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Abstract
Bioactive sphingolipids: sphingosine, sphingosine-1-phosphate (S1P), ceramide, and ceramide-1-phosphate (C1P) are increas-
ingly implicated in cell survival, proliferation, differentiation, and in multiple aspects of stress response in the nervous system.
The opposite roles of closely related sphingolipid species in cell survival/death signaling is reflected in the concept of tightly
controlled sphingolipid rheostat. Aging has a complex influence on sphingolipid metabolism, disturbing signaling pathways and
the properties of lipid membranes. Ametabolic signature of stress resistance-associated sphingolipids correlates with longevity in
humans. Moreover, accumulating evidence suggests extensive links between sphingolipid signaling and the insulin-like growth
factor I (IGF-I)-Akt-mTOR pathway (IIS), which is involved in the modulation of aging process and longevity. IIS integrates a
wide array of metabolic signals, cross-talks with p53, nuclear factor κB (NF-κB), or reactive oxygen species (ROS) and
influences gene expression to shape the cellular metabolic profile and stress resistance. The multiple connections between
sphingolipids and IIS signaling suggest possible engagement of these compounds in the aging process itself, which creates a
vulnerable background for the majority of neurodegenerative disorders.
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Sphingolipid Biosynthesis and Signaling

Bioactive sphingolipids: ceramide, ceramide-1-phosphate
(C1P), and sphingosine-1-phosphate (S1P) play numerous roles
in nervous system development and in the acquisition of the
mature neuronal phenotype, and as such are key regulators of
cell proliferation, differentiation, survival, and the stress response
[1, 2]. Their opposite influence on cell survival/death signaling is

reflected in the concept of highly regulated sphingolipid rheostat
and justifies their vast importance in aging and neurodegenera-
tion [3, 4]. Mutations or loss of sphingolipid metabolism en-
zymes frequently lead to neuronal dysfunction and degeneration
or are embryonically lethal [5–7]. Sphingolipids can be secreted
into extracellular medium and bind cell surface receptors. They
also interact with intracellular signaling pathways [8], bind trans-
membrane domains of signaling proteins within the lipid bilayer
[9], or even create membrane pores in mitochondria [10].
Sphingolipids can also modify the operating environment of
target proteins through their structural roles as membrane com-
ponents, potentially facilitating signal amplification and/or the
integration of multiple biological signals.

The Three Pathways of Ceramide Biosynthesis

Ceramide has mostly attracted attention due to its roles not only
in cell death and senescence but also in differentiation, mainte-
nance of axonal/synaptic structure, and its links with immuno-
logical activation [11, 12]. Ceramide also plays important struc-
tural roles in organellar and cellular membranes and their micro-
domains, including lipid rafts, modulating membrane fluidity,
and the biophysical mechanisms of protein anchoring [13, 14].
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As a signaling molecule, ceramide is known to bind specific
motifs in protein kinases, phosphatases, calcium-binding pro-
teins, DNA repair and heat shock proteins [12, 15, 16].
Ceramide-induced processes such as axonal degeneration/
apoptosis comprise both caspase-mediated and caspase-
independent pathways involving mitochondrial reactive oxygen
species (ROS), p53, Akt, glycogen synthase kinase 3β (GSK-
3β, which phosphorylates tau), or the transcription factor activa-
tor protein 1 (AP-1) [11, 17–19]. However, some ceramide syn-
thase (CerS) isoforms and ceramide species may have opposite
effect on apoptotic and autophagic cell death [20, 21].
Ceramides’ significance for aging and neurodegeneration is also
linked to their role in the mitochondrial quality assurance
pathways.

Three main pathways of ceramide generation have been
described: de novo biosynthesis from serine and palmitoyl-
coenzyme A, the sphingomyelinase pathway, and the salvage
pathway that re-creates ceramide from sphingosine (Fig. 1):

– Serine palmitoyltransferase (SPT) catalyzes the first, rate-
limiting step of sphingolipid biosynthesis. SPT product is
then converted into sphinganine (dihydrosphingosine)
which is used by CerS to generate dihydroceramide
[22], which recently emerges as a signaling molecule on
its own [23, 24]. Dihydroceramide is then converted to
ceramide by dihydroceramide desaturase.

– Ceramides can give rise to sphingomyelin [25] produced
by sphingomyelin synthase (SGMS or SMS). The oppo-
site reaction catalyzed by sphingomyelinases (SMases or
SMPDs), termed the sphingomyelinase pathway is a ma-
jor ceramide source [26].

– Ceramide can be further converted by ceramidases into
sphingosine [27] which modulates the cell death machin-
ery and nitric oxide (NO) signaling [28, 29]. Thanks to
their relatively broad substrate specificity, ceramide
synthases (there are CerS1 to 6, also named longevity as-
surance gene homologs Lass1 to 6) can re-synthesize cer-
amide from sphingosine (the salvage pathway). The pres-
ence of six tightly regulated and interdependent ceramide
synthases plus their splice variants assures the necessary
variation in synthesized ceramides [30]. CerSs are known
to undergo phosphorylation, acetylation, N-glycosylation,
and ubiquitination, implying tight (but still poorly under-
stood) regulation [30, 31].

Sphingosine-1-Phosphate and Ceramide-1-Phosphate

Both sphingosine and ceramide can be phosphorylated into
their respective 1-phosphates (S1P and C1P). For years, the
roles of bioactive sphingolipids have been interpreted using
the sphingolipid rheostat model which implies survival-

promoting activities of sphingolipid phosphates in contrast
with the pro-apoptotic ceramide. Although the model still
seems to correctly describe the prevailing significance of each
compound class, the roles are no longer clear cut.

