophy (0-3) and the visible infarc-
tion (0-3) for each of the areas.

Immunohistochemistry and Immunofluorescence

Endogenous peroxidases were blocked by 0.3% H,O, in 3%
Normal Horse Serum for 10 min after 30 min fixation with 4%
paraformaldehyde. VECTOR® M.O.M.™ Immunodetection
Kit was used according to the manufacturer’s specifications
for mouse anti microtubule-associated protein 2 (MAP2,
1:1000, Sigma) and mouse anti myelin basic protein (MBP,
1:1000, Covance) staining. For astrocytes labelling, tissue
slides were incubated overnight with rabbit anti glial fibrillary
acidic protein (GFAP, 1:500, Millipore) in blocking solution
containing 3% donkey serum and 0.1% triton, after an initial
fixation and 0.3% H,0, peroxidase blockage. Biotinytaled
donkey anti rabbit secondary antibody was applied for 1 h
before incubation with VECTASTAIN® Elite ABC-
Peroxidase Kit for GFAP. The enzymatic colouration of im-
munoreactivity for MAP2, MBP and GFAP was performed by
2-min immersion in 3,3'-diaminobenzidine (DAB, DAKO)
for all slides.

To evaluate microglia morphology, tissue sections were
fixed and incubated overnight with rabbit anti ionized
calcium-binding adapter molecule 1 (Ibal, 1:1000, Wako) pri-
mary antibody in 3% donkey serum and 0.1% triton blocking
solution. The following day the sections were then incubated
with Alexa-488 donkey anti rabbit (1:1000, Life
Technologies) and Hoechst (1:1000, Thermofisher) for 2 h
for fluorescent immunolabeling, and mounted with ProLong
Gold antifade mounting media (Life Technologies).

Neuronal apoptosis was evaluated by terminal
deoxynucleotidyl transferase-mediated dUTP nick end-
labeling (TUNEL) following the manufacturer’s instructions
(Invitrogen).

Tissue Loss Measurement and Quantifications

The infarction area, as judged by MAP2 unstained tissue and
the glial scar evaluated by GFAP™ cells, were manually delin-
cated by an investigator blinded to the lesion and treatment
(Supplementary Fig. S1). The brains from sham-operated an-
imals were also stained as negative controls and no injury or
glial scar were observed as expected.

The percentage of the area covered by the injury or glial
scar (%A) was determined by subtracting the areas of interest
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(AOI) from the total area of the ipsilateral (I) hemisphere in
ratio with the area of the contralateral (C) hemisphere: [%A =
100 — [(I—AOD/C] % 100].

To calculate the density (D) of amoeboid microglia or
TUNEL™ cells, quantification analyses were performed
counting the number of positive cells (C) in the AOI consid-
ering the thickness of the section (7): [D = C/(AOI x T)].

The body size of Ibal™ cells was analysed measuring the
area of the soma of at least 20 amoeboid cells per cortex using
Image] software, in at least three images randomly acquired in
the AOI with a x 40 oil objective.

Lastly, MBP density was calculated by measuring the
| mean grey intensity-background noise| with ImagelJ soft-
ware (where dark and light tones correspond to low and high
values respectively), in three images per AOI acquired with a
x40 oil objective.

All quantification and densitometric analyses were per-
formed by an investigator blinded to the lesion and treatment.

Unless otherwise specified, the analyses were performed
using a Zeiss AX10 bright-field microscope and Stereo-
Investigator Software (MicroBrightField Inc). For TUNEL
staining, images were acquired with a Zeiss LSM700 confocal
microscope, and a blinded offline analysis was performed
using Zen Black Software in images.

RT-qPCR Analysis

Real-time quantitative polymerase chain reaction (RT-qPCR)
was performed on cortex tissue dissected from the ipsilateral
hemispheres of mice belonging to each lesion/treatment
group. Messenger ribonucleic acid (mRNA) extraction was
performed using the RNAeasyMini kit (Qiagen) according
to the manufacturer’s instructions. cDNA was synthetized
using iScript™ cDNA Synthesis Kit (BioRad). RT-qPCR
was run with Power SYBR Green PCR Master Mix
(Applied Biosystems) in a Step-One-Plus Real-Time PCR ma-
chine (Applied Biosystems). For all primers (Supplementary
Table 1), we used an initial cycle of 10 min at 95 °C, followed
by repeated cycles of 95 and 60 °C (40 in total). Melting
curves, starting at 95 °C, were acquired to ensure proper prim-
er functionality and detect any primer-dimer formation. Each
gene was normalised to the average of the housekeeping genes
B-actin and Rpll3a, and the expression was calculated using
the AACT method.