The pro-survival activity of S1P highlights its role in brain
physiology and the potential significance as therapeutic target
in neurodegenerative disorders [32–34]. S1P mediates the ac-
tions of numerous anti-apoptotic compounds such as nerve
growth factor or glial-derived neurotrophic factor [4]. Largely
through phosphoinositide 3-kinase (PI3K)-Akt, the sphingo-
sine kinase (SphK) signaling targets pro-apoptotic proteins
Bad (Bcl-2-associated agonist of cell death) and GSK-3β
[17] and nuclear transcription factors including known regula-
tors of apoptosis. The latter include forkhead box, sub-group O
transcription factors (FOXO) [35], NF-κB [8, 36], and AP-1

Fig. 1 Sphingolipid metabolism and the three pathways of ceramide
biosynthesis. The scheme shows only selected reactions and enzymes,
plus their feedback regulation by S1P and C1P. C1P, ceramide-1-
phosphate; C1PP, C1P phosphatase; CerK, ceramide kinase; CerS,
(dihydro)ceramide synthase; S1P, sphingosine-1-phosphate; SGMS,
sphingomyelin synthase; SGPP, S1P phosphatase; SMase,
sphingomyelinase; SPT, serine palmitoyltrasnferase

3502 Mol Neurobiol (2019) 56:3501–3521



which is also engaged in the network of mutual co-regulation
between sphingolipid-related genes [37–39]. However,
prolonged accumulation of S1P (produced by SphK2) can
cause endoplasmic reticulum stress and cell death [4, 40].
Some of S1P’s mediators, such as AP-1 [41], extracellular
signal-regulated kinases (ERK) [42, 43], or NF-κB [44, 45]
can also lead to various neurological outcomes [40–45].

S1P production by SphKs undergoes extensive regulation
by numerous inputs including growth factors, inflammatory
cytokines, or calcium ions [46, 47]. S1P is dephosphorylated
back to sphingosine by phosphatases SGPP1 and SGPP2. S1P
can also be irreversibly hydrolyzed by the SGPL lyase [48]
into hexadecenal (which has its own signaling functions [49])
and ethanolamine phosphate.

S1P can both play the role of an intracellular second mes-
senger, or act on multiple cell types through surface S1P re-
ceptors in auto-/paracrine fashion. S1P can be transported to
more distant targets in the cerebrospinal fluid or in the

bloodstream [1, 11, 12, 50]. The cell surface, low-nanomolar
affinity S1P receptors of the Edg family (termed S1P1 to 5)
bind Gq, Gi, G12/13, and Rho proteins which relay signals to
PI3K, protein kinase C (PKC), phospholipases, or cyclic
adenosine monophosphate (cAMP) [51] (Fig. 2). S1PRs in-
fluence neuronal viability, excitability, and neurite extension/
retraction [53]. S1PRs also modulate the interactions between
neurons and microglia and possibly decide about the outcome
(restorative vs. neurotoxic) of astroglial immune activation
[53, 54]. The nervous system is enriched in S1PR proteins,
especially S1PR1 (whose expression changes with age),
S1PR3, and S1PR5. S1PR2 undergoes low-level, gender-
specific brain expression [55]. Neurons, astrocytes, and mi-
croglia express S1PR1–3 and S1PR5, while oligodendrocytes
and their precursors possess S1P1, S1P3, and S1P5 [53, 56].
Cell surface receptor-mediated S1P signaling includes feed-
back effects such as reduction of SphK1 expression in re-
sponse to S1PR2 activation or ligand-induced receptor inter-
nalization (this phenomenon is exploited in the therapy of
relapsing remitting multiple sclerosis that employs
fingolimod, a S1P receptor modulator [53]), [57, 58].

The second messenger function requires S1P generation to
occur in various intracellular compartments including nucleus.
Although nuclear pores should allow exchange of
sphingolipids with the cytoplasm, their nuclear pools show
large degree of autonomy, and sphingolipid metabolism en-
zymes exist in the nucleus (including ceramide and sphingo-
sine kinases, sphingomyelin synthase, and sphingomyelinase)
[51]. SPHK2 has been found to participate in repressor com-
plexes with histone deacetylases (HDAC1 and 2), while S1P
can bind both HDAC proteins and inhibit their deacetylase

�Fig. 2 Modulation of the PI3K-Akt-mTOR signaling by bioactive
sphingolipids. Bi-directional interactions with cellular stress, aging, and
neurodegeneration. Selected enzymes of sphingolipid metabolism with
known significance for the modification of the aging process are shown.
Akt, protein kinase B; C1P, ceramide-1-phosphate; Cer, ceramide; CerK,
ceramide kinase; CerS (LASS), ceramide synthase; HIF-1α, hypoxia-
inducible factor-1α; IGF-IR, insulin-like growth factor receptor; IKK,
inhibitor of NF-κB kinase; mTORC1, mammalian (or: mechanistic)
target of rapamycin complex 1; NF-κB, nuclear factor κB; PAM,
protein associated with Myc; PI3K, class I phosphoinositide 3-kinase;
PLD, phospholipase D; Rheb, Ras homolog enriched in the brain; RNS,
reactive nitrogen species; ROS, reactive oxygen species; S1P,
sphingosine-1-phosphate; S1PR, cell surface G protein-binding S1P
receptors; Sph, sphingosine; SphK, sphingosine kinase(s); TSC,
tuberous sclerosis protein. symbols denote varied/ambiguous
influence (e.g., depending on the cell model used, the presence of RNS
has been found to either activate or inhibit IKKβ). The scheme skips
additional interactions, such as the links between ceramide itself and
stress, the inhibitory phosphorylation of TSC1 by IKKβ, or feedback
influences of mTOR on PI3K-Akt. Sphingolipids can modulate mTOR
in multiple ways, potentially allowing cell type/subcellular compartment-
specific functioning of the S1P-mTOR branch. mTORC1 activation
occurs on the surface of various organellar membranes, and details of
the pathway may be different depending on the cell region. According
to [3, 52], modified
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activity [59]. These varied mechanisms of nuclear signaling
appear to be important for inflammaging and neurodegenera-
tive conditions (Alzheimer’s disease (AD)), along with the
above mentioned sphingolipid-mediated modulation of tran-
scription factors [49, 60, 61].

C1P stimulates cellular proliferation and survival and an-
tagonizes ceramide (Fig. 2) [62–67]. However, C1P can be
cytotoxic at high concentrations [68], and it can stimulate
ROS-based signaling and lead to induction of the NO syn-
thase iNOS [69, 70]. Surprisingly, at least in some cases, Akt-
and NF-κB-dependent iNOS stimulation might actually me-
diate the pro-survival effects of C1P [70]. C1P employs sev-
eral mechanisms to exert its influence on downstream medi-
ators. While it can bind its intracellular target enzymes direct-
ly [71, 72], it can also cross the plasma membrane [68, 73]
and Granado et al. suggested the existence of a specific, low
affinity plasmalemmal C1P receptor that signals through Gi

protein to the known mediators of C1P activities: PI3K/Akt,
NF-κB, and mitogen-activated protein kinase kinase (MEK)/
ERK [74].

Bioactive Sphingolipids in Aging

Numerous alterations in sphingolipid metabolism are ob-
served during human and rodent aging (Table 1). A char-
acteristic set of lipids possibly linked to stress resistance
has been found to correlate with longevity [80]. The
known association of sphingolipids and IIS with immune
signaling also hints at their potential significance for
inflamm-aging, which is important for the pathological,
real-life trajectories of homoeostasis deterioration in old
age [93, 94]. In humans, the hippocampal sphingolipid
balance tends to change with age towards ceramide and
sphingosine; this likely contributes to the worsening of
the conditions for neuronal survival [83].

The knowledge of the mechanisms of sphingolipid in-
volvement in human aging/longevity is highly incomplete.
Most work has been done on yeast and nematode models,
and results draw attention to the extensive cross-talk between
sphingolipids and IIS.

Ceramides in the Stress Response and Cellular
Senescence

Evidence from yeast studies points to the links between cer-
amide metabolism and aging [95, 96]. A CerS subunit gene
has been identified as longevity-assurance gene 1 (LAG1) in
the yeast replicative senescence model [25]. The effects of its
manipulation on the lifespan are complex, while its mild over-
expression increases the replicative potential, higher levels
lead to its reduction [97]. However, in Drosophila ablation
of an alkaline ceramidase can improve lifespan and oxidative

stress resistance [98]. Results obtained in Caenorhabditis
elegans suggest that age-related changes in relative concentra-
tions of ceramide subspecies are absent in the long-living cal-
orie-restricted adults or dauer larvae, pointing to the potential
significance of fine-tuning of ceramide metabolism for the
aging process [99]. Inhibition or knockdown of acid
sphingomyelinase, serine palmitoyltransferase, or
glucosylceramide synthase in C. elegans lead to longer
lifespan; the effects are partially mediated via IIS signaling
[99, 100].

The known links between ceramides and stress, which is
one of the driving forces of aging [101–104], are extensive
also in mammalian tissue.

– Ceramides seem to respond to the inefficiencies in the
ROS control. Ceramide content is elevated early in the
Cu/Zn SOD (superoxide dismutase) mouse mutants and
in human amyotrophic lateral sclerosis patients with this
mutation [105]. It is suggested that physiological gluta-
thione (GSH) levels inhibit neutral sphingomyelinase
(nSMase), and the enzyme’s activity only rises when glu-
tathione is depleted by, e.g., oxidative or alkylating agents
or cell senescence [106].

– Ceramide levels can also be enhanced by the oxidative
stress sensor p53, a protein engaged in the regulation of
aging/senescence [107].

– Ceramide and the enzymes of its metabolism are linked
bi-directionally with AP-1, a redox-sensitive transcription
factor engaged in cellular senescence, responses to oxida-
tive stress and DNA damage [108]. Cytoprotective effects
of serum growth factors include activation of the neutral
ceramidase gene via AP-1 [39]. However, also CERS4
and 5 genes are activated by AP-1. Thus, the complex
regulation of AP-1 may enable it to stimulate or suppress
ceramide levels [38]. In turn, ceramide inhibits AP-1,
creating a feedback loop ensuring tight control over its
own concentration [19, 109].

Sphingosine-1-Phosphate, Stress Signaling,
and Senescence

Despite extensive links between S1P and proliferation control,
the significance of S1P for the modulation of cellular senes-
cence is poorly characterized. Inhibition of SphK1 leads to
p53- and p21-dependent senescence in a human cell line
[110]. SphK1 reacts to oxidative stress in a apparently bimod-
al fashion. While moderate stress activates it, high ROS pro-
duction can lead to its inhibition and/or degradation. This
phenomenon probably reflects a switch that occurs in exces-
sively damaged cells, which directs the resources away from
building stress resistance, and instead activates apoptosis [3].
This switch reflects the behavior of p53, and p53 is indeed
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upstream of SphK1 (p53 can activate SphK1 degradation by
cysteine proteases) [111, 112]. In turn, SphK1 seems to sup-
press ROS production [113], and this phenomenon signifi-
cantly contributes to the known protective effects of ischemic
preconditioning, as shown in the heart [114]. The dualistic
reaction of SphK1 to oxidative stress has led to a proposal that
it could be engaged in the longevity control, probably via its
links with ROS and their sensor hypoxia-inducible factor
(HIF-1) [3].

The ability of sphingosine kinases to modulate ceramide
metabolism (Fig. 1) may have additional impact upon stress
signaling and resistance. SphK1 can influence ceramide syn-
thesis on the de novo and salvage pathways by changing
CerS1 intracellular localization and probably SPT and CerS
activities [115–117]. In turn, SphK2 overexpression can lead
to increased ceramide synthesis [117].

S1P produced by SphK2 binds human telomerase catalytic
subunit in human and mouse cells, preventing its ubiquitin-
dependent degradation. Disruption of telomerase–S1P bind-
ing leads to telomere erosion and acquisition of the senescent
phenotype [118]. In turn, up-regulated S1PR2 expression
occurs in senescent cells of various types, and S1PR2

activity has been demonstrated to support cellular
senescence [57, 119, 120].

The expression and activity of the transcription factor AP-1
is also dependent on S1PR1/S1PR3 signaling [121], suggest-
ing further roles for S1P in cellular senescence. A positive
regulatory loop appears to exist between SphK1 and AP-1,
as the SPHK1 gene contains AP-1 binding elements, and its
expression is dependent on c-Fos and c-Jun [37].

Bioactive Sphingolipids and the Insulin-Like Signaling
Pathway of Aging Modulation

Perhaps the most promising (though still incompletely char-
acterized) mechanism of metabolic and stress control by
sphingolipids is mediated by the versatile IIS pathway. IIS, a
highly inter-connected metabolic regulatory system, is impli-
cated in stress resistance/aging modulation throughout the
spectrum of organisms from nematodes to vertebrates [122,
123]. Interestingly, many roles of S1P appear to be largely
analogous to those of IIS, including not only the well-
documented cell survival/death signaling but also the engage-
ment in organism’s energy homoeostasis [124].