Statistical Analysis

The Kolmogorov-Smirnov test was used to check the normal-
ity of the data. All data were normally distributed, and the tests
applied were the following: unpaired ¢ test or one-way
ANOVA with Bonferroni’s multiple comparison test were
used for the neuropathological scores, MAP2, GFAP and
TUNEL analyses, and rotarod behavioural test; two-way
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ANOVA with Sidak’s multiple comparison test was used for
MBP and Ibal analyses; two-way ANOVA with Dunnet’s
multiple comparison test for repeated measurements was used
for open-field behavioural tests. Data from the RT-qPCR anal-
yses were additionally transformed using the y =log(2) func-
tion prior to the statistics. GraphPad Prism 8 software was
used for all statistical analyses. Data are presented as mean
+SEM and p < 0.05 was considered statistically significant.

Results

A Single Dose of Caffeine Offers Neuroprotection Only
if Administered Acutely After the Injury

To assess the potential therapeutic effect of caffeine, P10 mice
underwent HI brain injury and received PBS or 5 mg/kg caf-
feine immediately after surgery (0 h), 6 h, 12 h, or 24 h later in
a randomised manner (Experimental design in Supplementary
Fig. S2a). Body temperature and weight at the time of surgery
and at the time of sacrifice did not vary between the groups
(Supplementary Fig. S2b-c). There was a significantly lower
neuropathological score (Fig. 1a), as judged by cresyl violet
staining, in mice treated with caffeine directly after HI (0 h)
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Fig. 1 Long-term evaluation of caffeine treatment (P27). Mice were
subjected to HI and received PBS (n=8) or caffeine (n=10) acutely
(0 h) or at either 6 h (n=6), 12 h (n=06) and 24 h (n="7) after injury.
Neuropathological score in sections stained with cresyl violet (a), tissue
loss calculated by MAP2-stained tissue (b), third day activity in the open
field test (c) and rotarod (d) behavioural performances 2 weeks after HI.

(p=0.0415) but not after 6 h, 12 h or 24 h, compared with the
PBS-treated controls. In order to assess regional atrophy,
MAP?2 staining was performed in the 0-h caffeine-treated sam-
ples and in the PBS group. The tissue loss analysis revealed
25% protection in the striatum (level 1) in mice receiving
caffeine compared to the vehicle-treated group (p =0.0321)
and no sex-specific differences were observed (Fig. 1b and
Supplementary Fig. S3).

A Single Dose of Caffeine Partially Restores
Behavioural Deficits 2 Weeks After Injury

Two weeks after, HI mice were submitted to behavioural ex-
periments for three consecutive days. The mice were placed in
unfamiliar open field arenas and locomotion was videotaped
for 30 min. As previously reported [21, 22], mice subjected to
HI showed increased motor activity, indicative of anxiety be-
haviour and lack of retentiveness, which was instead normal-
ised by early caffeine administration (0 h) to the level of non-
injured animals. On the contrary, the groups receiving caffeine
at later time points did not show any habituation to the arena
(Fig. 1c).

Rotarod motor test was performed on the last day of be-
havioural evaluations and the average of 5 consecutive trials
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The dashed-lines in figures (c) and (d) represent the performance of sham
animals as an internal control. Data are presented as mean + SEM with
*p < 0.05 (two-way ANOVA with Dunnet’s multiple comparison test for
repeated measurements for open-field test and one-way ANOVA with
Bonferroni’s multiple comparison test for the other graphs)
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was calculated. No significant difference in the time spent on
the rotating cylinder was observed between the PBS- and
caffeine-treated mice at any of the time points (Fig. 1d).

Further morphological, inflammation and cellular analyses
to characterise the effects of caffeine were then carried out
only in the 0-h group.