Table 1 Changes of sphingolipid metabolism/signaling in aging and AD

Aging AD

↑ membrane neutral SMase activity.
↓ cytosolic neutral SMase activity [75]

↑ human AD brain mRNA levels: CERS1, CERS2, SGPL1, SPTLC2,
acid SMase [76, 77], although CerS2 activity is reduced [78].
↓ human AD brain mRNAs: ASAH1, CERK, and CERS6 [76].
↓ human SphK1 and SphK2 activity in the hippocampus [79];
specific SphK2 activity increased in AD frontal cortex [78]

A “signature’”set of lipids associate
with human longevity [80]

Human brain sphingomyelin and hydroxysphingomyelin species
correlate with the future AD onset in asymptomatic/healthy subjects,
and with progression at the pre-symptomatic/prodromal stages [81].
Serum levels of selected sphingomyelins correlate with progression
from MCI to AD [82]

↓ S1P/sphingosine ratio in human aging
hippocampus (only in females) [83]

↓ S1P levels in human AD brain hippocampus and inferior temporal cortex;
hippocampal changes correlate with Braak stage of neuropathology [79]

↑ human hippocampal ceramide [83].
↑ ceramide/sphingomyelin ratio in the rat serum,
liver, heart, and skeletal muscle [84].
↑ various human ceramide species [85].
↑ ceramide/sphingomyelin ratio in the rat serum,
liver, heart, and skeletal muscle [84].
Contradictory changes of various ceramides
in centenarians [80]

↑ human brain ceramide levels—including the earliest clinically recognizable
AD stage (MCI) [77, 86–88]

↑ human hippocampal sphingomyelin level [83].
↑ sphingomyelins in the mouse hippocampus [89]
and rat amygdala [90].
↑ human blood plasma sphingomyelins [91]

Incoherent results on sphingomyelin changes in AD patient serum [92]

The table includes only observations in naturally aging humans and rodents and from human AD cases

ASAH1, an acid ceramidase; C1P, ceramide-1-phosphate; C1PP, C1P phosphatase; CerK, ceramide kinase; CerS, (dihydro)ceramide synthase; MCI,
mild cognitive impairment; S1P, sphingosine-1-phosphate; SGMS, sphingomyelin synthase; SGPL, S1P lyase; SGPP, S1P phosphatase; SMase,
sphingomyelinase; SPT, serine palmitoyltrasnferase; SPTLC, SPT long-chain base subunit 1

Mol Neurobiol (2019) 56:3501–3521 3505



IGF-I receptor (IGF-IR) signaling is tightly associated with
lipid rafts, which might sensitize it to the structural influence
of sphingolipids on cell membrane microdomain properties
[125]. Accumulating evidence also suggests links between
signaling activities of sphingolipids and the wide spectrum
of IIS activities (Fig. 2). Increased SphK1 expression and
S1PR1/S1PR3 signaling are engaged in the IGF-IR activation
[126]. C2 ceramide alters the expression of several IIS genes
in a tissue-specific manner, including reduced IGF-IR and
insulin receptor substrate IRS-1 or elevated IRS-2 and IGF-
binding protein 1 (IGFBP1) in liver cells [127, 128]. IGFBPs
are carrier proteins that not only regulate IGF-I bioavailability
but can also have IGF-independent modulatory influence on
cell survival [129]. nSMases have been shown tomodulate the
expression of IGFBP1 via FOXO1 [128, 130]. In the
nematode-aging model, a number of ceramide-synthesizing
enzymes signal largely through IIS, limiting the lifespan as
mentioned previously [99, 100]. Worm sphk-1 mutants live
shorter and are more susceptible to heat stress [131].

Phosphatidylinositol 3-kinase (PI3K) receives signals from
plasma membrane receptors that bind growth factors (IGF-
IR), hormones (insulin), and from chemokines [132].

– S1P synthesis by both SphKs has been found to be acti-
vated by IGF-I [133, 134], at least partially via its signal-
ing target Akt [135]. S1P in turn influences the activities
of PI3K and Akt (Fig. 2); this might add an important
modulatory loop to the IGF-IR-PI3K signaling. The in-
fluence of S1P on PI3K depends on several factors, in-
cluding PI3K and SphK isoform and its intracellular lo-
calization [136]. As mentioned, while pro-apoptotic in
some circumstances, S1P produced by SphK2 might also
promote cell survival through PI3K-Akt [137]. The inter-
action of S1P with PI3K-Akt appears to engage nearly the
whole repertoire of the sphingolipid’s signaling mecha-
nisms. S1PR1 and S1PR3 can activate PI3K and Akt via
Gi. S1PR2 ligation may lead to Akt inhibition (probably
through G12/13 and PTEN), thus the outcome of S1P sig-
naling to IIS via the cell surface is dependent on the cell
type [138–142]. However, S1PR2 response includes
feedback reduction of the receptor expression [143],
probably explaining why S1PR2 can in some situations
functionally augment the PI3K-Akt signaling [143, 144].
Kim et al. published data suggesting S1PR-independent,
second messenger-like negative effects of S1P on Akt
[145].

– The typically negative influence of ceramide on the IIS-
dependent pro-survival signaling [146] includes dephos-
phorylation of Akt by ceramide-activated protein phos-
phatase (CAPP) and protein phosphatase 2A (PP2A),
followed by modification of Akt subcellular distribution
[147, 148]. Inhibition of Akt by C6 ceramide has been
shown to involve PKCζ [149]. In turn, PI3K has been

shown to block ceramide synthesis [150]. As part of its
anti-apoptotic activity, Akt can also modulate ceramide
transport between endoplasmic reticulum and Golgi ap-
paratus, additionally influencing ceramide bioavailability
for the synthesis of complex sphingolipids [151].

– C1P stimulates the activity of PI3K and Akt, leading to
cell proliferation and reduced apoptosis [152, 153].

Although highly fragmented and sometimes incoherent,
current data suggest extensive engagement of sphingolipid
signaling in the modulation of IIS at several levels. Evidence
is accumulating that the influence of sphingolipid signaling,
mostly observed at relatively upstream levels of the IIS (IGF-
IR, PI3K, Akt), can indeed lead to meaningful modulation of
known aging-related targets of the pathway.

The Divergent Roles of Insulin-Like Growth Factor Signaling
(IGF-IR, PI3K, Akt) in Organism Longevity and in Brain Aging:
the Potential Role of Sphingolipid Signaling

The significance of IIS is vast for both physiological aging
and the age-related neurodegenerative disorders. Despite of
the involvement of the brain IGF-I signaling in the modulation
of whole-organism longevity, the influence of IIS on the con-
dition of the brain itself appears to be very different from its
role in the periphery, and results are inconsistent [154, 155].
In-depth elucidation of the trophic role of IIS and its dysfunc-
tion in brain aging is ongoing [156–158], bridging the numer-
ous gaps in our current understanding of the molecular events
leading to the creation of the disease-promoting environment
of the aged CNS.

In turn, the groundbreaking discoveries of last decades
point to IIS as the crucial pathway that re-directs vital re-
sources towards short-term needs such as energy metabolism,
macromolecule synthesis, or survival of individual cells at the
expense of the long-term organism maintenance/longevity.
Multiple stress stimuli (caloric restriction (CR), starvation,
oxidative damage) neutralize the IIS-dependent inhibition of
antioxidant defenses (Fig. 2). In nonvertebrates, inactivation
of the IIS pathway leads to long-living larval (constitutive
dauer) or adult forms, typically displaying high resistance to
broad range of stress conditions [159, 160]. The role of IIS in
vertebrate longevity appears to follow a relatively similar
scheme [161, 162]. Like in lower organisms [163, 164], the
longevity effect of IIS inhibition in rodents was dependent on
signaling events taking place in neurons [165, 166]. Human
data seems to support the role of IIS in lifespan determination,
as polymorphisms in IIS genes associate with longevity [167],
and centenarians show over-representation of gene variants
associated with high circulating IGF-I but reduced IGF-IR
activity [168]. However, the matter is still not settled [169],
and more research is necessary to characterize in depth the
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boundary between insulin-like signaling and its molecular tar-
gets in lifespan determination.

The Significance of Sphingolipid-Dependent Modulation
of Longevity-Associated IIS/PI3K/Akt Signaling Mediators
and Targets

Crucial mediators of Akt signaling (Fig. 2) include mTORC1,
a protein complex centered around the serine-threonine kinase
mechanistic/mammalian target of rapamycin (mTOR).
mTORC1 is activated through several branches of the path-
way: through phosphorylation of an mTORC1 subunit,
through a cascade of inhibitory signals via tuberous sclerosis
protein (TSC) and Ras homolog enriched in brain (Rheb), or
through IκB kinase α (IKKα) [170]. These mTORC1-
regulating pathways integrate growth factor signals with a vast
spectrum of additional factors that reflect cellular metabolic
status: oxidative and nitrosative stress, energy/glucose/oxygen
levels (sensed, e.g., via AMPK-5′ adenosine monophosphate-
activated protein kinase, and relayed to Akt and TSC
[171–176]), amino acid availability (arginine through TSC
[177], and multiple amino acids via indirect signals converg-
ing on Rheb and mTORC1 [178]). They also allow cross-talk
with S1P/C1P/ceramide signaling. Sphingolipids can change
mTORC1 activity via their influence on PI3K and Akt, but
PI3K-/Akt-independent pathways have also been described
(Fig. 2):

– S1P activates mTOR through protein associatedwithmyc
(PAM), an E3 ubiquitin ligase [179];

– A phospholipase D-mediated mechanism has been re-
ported where S1P might block mTOR-dependent signal-
ing to S6K and 4E-BP1, leading to enhanced autophagy
[180].

mTORC1 and its signaling targets are viewed as a major
driving force of numerous cellular processes that contribute to
aging, including oxidative catabolism, protein and lipid syn-
thesis, and disturbed free radical defenses [181–183].
mTORC1 is engaged in age-related deregulation of
proteostasis, nutrient-dependent signaling, mitochondrial me-
tabolism, and in the acquisition of senescent phenotype (in-
cluding the pro-inflammatory senescence-associated secreto-
ry phenotype (SASP)) [184, 185]. However, it is worth noting
that its positive effects on the respiratory chain [186] can be
accompanied by enhanced expression of SOD, catalase, and
glutathione peroxidase (GPx) [187].

Changes in mTOR signaling mediate multiple effects of
caloric restriction [185]. mTORC1 inhibitor rapamycin is an
extremely robust pharmacological treatment that extends
lifespan in multiple model organisms, including mammals,
even if administered relatively late [185]. Mutation analysis
and microRNA research confirm the role of mTOR [188,

189]. The outstanding universality of the lifespan effects of
rapamycin have led to suggestions about potential human in-
tervention candidate [185].

The best characterized mediators of mTORC1-dependent
actions include S6K1 and S6K2 (ribosomal protein S6 ki-
nases), 4E-BPs (eukaryotic translation initiation factor 4E-
binding proteins), and FOXO transcription factors, but also
NF-κB and its interaction partners increasingly seem to play
important roles (Fig. 3):

– S6K1 and S6K2 are mTORC1-activated stimulators
of protein synthesis. Disruption of S6K1 extends
lifespan in mice and recapitulates metabolic aspects
of CR (including altered gene expression patterns, in-
sulin sensitivity, and glucose tolerance), suggesting
the kinase as a crucial mediator of the robust life-
prolonging intervention [193, 194]. Partial inhibition
of sphingolipid biosynthesis (pharmacological or ge-
netic reduction of SPT activity) increases yeast cell
chronological lifespan through Sch9, an ortholog of
S6K [25, 195]. The topic has not been characterized
directly in mammals, but experimental data suggest
links between sphingolipids and S6K-dependent mod-
ulation of aging. Ceramide leads to S6K inhibition
[196]; moreover, altered proportions of ceramide spe-
cies and the resulting disruption of Akt to S6K1 sig-
naling has been suggested to underlie an important
aspect of muscle aging—the loss of adaptability to
physical effort [197]. The influence of S1P or
FTY720/fingolimod on PI3K (positive or negative,
depending on the cell type and its S1PRs subset) has
been shown to translate respectively into activation or
inhibition of S6K [179, 198, 199]. Fingolimod also
increases protein levels of mTOR and S6K, and this
effect was probably responsible for the reduction of
autophagic neuron death [198]. As a feedback mech-
anism, S6K can block PI3K activation by the insulin
receptor. It may sometimes lead to unexpected results
such as the presence of activated S6K despite inhibi-
tion of the upstream Akt signaling by ceramide [200].