A Single Dose of Caffeine Decreases Tissue Loss
and Reactive Astrogliosis

In order to investigate the impact of caffeine in the injured
brain, a second set of mice was treated acutely (0 h) after HI
and sacrificed 5 days after injury for further analysis
(Experimental design in Supplementary Fig. S4a). Body tem-
perature and weight at the time of surgery and at the time of
sacrifice did not vary between the groups (Supplementary Fig.
S4b-c). Neuropathological scoring was calculated as before
on cresyl violet-stained sections to confirm the protective ef-
fect of caffeine in comparison with mice injected with PBS
alone (p=0.0037) (Fig. 2a). Tissue sections of consecutive
section series were stained for MAP2 and GFAP to evaluate
the degree of neuronal loss and astrogliosis. Compared with
the PBS group, MAP2 expression revealed reduced atrophy at
the striatum (level 1; p = 0.0306) and the hippocampus levels
(level 2; p=0.0446) in caffeine-treated mice (Fig. 2b and
Supplementary Fig. S5). No-sex specific differences were
observed.

Next, the area covered by the glial scar was analysed. A
higher concentration of astrocytes with hypertrophic cell bod-
ies (Supplementary Fig. 6), indicating a reactive phenotype,
was observed in the areas affected by neuronal loss, and we
thus proceeded to measure the regions where the GFAP* hy-
pertrophic cells were condensed (Fig. 2¢). Similarly to the
MAP2 expression analysis, the area covered by the glial scar
was reduced in mice that received caffeine in the striatum
(level 1; p=0.0211), hippocampus (level 2; p =0.0263) and
in particular in the cortices (p =0.0461) (Fig. 2d and
Supplementary Fig. 7). Specifically, a higher concentration
of GFAP™ cells was observed in the cortex between layers 2/
3 and 5 even though minimal observable injury was detected
in the same area (Fig. 2e).

A Single Dose of Caffeine Decreases the Number
of TUNEL" Cells

Stereological analysis of TUNEL" cells in the same
astrogliotic area, namely the cortex and the striatum, was per-
formed to assess the effect of caffeine. The number of apopto-
tic cells that incorporated TUNEL staining in their fragmented
DNA was significantly reduced in the cortex of mice receiving
caffeine (p =0.0495), but not in the striatum, even though a
similar trend was observed (Fig. 3).
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A Single Dose of Caffeine Decreases Microglia
Activation

Ibal™ cell density and morphology was analysed in the areas
most affected by the injury and the glial scar. The strong mi-
croglia activation caused by HI was significantly reduced in
the caffeine-treated group in both the cortex (p = 0.0220) and
the striatum specifically in the area of the caudo-putamen (p =
0.0048) compared to the PBS-treated mice (Fig. 4a, b). In
addition, a difference in size of Ibal™ cells in the cortices
was observed, and thus a morphological analysis of the mi-
croglia was performed. The cell size, measured by contouring
the area of the soma, was significantly reduced (p = 0.0297) in
the caffeine-treated group compared with the PBS-treated
mice (Fig. 4c—e).

A Single Dose of Caffeine Prevents Dysmyelination

Even though white matter damage is less pronounced after HI
at P10, MBP staining was performed to assess whether caf-
feine exerted a protective effect in different brain areas. White
matter analysis was performed by measuring the mean grey
intensity of MBP-stained tissue and normalised to the back-
ground in three x 40 images per area of interest in each animal
(Fig. 5a). These data showed that HI led to loss of MBP
density in mice receiving PBS. Injured animals in the caffeine
group, however, showed white matter protection in the stria-
tum compared to the PBS-treated group (p = 0.0302) (Fig. 5b)
and a tendency to a lower MBP loss, indicative of higher
myelin density, in the corpus callosum although not statisti-
cally relevant (Fig. 5c¢). No differences between treatments
were observed in the cortices and thalamus (Fig. 5d, e).

A Single Dose of Caffeine Is Associated with Altered
Inflammation-Related Gene Expression

To investigate whether caffeine-treatment influenced the in-
flammatory cascade, cortices from the ipsilateral hemispheres
were dissected, and RT-qPCR was performed on
homogenised samples recovered 24 h after HI. The expression
of four genes of interest, normalised to internal controls,
showed a strong trend in the expected direction for //1b (p =
0.0608) and a significant downregulation for 7/6 (p = 0.0340).
No differences were seen in the expression of ///2 and Ifng
(Fig. 6).

Discussion

Caffeine is commonly used in the clinic due to its wide ther-
apeutic index, its rapid distribution in the brain and a long
half-life in infants compared to adults [23—25]. There are sev-
eral studies evaluating the short- to long-term neuroprotective
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Fig. 2 Short-term evaluation of a Global Injury
caffeine treatment (P15). Mice
were subjected to HI and received
caffeine (n=10) or PBS (n=38)
acutely after injury (0 h).
Neuropathological score in
sections stained with cresyl violet
(a), tissue loss calculated by
MAP2-stained tissue at the level
of the striatum and hippocampus
(b). Example of overlapping areas
between the tissue loss (MAP2)
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100 pm (e). Data are presented as
mean + SEM with *p <0.05 and
*#p < 0.01 (unpaired 7 test)
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effects of caffeine, but there is little evidence describing the
therapeutic time window of caffeine after HI in term-neonates.