– Phosphorylation of 4E-BP1 and 4E-BP2 by mTORC1
removes their inhibitory influence on the translation
regulator eIF4E. Ceramide has been shown to activate
4E-BP1, although not always via Akt/mTOR [201].
4E-BP participates in a wide spectrum of stress-
response mechanisms [202–206] and mediates the ef-
fects of diet (CR/reduced amino acid supply), temper-
ature, and probably IIS manipulation, on nonvertebrate
longevity [202, 207, 208]. Its activation protects mam-
malian tissues against metabolic disturbances associat-
ed with age [209] while loss of 4E-BP regulation con-
tributes to the mentioned age-related disruption of
muscle adaptation [210].
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– FOXO transcription factors belong to central modula-
tors of IIS/mTOR-dependent stress resistance/lifespan
in organisms ranging from nematodes to humans [101,
211, 212]. FOXOs extensively cross-talk with sirtuins
(SIRT-1 to 7; homologs of yeast silent information
regulator 2) that sense the cellular metabolic status
and stress conditions, and orchestrate stress response/
macromolecular repair, influencing the course of ag-
ing, neuronal plasticity/learning and memory, and neu-
rodegenerative diseases including AD [101, 211].
FOXO1 and FOXO3a typically undergo Akt- or
mTORC1-mediated inhibition [213], which neutral-
izes their numerous homeostatic activities (FOXOs
stimulate the expression of catalase, Mn-SOD, GPX,
or peroxiredoxin III) [214–217]. Limited evidence
suggests that FOXOs might take part in the effects
exerted by sphingolipids via IIS. Activation of PI3K
and Akt by S1P has been shown to actually trigger the
expected downstream events such as inhibitory phos-
phorylation of FOXO3a or up-regulation of B cell
lymphoma 2 (Bcl-2) and B cell lymphoma-extra large
(BclxL), leading to impact on the cell survival
[218–220]. Interestingly, FOXO1 exerts feedback reg-
ulation upon the expression of S1P receptors (S1PR1
and 4) [221].

– NF-κB is an immune modulator that often contributes
to neuronal damage, although the spectrum of its
known roles is much wider: sensing oxygen levels,
ROS, and RNS (reactive oxygen and nitrogen spe-
cies) [222–224] (Fig. 2), stimulation of free radical
defense, but also of prooxidative enzymes and cell
death [225–227]. NF-κB cross-talks with IIS (Fig.

2) and is linked with aging modulation, with cellular
senescence, and SASP [225, 227–229]. Moreover,
disturbances of the NF-κB target HIF-1α may be re-
sponsible for the age-dependent, mitochondria-linked
deregulation of energetic metabolism in mammals
[230, 231]. Finally, links of NF-κB and the retro-
grade response (see below) deserve further attention
in the context of aging mechanisms [232].
S1P activates NF-κB throughAkt signaling to either IKKα
or mTORC1, leading to modulation of NF-κB target genes
and responses [233–235]. However, the significance of this
interaction is unclear due to the NF-κB’s above-mentioned
role in immune stimulation and cell death—also in the
brain [236]. The importance of fine-tuning of various as-
pects of NF-κB response to S1P signaling is further
stressed by the fact that S1P and the S1P receptor modu-
lator fingolimod sometimes paradoxically exert opposite
influence on some NF-κB targets such as NO production
in astrocytes [236]. Moreover, while some S1P receptors
(including S1PR2) activate NF-κB, S1PR5 actually in-
hibits it, suggesting that the cell type and its relative ex-
pression levels of various S1PR isoforms can switch the
outcome of S1P signaling [235, 237].

The poorly characterized C1P receptor allows also C1P to
stimulate DNA binding by NF-κB via PI3K and Akt [152,
153].

Interestingly, DNA binding by NF-κB is also increased
in response to a cell-permeable short-chain analog of cer-
amide, though this response did not lead to increase in the
measured gene activities [238]. The significance of high
levels of endogenous, C16:0 and C20:0 ceramides for

Fig. 3 Selected mediators of mTORC1 signaling in the modulation of
cellular metabolism and organism lifespan. Fragmented evidence shows
that sphingolipids can lead to opposite effects on mTORC1 activity,
depending on the mediators engaged, or experimental model used (see
text). The mTORC1 complex influences protein quality assurance
mechanisms through heat shock transcription factor 1 (HSF1) and the
Unc-51-like kinase (ULK1) [190]. mTORC1 stimulates transcription
(via ribosomal S6 kinase (S6K)), and translation (through blocking of
4E binding protein 4E-BP1, which itself is an inhibitor of eukaryotic
translation initiation factor 4E-eIF4E). 4E-BP1 can react positively to

the presence of ceramide, although the mechanism has not been fully
elucidated. Sterol regulatory element-binding protein (SREBP-1c)
mediates the effect of mTOR on lipid biosynthesis [191]. The
extremely pleiotropic functions of NF-κB include regulation of the
glycolysis-controlling hypoxia inducible factor 1α (HIF1α), sirtuin
(SIRT1), and forkhead box O1 transcription factors (FOXOs, which can
send feedback signal to S1P receptors), and antioxidative enzymes
glutathione peroxidase (GPx) and manganese superoxide dismutase
(Mn-SOD). According to [192], modified
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NF-κB has been confirmed by Rivas et al., who found
elevated expression of the transcription factor in old mus-
cle, where it probably contributed to the age-related atten-
uation of the tissue adaptability to exercise [197]. NF-κB
exerts feedback responses on various levels of
sphingolipid signaling, mainly through up-regulation of
SPT and acid sphingomyelinase, but also S1P phosphatase
[239–241].

The Retrograde Response as an Example of Sphingolipid Role
in Aging/Senescence

The significance of the cross-talk between sphingolipids
and the IIS-dependent modulation of stress defense has
also been analyzed in the context of the retrograde re-
sponse that signals, e.g., the presence of defective mi-
tochondria, a crucial element of aging, to the nucleus
[242]. TORC1 senses the cellular nutrient status, and
when glutamate is lacking, reduced TORC1 activity
leads to de-repression of the retrograde response, which
interacts with the regulatory pathways of mitophagy.
Mitophagy is a subset of autophagic organelle degrada-
tion, and its proper regulation ensures that defective
mitochondria are eliminated leaving the best-preserved
organelles for replication. The retrograde response is
known to be involved in yeast cell lifespan extension.
Its crucial significance for the long-term cellular main-
tenance has led to the suggestion that the longevity-
related function of yeast LAG1 and its worm orthologs
hyl-1 and hyl-2 in fact stemmed from their significance
in the integration of these mitochondrial quality signal-
ing pathways [243]. The link between the detection of
defects by the retrograde response and the execution of
mitophagy involves sphingolipid signaling (LAG cer-
amide synthases, ceramidases), TOR, and a TORC1-
interacting ortholog of mammalian S6K [243].
Mammalian orthologs of the retrograde response path-
way proteins also include NF-κB. The mechanism ap-
pears to be related to elements of the mammalian un-
folded protein response and endoplasmic reticulum
stress [243, 244]. The importance of degradation of de-
fective mitochondria for neuronal cell maintenance
makes it a promising aging research target, although
there is a clear difference in the observed effects be-
tween rodents and humans [245]. The wide-ranging lon-
gevity effects of mild mitochondrial uncoupling/
coenzyme Q synthesis manipulation via reduced
MCLK1 (5-demethoxyubiquinone hydroxylase) gene ex-
pression suggest the existence of retrograde-type signal-
ing in vertebrates [244]. However, the identity of mam-
malian proteins that signal mitochondrial damage to the
nucleus is still not well understood [246].

Sphingolipids and Mitochondrial Number/Quality Control

The role of mitochondria in cell death signaling by ceramide
has been reviewed extensively [247, 248]. However, evidence
is accumulating on ceramide roles in a whole spectrum of
regulatory events that affect their function. In mammalian oo-
cytes disturbed intracellular localization of ceramide (due to
loss of ceramide transport protein expression) seems to con-
tribute to loss of mitochondrial function with oocyte age,
which may be an important example of links between
sphingolipid metabolism and long-term cellular homoeostasis
[249].

Maintenance of mitochondrial dynamics is crucial for
cell cell health. Non-symmetrical fission allows sequestra-
tion of damaged, dysfunctional, or “worn” mitochondrial
material, which can be degraded in the process of
mitophagy, while fusion allows amassing healthy organ-
elles. Sphingolipid signaling has tight ties with mitochon-
drial dynamics. The levels of sphingoid bases which serve
as sphingolipid precursors increases with yeast chronolog-
ical aging, and these compounds inhibit mitochondrial fu-
sion, leading to fragmentation and to age-related symptoms
of mitochondrial decay (Fig. 4) [250]. Ceramide has been
shown to activate fission of mitochondria in various tissues
and in a cellular model, acting through modulation of ex-
pression levels of BOK (Bcl-2-related ovarian killer

Fig. 4 Bioactive sphingolipids and their roles in mitochondrial fusion,
fission, autophagy/mitophagy, and apoptotic signaling. Ceramide is
capable of activating mitophagy (via microtubule-associated protein
1A/1B-light chain 3 proteins (LC3)) and mitochondrial fission (through
Bcl-2-related ovarian killer protein (BOK)), while inhibiting fusion
(through mitofusin 1 and the optic atrophy protein (OPA1); see text for
details. S1P generally activates autophagy, although the significance of
this fact for mitochondrial turnover is not yet known. However, S1P
augments mitochondrial assembly via protein kinase A (PKA),
peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-
1α), and prohibitin 2. S1P and ceramide regulate the anti-apoptotic Bcl-2
and the Bcl-2 family protein: BclxL, and pro-apoptotic Bax, Bad, or Bim.
In turn, some of the proteins influence the enzymes of sphingolipid
metabolism, ensuring negative or positive feedback regulation
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protein) [251]. Ceramide inhibits Akt signaling (synergis-
tically with intracellular amyloid β42 (Aβ42)) and disturbs
the fusion-fission regulation in neuronal cell lines through
down-regulation of the fusion-promoting proteins
mitofusin 1 and OPA1 (optic atrophy 1) [252] (Fig. 4).
Ceramide also reduced the levels of the fission regulator
dynamin-related protein 1, although in muscle cells its
seemed to exert opposite effect [252, 253]. Likewise, loss
of the ceramide transfer protein CERT results in disturbed
transport of ceramides from endoplasmic reticulum to
Golgi apparatus, hexosylceramide accumulation in mito-
chondria, and lower frequency of both fusion and fission
[254]. Finally, like in the plasma membrane, ceramide
plays important structural roles in raft-like domains, and
their disruption through inhibition of ceramide synthase
disturbs the fission process [255].

Mitophagy, the mitochondria-targeting subset of au-
tophagy, can be triggered by signs of organellar decay such
as ROS generation or loss of mitochondrial membrane po-
tential. The resulting autophagosome fuses with lysosome
to create autophagolysosome, a process dependent on the
LC3 (microtubule-associated protein 1A/1B-light chain 3)
proteins. Mitophagy may result in either homoeostatic re-
moval of damaged mitochondria, or escalate into various
modes of cell death, depending on the circumstances. LC3
proteins interact with ceramide in mitochondrial mem-
branes in an selective way dependent on the LC3 isoform,
and this interaction facilitates autophagosome binding
[256]. Besides other cellular sources, ceramide can be pro-
duced in mitochondria at least in some tissues; enzymes of
its metabolism including CerS, sphingomyelinase, and
ceramidase have been detected in isolated mitochondria
[257–259]. Ceramide’s role in mitophagy can extend to
mitophagic cell death [260].

Limited data suggests the involvement of SphKs in autoph-
agy in general [180], suggesting possible links with mitochon-
drial quality assurance mechanisms. Moreover, S1P has been
shown to activate mitochondrial biogenesis and adenosine
triphosphate (ATP) generation via S1PR2, the protein kinase
A (PKA)/cAMP response element-binding protein (CREB)
pathway, and peroxisome proliferator-activated receptor γ co-
activator 1α (PGC-1α) [261]. Mitochondrial assembly and
the respiratory chain function are also dependent upon S1P
binding to the prohibitin 2 protein [262]. Major part of S1P’s
anti-apoptotic signaling occurs through its influence on
mitochondria-associating proteins of the Bcl-2 family. S1P
increases Bcl-2 level [263] and phosphorylation [264], lead-
ing to inhibition of apoptosis. S1P also down-regulates Bcl2-
associated X protein (Bax), Bad, and Bim (BCL2-like 11
protein) [263, 265, 266]. In turn, Bcl-2 and BclxL inhibit cer-
amide synthesis by nSMase [267]. Interestingly, Bcl-2 also
increases SphK1 level and activity [268], and Bax/Bak acti-
vates CerS [269]. Although IIS is a classical regulator of

survival, some of the mentioned effects are not mediated by
PI3K/Akt signaling. SphK2-synthesized S1P promotes au-
tophagy and the associated tissue tolerance to neurodegener-
ative ischemic insult (preconditioning in cortical neurons)
[270], but it remains to be investigated how it would translate
to any actual links with mitophagy.