In the present study, we evaluated caffeine administration
at different time points and identified its post-injury effective-
ness in neonatal mice. The major finding was that caffeine
reduced moderate-severe brain damage only if given directly
after HI, but not when administered at later time points. Both
grey and white matter were protected by caffeine treatment,
and the number of amoeboid microglia, apoptotic cells, the
area of astrogliosis and the expression of pro-inflammatory
cytokines were decreased compared to controls.

‘We previously reported neuroprotection and improved rotarod
and open-field performance after caffeine in a mild form of HI
[10]. Other studies have confirmed behavioural ameliorations in
rodents subjected to injury in the perinatal period after higher
doses of caffeine or multiple administrations [12, 26]. Herein,

I+PBS HI+Caﬂ

I+PBS HI+Caﬂ

we demonstrated that an acute caffeine treatment reduced the
extent of brain damage also in a moderate-to-severe injury model
and led to a partial functional recovery, as shown by open-field
behavioural experiments. This confirms the neuroprotective ef-
fects of caffeine reported in humans [9].

It has been shown that the binding of adenosine to A2a
receptors during ischaemia may lead to cell death [27, 28].
Our current findings thus suggest that an imminent blockage
of the ARs is needed to maintain the beneficial effects seen in
the acute treatment and that caffeine’s antagonistic effect is
limited at later time points.

Indeed, when administered acutely, a single dose of
5 mg/kg caffeine reduced MAP2 tissue loss in the hippocam-
pus and striatum, regions with the higher expression of the
AI1R and A2aR respectively. This suggests a neuroprotective
mechanism that involves both receptors [28].
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Fig. 3 Analysis of apoptotic cells a
using TUNEL staining. Caffeine 15000 -
reduced the number of apoptotic
cells in the cortex (a) and striatum
(b) of mice after HI (n=10) if
compared to the PBS group (n=
8). Example of TUNEL" cells at
x 40 with scale bar 50 pm in the
small squares and representative
tiled-images of the cortex (Cx)
and striatum (Str) at x 10 with
scale bar 300 pm in the big
squares (c). Data are presented as 0
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Similarly, the area covered by reactive astrocytes was reduced
at the level of the striatum and hippocampus in the caffeine-
treated group when compared with the control group 5 days after
HI. Mice receiving caffeine also presented less extensive glial
scars in the cortices, even though no comparable MAP2 injury
was observed. This was seen specifically between layers 2/3 and
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less prominently, in layer 5. The reactivity of astrocytes in these
areas was however associated with an elevated number of apo-
ptotic cells as judged by TUNEL staining. In accordance with
previous findings [11], the presence of TUNEL" cells in caffeine-
treated mice was significantly reduced and a smaller glial scar
was consequently observable.




Mol Neurobiol (2020) 57:2194-2205

2201

a Cortex
20000 -
£
£ 150001 b
~ 10000 -
S 8000
=
o 6000 - .
o 4000+ =
S 20004 ﬁﬁ
(] e
£ 200
< o] e | | | |
* 0 L L]
PBS Caffeine
c Cortex
100+ *
o™
E ] '.
= 80+
';' %" L™
¢ 604 " &
o - Ny
(1]
£ 404 °x :'E: .
o
) - -
- 204
113
=
0 T L]
PBS Caffeine

Sham+PBS Sham+Caff

Fig.4 Caffeine modulates microglial cells’ density and morphology. The
density of Ibal* amoeboid microglia was reduced in the cortex (a) and
striatum (b) of mice receiving caffeine (n =10) compared to the PBS
group (n=238). The area of the soma of phagocytic Ibal* cells was
reduced after caffeine treatment in the cortex (¢). Sham animals
receiving caffeine (n=4) did not show any alteration of microglia

Studies have shown that astrogliosis is protective by con-
fining the effect of the injury and that this is essential to pro-
vide factors for cell survival [29, 30]. Under pathological con-
ditions, though, hyper-reactive astrocytes exacerbate the inju-
ry and cause both neurotoxicity and inflammation, and there-
fore increase the level of pro-inflammatory factors [31, 32].
Caffeine was previously shown to reduce astrocyte immuno-
reactivity and proliferation by selectively antagonizing A2aR
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numbers or shape when compared to the Sham + PBS group (n=6).
Example of Ibal staining at x 40 with scale bar 30 um (d) and
representative images of the cortices at x 20 with scale bar 50 pum (e).
Data are presented as mean = SEM with *» <0.05 and **p <0.01 (two-
way ANOVA with Sidak’s multiple comparison test)

[33], thus suggesting a direct modulatory mechanism in the
inhibition of the glial scar formation in the caffeine-treated
group.