Sphingolipids in the Alzheimer’s Disease

Accumulating evidence points to the involvement of
sphingolipids in the neurodegeneration in AD. Hippocampal
ceramide and sphingomyelin content correlate with age in
men and aging in females leads to reduction in the fraction
of phosphorylated sphingosine (S1P/sphingosine ratio), sug-
gesting that age-related changes in bioactive sphingolipids
might create pro-apoptotic, neurodegeneration-conductive en-
vironment [83]. Imbalance in the S1P and ceramide, which
potentially might decide of the brain cell fates is observed
from the earliest clinically recognizable stages of AD and

Neurodegeneration  

Immune 
response 

Survival signaling  
(incl. PI3K / Akt,  

Bcl-2 family) 

Mitochondrial 
dysfunction / 
oxidative stress 
AβPP metabolism
Tau hyper-
phosphorylation 
Pro-apoptotic 
signaling

Fig. 5 The significance of bioactive sphingolipids in neurodegeneration.
The ‘sphingolipid rheostat’model assumes antagonistic roles of ceramide
and S1P in the regulation of cellular survival and death. Although
exceptions have been identified, the tendency towards accumulation of
ceramide and reduced levels of S1P still should generate strong
neurodegenerative impulse. Potential downstream mechanisms include
not only inhibition of survival signaling mostly mediated by the PI3K-
Akt pathway, but also modulation of AβPP metabolism, and alteration of
S1PR-dependent immune response—the latter capable of exerting either
beneficial (Aβ clearance) or detrimental outcome (damage to neurons).

symbol denotes the ambiguous role of immune activation in
neurodegenerative disorders (clearance of extracellular aggregates of
misfolded proteins and debris from dying cells vs. creation of
neurotoxic environment that accelerates the loss of neuronal
connectivity and ultimately death of further neurons). S1P is known to
modulate the immune response, but the possible outcome of the resulting
reaction in the diseased brain is highly unclear
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correlates with Braak staging of neurodegenerative changes
(Table 1) [76, 79]. The presence of a very early peak in cer-
amide generation in the brain has led to a proposal of a pre-
mild cognitive impairment (MCI) stage of AD development
[86]. The observed changes in sphingomyelin are less coher-
ent [92]. However, using autopsy material from the Baltimore
Longitudinal Study of Aging, Varma et al. have noted that
three sphingomyelin species and one hydroxysphingomyelin
associated with the progression along the prodromal and pre-
clinical stages of AD. Moreover, higher levels of identified
sphingomyelins and hydroxysphingomyelin associate with
the risk of future conversion to AD [81]. The association of
sphingolipid levels with either early AD stages, and the acces-
sibility of body fluids for diagnostic purposes have led to
suggestions of sphingolipids as potential AD biomarkers use-
ful for early risk identification/diagnosis. Toledo et al. have
found that some serum sphingomyelin species correlate with
progression fromMCI to full AD [82]. Likewise, the enzymes
of sphingolipid metabolism are altered in AD in a manner
correlating with disease progression. Examples of up-
regulated genes include the ceramide-producing synthases
LASS1, LASS2 (coding for CerS1 and CerS2, respectively)
and acid sphingomyelinase ASM; S1P lyase SGPL1, and ser-
ine palmitoyltransferase SPTLC2 (which decides on the gen-
eral ceramide/sphingolipid levels) were also increased, while
the acid ceramidase ASAH1, C1P-generating CERK, or—less
obviously—LASS6 are reduced [76, 77]. We confirmed the
trend towards reduced expression of S1P- and C1P-
producing enzymes (SPHKs, CERK, S1P receptors) in human
sporadic AD brains although there were slight differences in
the types of genes/isoforms affected [271].

The roles of S1P and ceramide in the survival of brain
neurons are far more complex than the antagonism described
in the sphingolipid rheostat model. However, it is highly
probable that changes in these compounds should significant-
ly alter the rates of neuron degeneration and death (Fig. 5).
Modulation of IIS activity largely mediates the pro- or anti-
apoptotic signaling of S1P, C1P, and ceramide. IGF-I resis-
tance may be an important aspect of AD pathology, although
over-activation of the pathway has also been suggested to
contribute [272, 273]. Microglial expression of IGF-I reduces
Aβ release and inflammation [274, 275], and IGF-I prevents
Aβ25–35-induced hippocampal neuron death [276]. Human
IGF-I-expressing cortex-derived neural stem cells have been
proposed for AD therapy [277]. S1PR signaling can inhibit
GSK-3β, the kinase engaged in tau phosphorylation, via
PI3K-Akt [17]. S1P has been also shown to inhibit Aβ-
dependent ceramide production by aSMase [278], although
prolonged production of S1P by SPHK2 can lead to neuro-
degeneration [4, 40]. The roles of S1P in the regulation of
secretion mechanisms also deserve more attention in the con-
text of extracellular protein neurotoxicity [1, 279]. The pat-
tern of sphingolipid metabolic enzyme changes in AD can be

largely replicated in an animal Aβ precursor protein (AβPP,
V717I)-transfected model, suggesting that these alterations
arise in a relatively direct way in response to high Aβ peptide
production [271]. Fingolimod effects on the age-dependent
transcription of survival-regulating sphingolipid metabolism
genes supports the need of its in-depth characterization as a
potential disease-modifying treatment in AD and other neu-
rodegenerative disorders [271].

Concluding Remarks

Sphingolipids and sphingolipid metabolism are being increas-
ingly implicated in aging and in age-related neurodegenera-
tive disorders. The mechanisms of their engagement include
both modulatory influences on membrane microenvironments
(importantly, lipid rafts) as structural components, and inter-
actions with signaling pathways. Crucially for aging and neu-
rodegeneration, sphingolipids modulate neurotransmission
and hormonal regulation. Sphingolipids’ cross-talk with the
IGF-I-Akt-mTOR pathway may modulate multiple aspects
of cellular survival, stress response, and aging. The potential
significance of these interactions is vast and might include
opportunities for therapeutic interventions. However, the de-
piction of sphingolipid engagement in long-term
homoeostasis, requires much more comprehensive under-
standing. Currently available means of intervention involving
sphingolipids need to be better understood and clinically re-
fined before the compromise between their side-effects and
the possible benefits becomes a viable option.
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