In accordance with the smaller lesion and a reduced
cell death in mice receiving caffeine, we also observed
decreased microglial activation as shown by the dimin-
ished soma size and a smaller amoeboid cell density in
the cortex and striatum. Even though this reduced
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Fig. 5 Caffeine prevents white matter injury in the striatum. Myelin basic
protein (MBP) density was analysed in four different brain areas, namely
the cortex (Cx), striatum (Str), corpus callosum (CC) and thalamus (Th)
as indicated from the squares (a). HI injury led to a significant loss of
myelination in almost all the analysed brain areas. Injured mice receiving
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-

(=]
o
1

-]
=]
1

(=]
o
1

:

ra
(=]
1

MBP loss
(mean grey intensity)

(=]

inflammation could be the result of a contained lesion due
to the caffeine treatment, a direct caffeine-induced modu-
lation in microglia has been suggested. Recent findings
have demonstrated that adenosine agonists in microglia
culture lead to an increase of M1 marker expression
[34], and moreover, activation of the A2aR in microglia
was associated with cytokine release and process retrac-
tion in vivo suggestive of an activation state [35, 36]. In
contrast, caffeine suppresses the generation of pro-
inflammatory mediators [37], and the blockade of A2aR
was indeed reported to reduce microglial activation both
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not observable differences were found in the corpus callosum (¢), cortex
(d) or thalamus (e) if compared to PBS group (n=28). Sham animals
receiving caffeine (n=4) did not show any anomaly compared to the
sham mice receiving PBS (n=6). Data are presented as mean+ SEM
with *p < 0.05 (two-way ANOVA with Sidak’s multiple comparison test)

in vivo and in vitro [38], thus confirming the present
findings.

Lastly, we have shown that caffeine can preserve white
matter development, specifically in the striatum, where a
higher concentration of MBP™ fibres are detected, and others
have also reported an enhancement of myelination in caffeine-
treated mice in a model of periventricular white matter injury
[39]. Caffeine indeed seems also to prevent the hypoxia-
induced demyelination by reversing the altered maturation of
oligodendrocytes progenitors and promote their normal devel-
opment via inhibiting the AIR [40-42].
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Fig. 6 Caffeine prevents b

upregulation of the expression of
pro-inflammatory genes 24 h after
HI. RT-qPCR analysis of //1b, 116,
1112 and Ifng genes in brain ho-
mogenates derived from ipsilater-
al cortices of HI mice receiving
either caffeine (n=13) or PBS
(n=12) normalised to control an-
imals. The expression of each
gene was calculated by normal-
isation to the average of house-
keeping genes B-actin and
Rpl13a. Data are presented as
mean + SEM with *p < 0.05 (un-
paired £ test)
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Taken together, these results suggest that caffeine has a
great potential as therapeutic agent to treat HI. Indeed, a single
administration of 5 mg/kg could reduce loss of gross brain
volume and myelinated fibres, decrease glial activation and
ameliorate behavioural outcomes. A higher dose of caffeine or
multiple injections might be needed to further rescue the cel-
lular reorganization and the plasticity effects that lead to func-
tional impairment in a moderate-to-severe lesion.

Conclusion

The present findings indicate that a single dose of caffeine given
acutely after HI leads to neuroprotection, immunomodulation
and partial functional recovery. Our data indeed show improve-
ment in open-field behavioural tests, reduced grey and white
matter loss and apoptotic cell density, decreased amoeboid mi-
croglia and area of astrogliosis and modulation of the expression
of pro-inflammatory cytokines in mice treated with caffeine com-
pared to controls.

Based on our results, the time window for caffeine thera-
peutic effects was very short. Further studies are needed to
confirm the dose and number of administrations required for
caffeine to restore further the functional impairment in
moderate-to-severe HI lesions.
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